Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

LIMD2 is the Signature of Cell Aging-immune/Inflammation in Acute Myocardial Infarction

Author(s): Ping Tao, Xiaoming Chen, Lei Xu, Junteng Chen, Qinqi Nie, Mujuan Xu* and Jianyi Feng*

Volume 31, Issue 17, 2024

Published on: 02 November, 2023

Page: [2400 - 2413] Pages: 14

DOI: 10.2174/0109298673274563231031044134

Price: $65

Abstract

Background: Acute myocardial infarction (AMI) is an age-dependent cardiovascular disease in which cell aging, immunity, and inflammatory factors alter the course; however, cell aging-immune/inflammation signatures in AMI have not been investigated.

Methods: Based on the GEO database to obtain microRNA (miRNA) sequencing, mRNA sequencing and single-cell sequencing data, and utilizing the Seurat package to identify AMI-associated cellular subpopulations. Subsequently, differentially expressed miRNAs and mRNAs were screened to establish a network of competing endogenous RNAs (ceRNAs). Senescence and immunity scores were calculated by single sample gene set enrichment analysis (ssGSEA), ESTIMATE and CIBERSORT algorithms, and the Hmisc package was used to screen for genes with the highest correlation with senescence and immunity scores. Finally, protein-protein interaction (PPI) and molecular docking analyses were performed to predict potential therapeutic agents for the treatment of AMI.

Results: Four cell types (Macrophage, Fibroblast, Endothelial cells, CD8 T cells) were identified in AMI, and CD8 T cells exhibited the lowest cell aging activity. A ceRNA network of miRNAs- mNRA interactions was established based on the overlapping genes in differentially expressed miRNAs (DEmiRNAs) target genes and differentially expressed mRNAs (DEmRNAs). Twenty-four marker genes of CD8 T cells were observed. LIMD2 was identified as cell aging- immune/inflammation-related hub gene in AMI. This study also identified a potential therapeutic network of DB03276-LIMD2-AMI, which showed excellent and stable binding status between DB03276-LIMD2.

Conclusion: This study identified LIMD2 as a cell aging-immune/inflammation-related hub gene. The understanding of the pathogenesis and therapeutic mechanisms of AMI was enriched by the ceRNA network and DB03276-LIMD2-LAMI therapeutic network.

Keywords: Acute myocardial infarction, cell aging, immune, inflammation, ceRNAs, LIMD2.

[1]
Hong, G.; Rui, G.; Zhang, D.; Lian, M.; Yang, Y.; Chen, P.; Yang, H.; Guan, Z.; Chen, W.; Wang, Y. A smartphone-assisted pressure-measuring-based diagnosis system for acute myocardial infarction diagnosis. Int. J. Nanomedicine, 2019, 14, 2451-2464.
[http://dx.doi.org/10.2147/IJN.S197541] [PMID: 31040668]
[2]
Tyrrell, D.J.; Blin, M.G.; Song, J.; Wood, S.C.; Zhang, M.; Beard, D.A.; Goldstein, D.R. Age-associated mitochondrial dysfunction accelerates atherogenesis. Circ. Res., 2020, 126(3), 298-314.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315644] [PMID: 31818196]
[3]
Van de Werf, F.; Bax, J.; Betriu, A.; Blomstrom-Lundqvist, C.; Crea, F.; Falk, V.; Filippatos, G.; Fox, K.; Huber, K.; Kastrati, A.; Rosengren, A.; Steg, P.G.; Tubaro, M.; Verheugt, F.; Weidinger, F.; Weis, M.; Vahanian, A.; Camm, J.; De Caterina, R.; Dean, V.; Dickstein, K.; Filippatos, G.; Funck-Brentano, C.; Hellemans, I.; Kristensen, S.D.; McGregor, K.; Sechtem, U.; Silber, S.; Tendera, M.; Widimsky, P.; Zamorano, J.L.; Silber, S.; Aguirre, F.V.; Al-Attar, N.; Alegria, E.; Andreotti, F.; Benzer, W.; Breithardt, O.; Danchin, N.; Mario, C.D.; Dudek, D.; Gulba, D.; Halvorsen, S.; Kaufmann, P.; Kornowski, R.; Lip, G.Y.H.; Rutten, F. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation. Eur. Heart J., 2008, 29(23), 2909-2945.
[http://dx.doi.org/10.1093/eurheartj/ehn416] [PMID: 19004841]
[4]
Cipriani, A.; Dall’Aglio, P-B.; Mazzotta, L.; Sirico, D.; Sarris, G.; Hazekamp, M.; Carrel, T.; Frigiola, A.; Sojak, V.; Rito, M-L.; Horer, J.; Roussin, R.; Cleuziou, J.; Meyns, B.; Fragata, J.; Telles, H.; Polimenakos, A-C.; Francois, K.; Veshti, A.; Salminen, J.; Rocafort, A-G.; Nosal, M.; Protopapas, E.; Tumbarello, R.; Sarto, P.; Pegoraro, C.; Motta, R.; Salvo, G-D.; Corrado, D.; Vida, V-L.; Padalino, M-A. Diagnostic yield of non-invasive testing in patients with anomalous aortic origin of coronary arteries: A multicentric experience. Congenit. Heart Dis., 2022, 17(4), 375-385.
[http://dx.doi.org/10.32604/chd.2022.019385]
[5]
Lieder, H.R.; Kleinbongard, P.; Skyschally, A.; Hagelschuer, H.; Chilian, W.M.; Heusch, G. Vago-splenic axis in signal transduction of remote ischemic preconditioning in pigs and rats. Circ. Res., 2018, 123(10), 1152-1163.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313859] [PMID: 30359199]
[6]
Bhatia, S.; Arora, S.; Bhatia, S.M.; Al-Hijji, M.; Reddy, Y.N.V.; Patel, P.; Rihal, C.S.; Gersh, B.J.; Deshmukh, A. Non-st-segment-elevation myocardial infarction among patients with chronic kidney disease: A propensity score-matched comparison of percutaneous coronary intervention versus conservative management. J. Am. Heart Assoc., 2018, 7(6), e007920.
[http://dx.doi.org/10.1161/JAHA.117.007920] [PMID: 29525779]
[7]
Saber Hafez, M.; Roushdy, A.; Ezzeldin, D. Predictors and effects of persistent hypertension after successful treatment of coarctation of the aorta. Congenit. Heart Dis., 2022, 17(3), 325-333.
[http://dx.doi.org/10.32604/chd.2022.019025]
[8]
Wang, L.; Zhang, M.; Chen, X.; Pang, Y.; Liu, J.; Xu, Z. Assessment of reversibility in pulmonary hypertension related to congenital heart disease by using biomarkers and clinical features. Congenit. Heart Dis., 2022, 17(1), 87-97.
[http://dx.doi.org/10.32604/CHD.2022.018452]
[9]
Alique, M.; Luna, C.; Carracedo, J.; Ramírez, R. LDL biochemical modifications: A link between atherosclerosis and aging. Food Nutr. Res., 2015, 59(1), 29240.
[http://dx.doi.org/10.3402/fnr.v59.29240] [PMID: 26637360]
[10]
Le Blanc, J.; Lordkipanidzé, M. Platelet function in aging. Front. Cardiovasc. Med., 2019, 6, 109.
[http://dx.doi.org/10.3389/fcvm.2019.00109] [PMID: 31448291]
[11]
Zhang, Y.; Herbert, B.S.; Rajashekhar, G.; Ingram, D.A.; Yoder, M.C.; Clauss, M.; Rehman, J. Premature senescence of highly proliferative endothelial progenitor cells is induced by tumor necrosis factor-α via the p38 mitogen-activated protein kinase pathway. FASEB J., 2009, 23(5), 1358-1365.
[http://dx.doi.org/10.1096/fj.08-110296] [PMID: 19124561]
[12]
Zeng, J.Y.; Du, J.J.; Pan, Y.; Wu, J.; Bi, H.L.; Cui, B.H.; Zhai, T.Y.; Sun, Y.; Sun, Y.H. Calcium-sensing receptor in human peripheral blood T lymphocytes is involved in the AMI onset and progression through the NF-κB signaling pathway. Int. J. Mol. Sci., 2016, 17(9), 1397.
[http://dx.doi.org/10.3390/ijms17091397] [PMID: 27563892]
[13]
Minato, N.; Hattori, M.; Hamazaki, Y. Physiology and pathology of T-cell aging. Int. Immunol., 2020, 32(4), 223-231.
[http://dx.doi.org/10.1093/intimm/dxaa006] [PMID: 31967307]
[14]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[15]
Si, X.; Zheng, H.; Wei, G.; Li, M.; Li, W.; Wang, H.; Guo, H.; Sun, J.; Li, C.; Zhong, S.; Liao, W.; Liao, Y.; Huang, S.; Bin, J. circRNA Hipk3 induces cardiac regeneration after myocardial infarction in mice by binding to Notch1 and miR-133a. Mol. Ther. Nucleic Acids, 2020, 21, 636-655.
[http://dx.doi.org/10.1016/j.omtn.2020.06.024] [PMID: 32736292]
[16]
Huang, S.; Li, X.; Zheng, H.; Si, X.; Li, B.; Wei, G.; Li, C.; Chen, Y.; Chen, Y.; Liao, W.; Liao, Y.; Bin, J. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation, 2019, 139(25), 2857-2876.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038361] [PMID: 30947518]
[17]
Zhang, F.; Zhang, R.; Zhang, X.; Wu, Y.; Li, X.; Zhang, S.; Hou, W.; Ding, Y.; Tian, J.; Sun, L.; Kong, X. Comprehensive analysis of circRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of atherosclerosis in rabbits. Aging, 2018, 10(9), 2266-2283.
[http://dx.doi.org/10.18632/aging.101541] [PMID: 30187887]
[18]
Tagawa, T.; Gao, S.; Koparde, V.N.; Gonzalez, M.; Spouge, J.L.; Serquiña, A.P.; Lurain, K.; Ramaswami, R.; Uldrick, T.S.; Yarchoan, R.; Ziegelbauer, J.M. Discovery of Kaposi’s sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA. Proc. Natl. Acad. Sci., 2018, 115(50), 12805-12810.
[http://dx.doi.org/10.1073/pnas.1816183115] [PMID: 30455306]
[19]
Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., 3rd; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive integration of single-cell data. Cell,, 2019, 177(7), 1888-1902.
[20]
Barbie, D.A.; Tamayo, P.; Boehm, J.S.; Kim, S.Y.; Moody, S.E.; Dunn, I.F.; Schinzel, A.C.; Sandy, P.; Meylan, E.; Scholl, C.; Fröhling, S.; Chan, E.M.; Sos, M.L.; Michel, K.; Mermel, C.; Silver, S.J.; Weir, B.A.; Reiling, J.H.; Sheng, Q.; Gupta, P.B.; Wadlow, R.C.; Le, H.; Hoersch, S.; Wittner, B.S.; Ramaswamy, S.; Livingston, D.M.; Sabatini, D.M.; Meyerson, M.; Thomas, R.K.; Lander, E.S.; Mesirov, J.P.; Root, D.E.; Gilliland, D.G.; Jacks, T.; Hahn, W.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269), 108-112.
[http://dx.doi.org/10.1038/nature08460] [PMID: 19847166]
[21]
Shen, W.; Song, Z.; Zhong, X.; Huang, M.; Shen, D.; Gao, P.; Qian, X.; Wang, M.; He, X.; Wang, T.; Li, S.; Song, X. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta, 2022, 1(3), e36.
[http://dx.doi.org/10.1002/imt2.36]
[22]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[23]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[24]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[25]
Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[26]
Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259.
[http://dx.doi.org/10.1007/978-1-4939-7493-1_12] [PMID: 29344893]
[27]
Harrell, F.E.; Harrell, M.F.E. Package ‘hmisc’. CRAN2018, 2019, 2019, 235-236.
[28]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[29]
Franceschini, A.; Szklarczyk, M.D. BiocViews Network, B. 2015. Available from:https://www.bioconductor.org/packages/release/BiocViews.html#___ExperimentData
[30]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[31]
Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 2017, 33(19), 3036-3042.
[http://dx.doi.org/10.1093/bioinformatics/btx350] [PMID: 28575181]
[32]
El-Hachem, N.; Haibe-Kains, B.; Khalil, A.; Kobeissy, F.H.; Nemer, G. AutoDock and AutoDockTools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study. Neuroprot.: Methods Protocol., 2017, 391-403.
[33]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[34]
DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr, 2002, 40(1), 82-92.
[35]
Bauer, P.; Hess, B.; Lindahl, E. GROMACS 2022.3 Manual. 2022. Available from:https://zenodo.org/records/7037337
[36]
Zhang, Q.; Wang, L.; Wang, S.; Cheng, H.; Xu, L.; Pei, G.; Wang, Y.; Fu, C.; Jiang, Y.; He, C.; Wei, Q. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct. Target. Ther., 2022, 7(1), 78.
[http://dx.doi.org/10.1038/s41392-022-00925-z] [PMID: 35273164]
[37]
Nadareishvili, Z.G.; Koziol, D.E.; Szekely, B.; Ruetzler, C.; LaBiche, R.; McCarron, R.; DeGraba, T.J. Increased CD8(+) T cells associated with Chlamydia pneumoniae in symptomatic carotid plaque. Stroke, 2001, 32(9), 1966-1972.
[http://dx.doi.org/10.1161/hs0901.095633] [PMID: 11546882]
[38]
Laconi, E.; Marongiu, F.; DeGregori, J. Cancer as a disease of old age: Changing mutational and microenvironmental landscapes. Br. J. Cancer, 2020, 122(7), 943-952.
[http://dx.doi.org/10.1038/s41416-019-0721-1] [PMID: 32042067]
[39]
Ovadya, Y.; Landsberger, T.; Leins, H.; Vadai, E.; Gal, H.; Biran, A.; Yosef, R.; Sagiv, A.; Agrawal, A.; Shapira, A.; Windheim, J.; Tsoory, M.; Schirmbeck, R.; Amit, I.; Geiger, H.; Krizhanovsky, V. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun., 2018, 9(1), 5435.
[http://dx.doi.org/10.1038/s41467-018-07825-3] [PMID: 30575733]
[40]
Desdín-Micó, G.; Soto-Heredero, G.; Aranda, J.F.; Oller, J.; Carrasco, E.; Gabandé-Rodríguez, E.; Blanco, E.M.; Alfranca, A.; Cussó, L.; Desco, M.; Ibañez, B.; Gortazar, A.R.; Fernández-Marcos, P.; Navarro, M.N.; Hernaez, B.; Alcamí, A.; Baixauli, F.; Mittelbrunn, M. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science, 2020, 368(6497), 1371-1376.
[http://dx.doi.org/10.1126/science.aax0860] [PMID: 32439659]
[41]
Yousefzadeh, M.J.; Flores, R.R.; Zhu, Y.; Schmiechen, Z.C.; Brooks, R.W.; Trussoni, C.E.; Cui, Y.; Angelini, L.; Lee, K.A.; McGowan, S.J.; Burrack, A.L.; Wang, D.; Dong, Q.; Lu, A.; Sano, T.; O’Kelly, R.D.; McGuckian, C.A.; Kato, J.I.; Bank, M.P.; Wade, E.A.; Pillai, S.P.S.; Klug, J.; Ladiges, W.C.; Burd, C.E.; Lewis, S.E.; LaRusso, N.F.; Vo, N.V.; Wang, Y.; Kelley, E.E.; Huard, J.; Stromnes, I.M.; Robbins, P.D.; Niedernhofer, L.J. An aged immune system drives senescence and ageing of solid organs. Nature, 2021, 594(7861), 100-105.
[http://dx.doi.org/10.1038/s41586-021-03547-7] [PMID: 33981041]
[42]
Mogilenko, D.A.; Shpynov, O.; Andhey, P.S.; Arthur, L.; Swain, A.; Esaulova, E.; Brioschi, S.; Shchukina, I.; Kerndl, M.; Bambouskova, M.; Yao, Z.; Laha, A.; Zaitsev, K.; Burdess, S.; Gillfilan, S.; Stewart, S.A.; Colonna, M.; Artyomov, M.N. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity, 2021, 54(1), 99-115.e12.
[http://dx.doi.org/10.1016/j.immuni.2020.11.005] [PMID: 33271118]
[43]
Chang, N.C.; Yeh, C.T.; Lin, Y.K.; Kuo, K.T.; Fong, I.H.; Kounis, N.G.; Hu, P.; Hung, M.Y. Garcinol attenuates lipoprotein(a)-induced oxidative stress and inflammatory cytokine production in ventricular cardiomyocyte through α7-nicotinic acetylcholine receptor-mediated inhibition of the p38 MAPK and NF-κB signaling pathways. Antioxidants, 2021, 10(3), 461.
[http://dx.doi.org/10.3390/antiox10030461] [PMID: 33809417]
[44]
Du, L.; Chen, J.; Wu, Y.; Xia, G.; Chen, M.; Zhao, P.; Wang, Y.; Yao, D.; Liu, F.; Zhang, L.; Wang, X.; Yang, Y.; Wang, L. Long Non-coding RNA N1LR protects against myocardial ischemic/reperfusion injury through regulating the TGF-β signaling pathway. Front. Cardiovasc. Med., 2021, 8, 654969.
[http://dx.doi.org/10.3389/fcvm.2021.654969] [PMID: 34485393]
[45]
Xu, S.; Xia, X.; Liu, Y.; Chen, F.; Gu, R.; Bian, X.; Xu, X.; Jia, C.; Lu, S.; Gu, Y.; Bai, H.; Zhang, H. Remote cyclic compression ameliorates myocardial infarction injury in rats via AMPK-dependent pathway. Microvasc. Res., 2022, 141, 104313.
[http://dx.doi.org/10.1016/j.mvr.2022.104313] [PMID: 35041850]
[46]
Shah, H.; Hacker, A.; Langburt, D.; Dewar, M.; McFadden, M.J.; Zhang, H.; Kuzmanov, U.; Zhou, Y.Q.; Hussain, B.; Ehsan, F.; Hinz, B.; Gramolini, A.O.; Heximer, S.P. Myocardial infarction induces cardiac fibroblast transformation within injured and noninjured regions of the mouse heart. J. Proteome Res., 2021, 20(5), 2867-2881.
[http://dx.doi.org/10.1021/acs.jproteome.1c00098] [PMID: 33789425]
[47]
Araldi, R.P.; de Melo, T.C.; Levy, D.; de Souza, D.M.; Maurício, B.; Colozza-Gama, G.A.; Bydlowski, S.P.; Peng, H.; Rauscher, F.J., III; Cerutti, J.M. LIMD2 regulates key steps of metastasis cascade in papillary thyroid cancer cells via MAPK crosstalk. Cells, 2020, 9(11), 2522.
[http://dx.doi.org/10.3390/cells9112522] [PMID: 33238381]
[48]
Gajula, S.N.R.; Nadimpalli, N.; Sonti, R. Drug metabolic stability in early drug discovery to develop potential lead compounds. Drug Metab. Rev., 2021, 53(3), 459-477.
[http://dx.doi.org/10.1080/03602532.2021.1970178] [PMID: 34406889]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy