Research Article

基质金属蛋白酶- 9和血管内皮生长因子在大鼠肾间质纤维化中的表达及分子机制

卷 24, 期 12, 2024

发表于: 02 November, 2023

页: [1540 - 1549] 页: 10

弟呕挨: 10.2174/0115665240264823231101103226

价格: $65

摘要

目的:为了探索治疗肾间质纤维化(RIF)的新途径,我们检测了基质金属蛋白酶-9 (MMP9)和血管内皮生长因子(VEGF)的表达。 方法:24只雄性SD大鼠随机分为2周正常对照组(2NC)组、4周正常对照组(4NC)组、2周单侧输尿管梗阻组(2UUO)和4周输尿管梗阻组(4UUO)。UUO组行左侧输尿管结扎术。2NC组和2UUO组于术后2周处死大鼠,其余各组于术后4周处死大鼠。应用免疫组织化学和western blot检测MMP9、VEGF、纤维连接蛋白(FN)、IV型胶原蛋白(Col-IV)、转化生长因子-β1 (TGF-β1)的表达。UUO手术后MMP9水平降低。其表达量在4UUO组低于2UUO组(P<0.05)。UUO组VEGF、TGF- β1、FN、Col-IV的表达明显高于NC组(P<0.05)。这些指标在4UUO组的表达均高于2UUO组(P<0.05)。 结果:在相关分析中,UUO组MMP9水平与TGF-β1、VEGF、Col-IV、FN、RIF指数表达呈负相关(均P<0.05)。UUO组VEGF水平与TGF-β1、Col-IV、FN、RIF指数表达呈正相关(均P<0.05)。 结论:综上所述,随着RIF病变的加重,MMP9水平降低,VEGF水平升高。两者之间是否存在相互抑制关系,还有待进一步的实验证实。

关键词: 肾间质纤维化,基质金属蛋白酶-9,血管内皮生长因子,转化生长因子-β1。

[1]
Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol 2018; 80(1): 309-26.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034227] [PMID: 29068765]
[2]
Wang YY, Jiang H, Pan J, et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. J Am Soc Nephrol 2017; 28(7): 2053-67.
[http://dx.doi.org/10.1681/ASN.2016050573] [PMID: 28209809]
[3]
Ntrinias T, Papasotiriou M, Balta L, et al. Biomarkers in progressive chronic kidney disease. Still a long way to go. Prilozi (Makedon Akad Nauk Umet Odd Med Nauki) 2019; 40(3): 27-39.
[http://dx.doi.org/10.2478/prilozi-2020-0002] [PMID: 32109222]
[4]
Yang H, Liao D, Tong L, Zhong L, Wu K. MiR-373 exacerbates renal injury and fibrosis via NF-κB/MatrixMetalloproteinase-9 signaling by targeting Sirtuin1. Genomics 2019; 111(4): 786-92.
[http://dx.doi.org/10.1016/j.ygeno.2018.04.017] [PMID: 29723660]
[5]
Garcia-Fernandez N, Jacobs-Cachá C, Mora-Gutiérrez JM, Vergara A, Orbe J, Soler MJ. Matrix metalloproteinases in diabetic kidney disease. J Clin Med 2020; 9(2): 472.
[http://dx.doi.org/10.3390/jcm9020472] [PMID: 32046355]
[6]
Wang H, Gao M, Li J, et al. MMP‐9‐positive neutrophils are essential for establishing profibrotic microenvironment in the obstructed kidney of UUO mice. Acta Physiol 2019; 227(2): e13317.
[http://dx.doi.org/10.1111/apha.13317] [PMID: 31132220]
[7]
Hendrix AY, Kheradmand F. The role of matrix metalloproteinases in development, repair, and destruction of the lungs. Prog Mol Biol Transl Sci 2017; 148: 1-29.
[http://dx.doi.org/10.1016/bs.pmbts.2017.04.004] [PMID: 28662821]
[8]
Çelik Ö, Şahin AA, Sarıkaya S, Uygur B. Correlation between serum matrix metalloproteinase and myocardial fibrosis in heart failure patients with reduced ejection fraction: A retrospective analysis. Anatol J Cardiol 2020; 24(5): 303-8. [J].
[PMID: 33122477]
[9]
Feng M, Ding J, Wang M, Zhang J, Zhu X, Guan W. Kupffer-derived matrix metalloproteinase-9 contributes to liver fibrosis resolution. Int J Biol Sci 2018; 14(9): 1033-40.
[http://dx.doi.org/10.7150/ijbs.25589] [PMID: 29989076]
[10]
Xu X, Abdalla T, Bratcher PE, et al. Doxycycline improves clinical outcomes during cystic fibrosis exacerbations. Eur Respir J 2017; 49(4): 1601102.
[http://dx.doi.org/10.1183/13993003.01102-2016] [PMID: 28381428]
[11]
Zsengellér ZK, Lo A, Tavasoli M, Pernicone E, Karumanchi SA, Rosen S. Soluble fms-Like Tyrosine Kinase 1 Localization in Renal Biopsies of CKD. Kidney Int Rep 2019; 4(12): 1735-41.
[http://dx.doi.org/10.1016/j.ekir.2019.08.004] [PMID: 31844810]
[12]
Wang X, Zhou Y, Tan R, et al. Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol 2010; 299(5): F973-82.
[http://dx.doi.org/10.1152/ajprenal.00216.2010] [PMID: 20844022]
[13]
Kim H, Oda T, López-Guisa J, et al. TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 2001; 12(4): 736-48.
[http://dx.doi.org/10.1681/ASN.V124736] [PMID: 11274235]
[14]
Iimura O, Takahashi H, Yashiro T, et al. Effect of ureteral obstruction on matrix metalloproteinase-2 in rat renal cortex. Clin Exp Nephrol 2004; 8(3): 223-9.
[http://dx.doi.org/10.1007/s10157-004-0287-x] [PMID: 15480899]
[15]
Gong R, Rifai A, Tolbert EM, Centracchio JN, Dworkin LD. Hepatocyte growth factor modulates matrix metalloproteinases and plasminogen activator/plasmin proteolytic pathways in progressive renal interstitial fibrosis. J Am Soc Nephrol 2003; 14(12): 3047-60.
[http://dx.doi.org/10.1097/01.ASN.0000098686.72971.DB] [PMID: 14638904]
[16]
Pourheydar B, Samadi M, Habibi P, Nikibakhsh AA, Naderi R. Renoprotective effects of tropisetron through regulation of the TGF-β1, p53 and matrix metalloproteinases in streptozotocin-induced diabetic rats. Chem Biol Interact 2021; 335: 109332.
[http://dx.doi.org/10.1016/j.cbi.2020.109332] [PMID: 33387473]
[17]
Zhang L, Zhao S, Zhu Y. Long noncoding RNA growth arrest‐specific transcript 5 alleviates renal fibrosis in diabetic nephropathy by downregulating matrix metalloproteinase 9 through recruitment of enhancer of zeste homolog 2. FASEB J 2020; 34(2): 2703-14.
[http://dx.doi.org/10.1096/fj.201901380RR] [PMID: 31916627]
[18]
Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 2018; 59(2): 455-67.
[PMID: 30173249]
[19]
Majumder S, Advani A. VEGF and the diabetic kidney: More than too much of a good thing. J Diabetes Complications 2017; 31(1): 273-9.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.10.020] [PMID: 27836681]
[20]
Pandey AK, Singhi EK, Arroyo JP, et al. Mechanisms of VEGF (Vascular Endothelial Growth Factor) inhibitor–associated hypertension and vascular disease. Hypertension 2018; 71(2): e1-8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10271] [PMID: 29279311]
[21]
Zhang A, Fang H, Chen J, He L, Chen Y. Role of VEGF-A and LRG1 in abnormal angiogenesis associated with diabetic nephropathy. Front Physiol 2020; 11: 1064.
[http://dx.doi.org/10.3389/fphys.2020.01064] [PMID: 32982792]
[22]
Su CT, Jao TM, Urban Z, et al. LTBP4 affects renal fibrosis by influencing angiogenesis and altering mitochondrial structure. Cell Death Dis 2021; 12(10): 943.
[http://dx.doi.org/10.1038/s41419-021-04214-5] [PMID: 34645813]
[23]
Lavoz C, Rodrigues-Diez RR, Plaza A, et al. VEGFR2 blockade improves renal damage in an experimental model of Type 2 Diabetic Nephropathy. J Clin Med 2020; 9(2): 302.
[http://dx.doi.org/10.3390/jcm9020302] [PMID: 31973092]
[24]
Liu F, Wang L, Qi H, et al. Nintedanib, a triple tyrosine kinase inhibitor, attenuates renal fibrosis in chronic kidney disease. Clin Sci 2017; 131(16): 2125-43.
[http://dx.doi.org/10.1042/CS20170134] [PMID: 28646122]
[25]
Li X, Yang S, Yan M, et al. Interstitial HIF1A induces an estimated glomerular filtration rate decline through potentiating renal fibrosis in diabetic nephropathy. Life Sci 2020; 241: 117109.
[http://dx.doi.org/10.1016/j.lfs.2019.117109] [PMID: 31786195]
[26]
Jie K, Feng W, Boxiang Z, et al. Identification of pathways and key genes in venous remodeling after arteriovenous fistula by bioinformatics analysis. Front Physiol 2020; 11: 565240.
[http://dx.doi.org/10.3389/fphys.2020.565240] [PMID: 33363475]
[27]
Sun Y, Zhang D, Wang CF, Hu SW, Lan Z. The expression and significance of TGF-beta 1 and its receptors in infertile women’s fimbriae tubes with adhesions and atresias. Sichuan Da Xue Xue Bao Yi Xue Ban 2009; 40(3): 435-8.
[PMID: 19626999]
[28]
Lardone MC, Argandoña F, Lorca M, et al. Leydig cell dysfunction is associated with post-transcriptional deregulation of CYP17A1 in men with Sertoli cell-only syndrome. Mol Hum Reprod 2018; 24(4): 203-10.
[http://dx.doi.org/10.1093/molehr/gay006] [PMID: 29438521]
[29]
Liu C, Liang G, Deng Z, Tan J, Zheng Q, Lyu FJ. The Upregulation of COX2 in human degenerated nucleus pulposus: The association of inflammation with intervertebral disc degeneration. Mediators Inflamm 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/2933199] [PMID: 34707460]
[30]
Lu W, Eapen MS, Singhera GK, et al. Angiotensin-Converting Enzyme 2 (ACE2), Transmembrane Peptidase Serine 2 (TMPRSS2), and Furin Expression Increases in the lungs of patients with Idiopathic Pulmonary Fibrosis (IPF) and Lymphangioleiomyomatosis (LAM): Implications for SARS-CoV-2 (COVID-19) infections. J Clin Med 2022; 11(3): 777.
[http://dx.doi.org/10.3390/jcm11030777] [PMID: 35160229]
[31]
Fu Y, Tang C, Cai J, Chen G, Zhang D, Dong Z. Rodent models of AKI-CKD transition. Am J Physiol Renal Physiol 2018; 315(4): F1098-106.
[http://dx.doi.org/10.1152/ajprenal.00199.2018] [PMID: 29949392]
[32]
Gao Y, Yuan D, Gai L, et al. Saponins from Panax japonicus ameliorate age-related renal fibrosis by inhibition of inflammation mediated by NF-κB and TGF-β1/Smad signaling and suppression of oxidative stress via activation of Nrf2-ARE signaling. J Ginseng Res 2021; 45(3): 408-19.
[http://dx.doi.org/10.1016/j.jgr.2020.08.005] [PMID: 34025134]
[33]
Wu JP. Aristolochic acid induces chronic kidney disease in ACE knockout mice. Int J Prev Med 2021; 12: 151. [J].
[PMID: 34912527]
[34]
Wang CD, Zhang C, Luo YK, Jiao N, Li RS. Effects of sequential application of immunosuppressive agents according to the cell cycle in adriamycin-induced nephropathy rats. Eur Rev Med Pharmacol Sci 2019; 23(21): 9535-47. [J].
[PMID: 31773705]
[35]
Gong L, Jiang L, Qin Y, Jiang X, Song K, Yu X. Protective effect of retinoic acid receptor α on hypoxia‐induced epithelial to mesenchymal transition of renal tubular epithelial cells associated with TGF‐β/MMP‐9 pathway. Cell Biol Int 2018; 42(8): 1050-9.
[http://dx.doi.org/10.1002/cbin.10982] [PMID: 29719094]
[36]
Li H, Rong P, Ma X, et al. Mouse umbilical cord mesenchymal stem cell paracrine alleviates renal fibrosis in diabetic nephropathy by reducing myofibroblast transdifferentiation and cell proliferation and upregulating MMPs in mesangial cells. J Diabetes Res 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/3847171] [PMID: 32455132]
[37]
Chen P, Yang Q, Li X, Qin Y. Potential association between elevated serum human epididymis protein 4 and renal fibrosis. Medicine 2017; 96(36): e7824.
[http://dx.doi.org/10.1097/MD.0000000000007824] [PMID: 28885334]
[38]
Bengatta S, Arnould C, Letavernier E, et al. MMP9 and SCF protect from apoptosis in acute kidney injury. J Am Soc Nephrol 2009; 20(4): 787-97.
[http://dx.doi.org/10.1681/ASN.2008050515] [PMID: 19329763]
[39]
Cai G, Zhang X, Hong Q, et al. Tissue inhibitor of metalloproteinase-1 exacerbated renal interstitial fibrosis through enhancing inflammation. Nephrol Dial Transplant 2008; 23(6): 1861-75.
[http://dx.doi.org/10.1093/ndt/gfm666] [PMID: 18326884]
[40]
Toba H, Lindsey ML. Extracellular matrix roles in cardiorenal fibrosis: Potential therapeutic targets for CVD and CKD in the elderly. Pharmacol Ther 2019; 193: 99-120.
[http://dx.doi.org/10.1016/j.pharmthera.2018.08.014] [PMID: 30149103]
[41]
Tan TK, Zheng G, Hsu TT, et al. Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells. Am J Pathol 2010; 176(3): 1256-70.
[http://dx.doi.org/10.2353/ajpath.2010.090188] [PMID: 20075196]
[42]
Zhao Y, Qiao X, Tan TK, et al. Matrix metalloproteinase 9-dependent Notch signaling contributes to kidney fibrosis through peritubular endothelial-mesenchymal transition. Nephrol Dial Transplant 2017; 32(5): 781-91. [J].
[PMID: 27566305]
[43]
Yu X, Hu Y, Zhang Y, et al. Integrating the polydopamine nanosphere/aptamers nanoplatform with a DNase-I-assisted recycling amplification strategy for simultaneous detection of MMP-9 and MMP-2 during renal interstitial fibrosis. ACS Sens 2020; 5(4): 1119-25.
[http://dx.doi.org/10.1021/acssensors.0c00058] [PMID: 32192327]
[44]
Kui Tan T, Zheng G, Hsu TT, et al. Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. Lab Invest 2013; 93(4): 434-49.
[http://dx.doi.org/10.1038/labinvest.2013.3] [PMID: 23358111]
[45]
Yim HE, Yoo KH, Bae IS, Hong YS. Early treatment with enalapril and later renal injury in programmed obese adult rats. J Cell Physiol 2017; 232(2): 447-55.
[http://dx.doi.org/10.1002/jcp.25444] [PMID: 27238873]
[46]
Matsui F, Babitz SA, Rhee A, Hile KL, Zhang H, Meldrum KK. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production. Am J Physiol Renal Physiol 2017; 312(1): F25-32.
[http://dx.doi.org/10.1152/ajprenal.00311.2016] [PMID: 27760767]
[47]
Lindsey ML, Zouein FA, Tian Y, Padmanabhan Iyer R, de Castro Brás LE. Osteopontin is proteolytically processed by matrix metalloproteinase 9. Can J Physiol Pharmacol 2015; 93(10): 879-86.
[http://dx.doi.org/10.1139/cjpp-2015-0019] [PMID: 26176332]
[48]
Cao G, Lu Y, Gao R, et al. Expression of fractalkine, CX3CR1, and vascular endothelial growth factor in human chronic renal allograft rejection. Transplant Proc 2006; 38(7): 1998-2000.
[http://dx.doi.org/10.1016/j.transproceed.2006.06.081] [PMID: 16979977]
[49]
Ricciardi CA, Gnudi L. Vascular growth factors as potential new treatment in cardiorenal syndrome in diabetes. Eur J Clin Invest 2021; 51(9): e13579.
[http://dx.doi.org/10.1111/eci.13579] [PMID: 33942293]
[50]
Zhang J, Chu M. Differential roles of VEGF: Relevance to tissue fibrosis. J Cell Biochem 2019; 120(7): 10945-51.
[http://dx.doi.org/10.1002/jcb.28489] [PMID: 30793361]
[51]
Hakroush S, Moeller MJ, Theilig F, et al. Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation, and glomerular disease. Am J Pathol 2009; 175(5): 1883-95.
[http://dx.doi.org/10.2353/ajpath.2009.080792] [PMID: 19834063]
[52]
Sánchez-Navarro A, Pérez-Villalva R, Murillo-de-Ozores AR, et al. Vegfa promoter gene hypermethylation at HIF1α binding site is an early contributor to CKD progression after renal ischemia. Sci Rep 2021; 11(1): 8769.
[http://dx.doi.org/10.1038/s41598-021-88000-5] [PMID: 33888767]
[53]
Lian Y, Zhou Q, Zhang Y, Zheng F. VEGF ameliorates tubulointerstitial fibrosis in unilateral ureteral obstruction mice via inhibition of epithelial-mesenchymal transition. Acta Pharmacol Sin 2011; 32(12): 1513-21.
[http://dx.doi.org/10.1038/aps.2011.111] [PMID: 21986574]
[54]
Veron D, Bertuccio CA, Marlier A, et al. Podocyte vascular endothelial growth factor (Vegf(1)(6)(4)) overexpression causes severe nodular glomerulosclerosis in a mouse model of type 1 diabetes. Diabetologia 2011; 54(5): 1227-41.
[http://dx.doi.org/10.1007/s00125-010-2034-z] [PMID: 21318407]
[55]
Lourenço BN, Coleman AE, Tarigo JL, et al. Evaluation of profibrotic gene transcription in renal tissues from cats with naturally occurring chronic kidney disease. J Vet Intern Med 2020; 34(4): 1476-87.
[http://dx.doi.org/10.1111/jvim.15801] [PMID: 32468592]
[56]
Lee SY, Hörbelt M, Mang HE, et al. MMP-9 gene deletion mitigates microvascular loss in a model of ischemic acute kidney injury. Am J Physiol Renal Physiol 2011; 301(1): F101-9.
[http://dx.doi.org/10.1152/ajprenal.00445.2010] [PMID: 21454251]
[57]
Ma Y, Chiao YA, Clark R, et al. Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence. Cardiovasc Res 2015; 106(3): 421-31.
[http://dx.doi.org/10.1093/cvr/cvv128] [PMID: 25883218]
[58]
Liu H, Liu H, Lv L, et al. CCN3 suppresses TGF-β1-induced extracellular matrix accumulation in human mesangial cells in vitro. Acta Pharmacol Sin 2018; 39(2): 222-9.
[http://dx.doi.org/10.1038/aps.2017.87] [PMID: 28858296]
[59]
Li A, Yuan JF, Gong Q, et al. Effects of Eucommia ulmoides extract against renal injury caused by long-term high purine diets in rats. Food Funct 2021; 12(12): 5607-20.
[http://dx.doi.org/10.1039/D0FO02802A] [PMID: 34018492]
[60]
Xu Y, Gao AM, Ji LJ, et al. All-trans retinoic acid attenuates hypoxia-induced injury in NRK52E cells via inhibiting NF-κB/VEGF and TGF-β2/VEGF pathway. Cell Physiol Biochem 2016; 38(1): 229-36.
[http://dx.doi.org/10.1159/000438624] [PMID: 26783748]
[61]
Lin S, Teng J, Li J, Sun F, Yuan D, Chang J. Association of chemerin and vascular endothelial growth factor (VEGF) with diabetic nephropathy. Med Sci Monit 2016; 22: 3209-14.
[http://dx.doi.org/10.12659/MSM.896781] [PMID: 27612613]
[62]
Hong JP, Li XM, Li MX, Zheng FL. VEGF suppresses epithelial-mesenchymal transition by inhibiting the expression of Smad3 and miR-192, a Smad3-dependent microRNA. Int J Mol Med 2013; 31(6): 1436-42.
[http://dx.doi.org/10.3892/ijmm.2013.1337] [PMID: 23588932]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy