General Research Article

白血病抑制因子对RPE65缺乏症致视锥细胞变性的保护作用

卷 31, 期 25, 2024

发表于: 31 October, 2023

页: [4022 - 4033] 页: 12

弟呕挨: 10.2174/0109298673240896231027053716

价格: $65

摘要

背景:视网膜色素上皮(RPE) 65是参与11-顺式视网膜再生的视觉循环的关键酶。人类RPE65基因的突变导致莱伯氏先天性黑内障(LCA),这是一种严重的遗传性视网膜疾病。携带Rpe65突变的动物模型发生早发性视网膜变性。特别是,视锥细胞比视杆细胞退化得更快。迄今为止,基因疗法已成功用于治疗rpe65相关的视网膜疾病。然而,基因治疗并不能完全预防患者的进行性视网膜变性,这可能是由于这些患者的视锥细胞的易感性。在本研究中,我们测试了白血病抑制因子(LIF),一种营养因子,是否保护Rpe65无义突变的rd12小鼠的视锥细胞。 方法:通过玻璃体内显微注射给药。TUNEL法检测视网膜细胞凋亡。通过视网膜切片和视网膜平片的免疫染色来评估视锥细胞的变性。免疫印迹法检测视网膜细胞和培养细胞中LIF调控的信号蛋白。 结果:在rd12小鼠中,玻璃体内给药LIF激活STAT3信号通路,从而抑制光感受器凋亡并保存视锥细胞。Niclosamide (NCL)是一种STAT3信号传导抑制剂,在LIF处理的661W细胞中有效阻断STAT3信号传导和自噬。将LIF与NCL联合应用于rd12小鼠,可消除LIF的保护作用,提示STAT3信号通路和自噬介导了这种保护作用。 结论:LIF是保护rd12小鼠视锥细胞的有效因子。这一发现表明,对于rpe65相关LCA患者,LIF可与基因治疗联合使用,以获得更好的治疗效果。

关键词: LCA, RPE65, rd12,白血病抑制因子,STAT3,自噬。

[1]
Tsang, S.H.; Sharma, T. Leber congenital amaurosis. Adv. Exp. Med. Biol., 2018, 1085, 131-137.
[http://dx.doi.org/10.1007/978-3-319-95046-4_26] [PMID: 30578499]
[2]
Duan, W.; Zhou, T.; Jiang, H.; Zhang, M.; Hu, M.; Zhang, L. A novel nonsense variant (c.1499C>G) in CRB1 caused Leber congenital amaurosis-8 in a Chinese family and a literature review. BMC Med. Genomics, 2022, 15(1), 197.
[http://dx.doi.org/10.1186/s12920-022-01356-z] [PMID: 36115989]
[3]
Kumaran, N.; Moore, A.T.; Weleber, R.G.; Michaelides, M. Leber congenital amaurosis/early-onset severe retinal dystrophy: Clinical features, molecular genetics and therapeutic interventions. Br. J. Ophthalmol., 2017, 101(9), 1147-1154.
[http://dx.doi.org/10.1136/bjophthalmol-2016-309975] [PMID: 28689169]
[4]
Kiser, P.D. Retinal pigment epithelium 65 kDa protein (RPE65): An update. Prog. Retin. Eye Res., 2022, 88, 101013.
[http://dx.doi.org/10.1016/j.preteyeres.2021.101013] [PMID: 34607013]
[5]
Hofmann, K.P.; Lamb, T.D. Rhodopsin, light-sensor of vision. Prog. Retin. Eye Res., 2023, 93, 101116.
[http://dx.doi.org/10.1016/j.preteyeres.2022.101116] [PMID: 36273969]
[6]
Seeliger, M.W.; Grimm, C.; Ståhlberg, F.; Friedburg, C.; Jaissle, G.; Zrenner, E.; Guo, H.; Remé, C.E.; Humphries, P.; Hofmann, F.; Biel, M.; Fariss, R.N.; Redmond, T.M.; Wenzel, A. New views on RPE65 deficiency: The rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nat. Genet., 2001, 29(1), 70-74.
[http://dx.doi.org/10.1038/ng712] [PMID: 11528395]
[7]
Redmond, T.M.; Yu, S.; Lee, E.; Bok, D.; Hamasaki, D.; Chen, N.; Goletz, P.; Ma, J.X.; Crouch, R.K.; Pfeifer, K. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet., 1998, 20(4), 344-351.
[http://dx.doi.org/10.1038/3813] [PMID: 9843205]
[8]
Pang, J.J.; Chang, B.; Hawes, N.L.; Hurd, R.E.; Davisson, M.T.; Li, J.; Noorwez, S.M.; Malhotra, R.; McDowell, J.H.; Kaushal, S.; Hauswirth, W.W.; Nusinowitz, S.; Thompson, D.A.; Heckenlively, J.R. Retinal degeneration 12 (rd12): A new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol. Vis., 2005, 11, 152-162.
[PMID: 15765048]
[9]
Fan, J.; Rohrer, B.; Moiseyev, G.; Ma, J.; Crouch, R.K. Isorhodopsin rather than rhodopsin mediates rod function in RPE65 knock-out mice. Proc. Natl. Acad. Sci., 2003, 100(23), 13662-13667.
[http://dx.doi.org/10.1073/pnas.2234461100] [PMID: 14578454]
[10]
Fan, J.; Rohrer, B.; Frederick, J.M.; Baehr, W.; Crouch, R.K. Rpe65-/- and Lrat-/- mice: Comparable models of leber congenital amaurosis. Invest. Ophthalmol. Vis. Sci., 2008, 49(6), 2384-2389.
[http://dx.doi.org/10.1167/iovs.08-1727] [PMID: 18296659]
[11]
Zhang, H.; Fan, J.; Li, S.; Karan, S.; Rohrer, B.; Palczewski, K.; Frederick, J.M.; Crouch, R.K.; Baehr, W. Trafficking of membrane-associated proteins to cone photoreceptor outer segments requires the chromophore 11-cis-retinal. J. Neurosci., 2008, 28(15), 4008-4014.
[http://dx.doi.org/10.1523/JNEUROSCI.0317-08.2008] [PMID: 18400900]
[12]
Zhang, T.; Zhang, N.; Baehr, W.; Fu, Y. Cone opsin determines the time course of cone photoreceptor degeneration in Leber congenital amaurosis. Proc. Natl. Acad. Sci., 2011, 108(21), 8879-8884.
[http://dx.doi.org/10.1073/pnas.1017127108] [PMID: 21555576]
[13]
Zhang, T.; Fu, Y. A Phe-rich region in short-wavelength sensitive opsins is responsible for their aggregation in the absence of 11- cis- retinal. FEBS Lett., 2013, 587(15), 2430-2434.
[http://dx.doi.org/10.1016/j.febslet.2013.06.012] [PMID: 23792161]
[14]
Maeda, T.; Cideciyan, A.V.; Maeda, A.; Golczak, M.; Aleman, T.S.; Jacobson, S.G.; Palczewski, K. Loss of cone photoreceptors caused by chromophore depletion is partially prevented by the artificial chromophore pro-drug, 9-cis-retinyl acetate. Hum. Mol. Genet., 2009, 18(12), 2277-2287.
[http://dx.doi.org/10.1093/hmg/ddp163] [PMID: 19339306]
[15]
Maeda, T.; Maeda, A.; Casadesus, G.; Palczewski, K.; Margaron, P. Evaluation of 9-cis-retinyl acetate therapy in Rpe65-/- mice. Invest. Ophthalmol. Vis. Sci., 2009, 50(9), 4368-4378.
[http://dx.doi.org/10.1167/iovs.09-3700] [PMID: 19407008]
[16]
Dai, X.; Jin, X.; Ye, Q.; Huang, H.; Duo, L.; Lu, C.; Bao, J.; Chen, H. Intraperitoneal chromophore injections delay early-onset and rapid retinal cone degeneration in a mouse model of Leber congenital amaurosis. Exp. Eye Res., 2021, 212, 108776.
[http://dx.doi.org/10.1016/j.exer.2021.108776] [PMID: 34582935]
[17]
Koenekoop, R.K.; Sui, R.; Sallum, J.; van den Born, L.I.; Ajlan, R.; Khan, A.; den Hollander, A.I.; Cremers, F.P.M.; Mendola, J.D.; Bittner, A.K.; Dagnelie, G.; Schuchard, R.A.; Saperstein, D.A. Oral 9-cis retinoid for childhood blindness due to Leber congenital amaurosis caused by RPE65 or LRAT mutations: An open-label phase 1b trial. Lancet, 2014, 384(9953), 1513-1520.
[http://dx.doi.org/10.1016/S0140-6736(14)60153-7] [PMID: 25030840]
[18]
Acland, G.M.; Aguirre, G.D.; Ray, J.; Zhang, Q.; Aleman, T.S.; Cideciyan, A.V.; Pearce-Kelling, S.E.; Anand, V.; Zeng, Y.; Maguire, A.M.; Jacobson, S.G.; Hauswirth, W.W.; Bennett, J. Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet., 2001, 28(1), 92-95.
[http://dx.doi.org/10.1038/ng0501-92] [PMID: 11326284]
[19]
Maguire, A.M.; Simonelli, F.; Pierce, E.A.; Pugh, E.N., Jr; Mingozzi, F.; Bennicelli, J.; Banfi, S.; Marshall, K.A.; Testa, F.; Surace, E.M.; Rossi, S.; Lyubarsky, A.; Arruda, V.R.; Konkle, B.; Stone, E.; Sun, J.; Jacobs, J.; Dell’Osso, L.; Hertle, R.; Ma, J.; Redmond, T.M.; Zhu, X.; Hauck, B.; Zelenaia, O.; Shindler, K.S.; Maguire, M.G.; Wright, J.F.; Volpe, N.J.; McDonnell, J.W.; Auricchio, A.; High, K.A.; Bennett, J. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med., 2008, 358(21), 2240-2248.
[http://dx.doi.org/10.1056/NEJMoa0802315] [PMID: 18441370]
[20]
Mowat, F.M.; Breuwer, A.R.; Bartoe, J.T.; Annear, M.J.; Zhang, Z.; Smith, A.J.; Bainbridge, J.W.B.; Petersen-Jones, S.M.; Ali, R.R. RPE65 gene therapy slows cone loss in Rpe65-deficient dogs. Gene Ther., 2013, 20(5), 545-555.
[http://dx.doi.org/10.1038/gt.2012.63] [PMID: 22951453]
[21]
Narfstro¨m, K.; Katz, M.L.; Bragadottir, R.; Seeliger, M.; Boulanger, A.; Redmond, T.M.; Caro, L.; Lai, C.M.; Rakoczy, P.E. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest. Ophthalmol. Vis. Sci., 2003, 44(4), 1663-1672.
[http://dx.doi.org/10.1167/iovs.02-0595] [PMID: 12657607]
[22]
She, K.; Liu, Y.; Zhao, Q.; Jin, X.; Yang, Y.; Su, J.; Li, R.; Song, L.; Xiao, J.; Yao, S.; Lu, F.; Wei, Y.; Yang, Y. Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. Signal Transduct. Target. Ther., 2023, 8(1), 57.
[http://dx.doi.org/10.1038/s41392-022-01234-1] [PMID: 36740702]
[23]
U.S.F.D.. FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. 2017. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-novel-gene-therapy-treat-patients-rare-form-inherited-vision-loss
[24]
Cideciyan, A.V.; Jacobson, S.G.; Beltran, W.A.; Sumaroka, A.; Swider, M.; Iwabe, S.; Roman, A.J.; Olivares, M.B.; Schwartz, S.B.; Komáromy, A.M.; Hauswirth, W.W.; Aguirre, G.D. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc. Natl. Acad. Sci., 2013, 110(6), E517-E525.
[http://dx.doi.org/10.1073/pnas.1218933110] [PMID: 23341635]
[25]
Jacobson, S.G.; Cideciyan, A.V.; Roman, A.J.; Sumaroka, A.; Schwartz, S.B.; Heon, E.; Hauswirth, W.W. Improvement and decline in vision with gene therapy in childhood blindness. N. Engl. J. Med., 2015, 372(20), 1920-1926.
[http://dx.doi.org/10.1056/NEJMoa1412965] [PMID: 25936984]
[26]
Bainbridge, J.W.B.; Mehat, M.S.; Sundaram, V.; Robbie, S.J.; Barker, S.E.; Ripamonti, C.; Georgiadis, A.; Mowat, F.M.; Beattie, S.G.; Gardner, P.J.; Feathers, K.L.; Luong, V.A.; Yzer, S.; Balaggan, K.; Viswanathan, A.; de Ravel, T.J.L.; Casteels, I.; Holder, G.E.; Tyler, N.; Fitzke, F.W.; Weleber, R.G.; Nardini, M.; Moore, A.T.; Thompson, D.A.; Petersen-Jones, S.M.; Michaelides, M.; van den Born, L.I.; Stockman, A.; Smith, A.J.; Rubin, G.; Ali, R.R. Long-term effect of gene therapy on Leber’s congenital amaurosis. N. Engl. J. Med., 2015, 372(20), 1887-1897.
[http://dx.doi.org/10.1056/NEJMoa1414221] [PMID: 25938638]
[27]
Wang, X.; Yu, C.; Tzekov, R.T.; Zhu, Y.; Li, W. The effect of human gene therapy for RPE65-associated Leber’s congenital amaurosis on visual function: A systematic review and meta-analysis. Orphanet J. Rare Dis., 2020, 15(1), 49.
[http://dx.doi.org/10.1186/s13023-020-1304-1] [PMID: 32059734]
[28]
Sengillo, J.D.; Gregori, N.Z.; Sisk, R.A.; Weng, C.Y.; Berrocal, A.M.; Davis, J.L.; Mendoza-Santiesteban, C.E.; Zheng, D.D.; Feuer, W.J.; Lam, B.L. Visual acuity, retinal morphology, and patients’ perceptions after voretigene neparovec-rzyl therapy for RPE65-associated retinal disease. Ophthalmol. Retina, 2022, 6(4), 273-283.
[http://dx.doi.org/10.1016/j.oret.2021.11.005] [PMID: 34896323]
[29]
Rebelo Neves, E.; Carvalho, A.L.; Mesquita, T.; Paiva, C.; Alfaiate, M.; Figueira, J.; Murta, J.; Marques, J.P. Bilateral functional worsening following voretigene neparvovec therapy. Eye, 2023, 37(13), 2828-2829.
[http://dx.doi.org/10.1038/s41433-023-02411-4]
[30]
Kolomeyer, A.M.; Zarbin, M.A. Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv. Ophthalmol., 2014, 59(2), 134-165.
[http://dx.doi.org/10.1016/j.survophthal.2013.09.004] [PMID: 24417953]
[31]
Dong, S.; Zhen, F.; Xu, H.; Li, Q.; Wang, J. Leukemia inhibitory factor protects photoreceptor cone cells against oxidative damage through activating JAK/STAT3 signaling. Ann. Transl. Med., 2021, 9(2), 152.
[http://dx.doi.org/10.21037/atm-20-8040] [PMID: 33569454]
[32]
Ueki, Y.; Wang, J.; Chollangi, S.; Ash, J.D. STAT3 activation in photoreceptors by leukemia inhibitory factor is associated with protection from light damage. J. Neurochem., 2008, 105(3), 784-796.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05180.x] [PMID: 18088375]
[33]
Joly, S.; Lange, C.; Thiersch, M.; Samardzija, M.; Grimm, C. Leukemia inhibitory factor extends the lifespan of injured photoreceptors in vivo. J. Neurosci., 2008, 28(51), 13765-13774.
[http://dx.doi.org/10.1523/JNEUROSCI.5114-08.2008] [PMID: 19091967]
[34]
Jorgensen, M.M.; de la Puente, P. Leukemia inhibitory factor: An important cytokine in pathologies and cancer. Biomolecules, 2022, 12(2), 217.
[http://dx.doi.org/10.3390/biom12020217] [PMID: 35204717]
[35]
Yang, J.L.; Zou, T.D.; Yang, F.; Yang, Z.L.; Zhang, H.B. Inhibition of mTOR signaling by rapamycin protects photoreceptors from degeneration in rd1 mice. Zool. Res., 2021, 42(4), 482-486.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2021.049] [PMID: 34235896]
[36]
Yang, J.; Zou, T.; Yang, F.; Zhang, Z.; Sun, C.; Yang, Z.; Zhang, H. A quick protocol for the preparation of mouse retinal cryosections for immunohistochemistry. Open Biol., 2021, 11(7), 210076.
[http://dx.doi.org/10.1098/rsob.210076] [PMID: 34315273]
[37]
Yang, J.; Chen, Y.; Zou, T.; Xue, B.; Yang, F.; Wang, X.; Huo, Y.; Yan, B.; Xu, Y.; He, S.; Yin, Y.; Wang, J.; Zhu, X.; Zhang, L.; Zhou, Y.; Tai, Z.; Shuai, P.; Yu, M.; Luo, Q.; Cheng, Y.; Gong, B.; Zhang, J.; Sun, X.; Lin, Y.; Zhang, H.; Yang, Z. Cholesterol homeostasis regulated by ABCA1 is critical for retinal ganglion cell survival. Sci. China Life Sci., 2022, 66(2), 211-25.
[PMID: 35829808]
[38]
Niwa, H.; Burdon, T.; Chambers, I.; Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev., 1998, 12(13), 2048-2060.
[http://dx.doi.org/10.1101/gad.12.13.2048] [PMID: 9649508]
[39]
Tan, E.; Ding, X.Q.; Saadi, A.; Agarwal, N.; Naash, M.I.; Al-Ubaidi, M.R. Expression of cone-photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest. Ophthalmol. Vis. Sci., 2004, 45(3), 764-768.
[http://dx.doi.org/10.1167/iovs.03-1114] [PMID: 14985288]
[40]
Yamada, E.; Bastie, C.C.; Koga, H.; Wang, Y.; Cuervo, A.M.; Pessin, J.E. Mouse skeletal muscle fiber-type-specific macroautophagy and muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling pathway. Cell Rep., 2012, 1(5), 557-569.
[http://dx.doi.org/10.1016/j.celrep.2012.03.014] [PMID: 22745922]
[41]
Pratt, J.; Annabi, B. Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1-MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells. Cell. Signal., 2014, 26(5), 917-924.
[http://dx.doi.org/10.1016/j.cellsig.2014.01.012] [PMID: 24462646]
[42]
Besirli, C.G.; Chinskey, N.D.; Zheng, Q.D.; Zacks, D.N. Autophagy activation in the injured photoreceptor inhibits fas-mediated apoptosis. Invest. Ophthalmol. Vis. Sci., 2011, 52(7), 4193-4199.
[http://dx.doi.org/10.1167/iovs.10-7090] [PMID: 21421874]
[43]
Das, G.; Shravage, B.V.; Baehrecke, E.H. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb. Perspect. Biol., 2012, 4(6), a008813.
[http://dx.doi.org/10.1101/cshperspect.a008813] [PMID: 22661635]
[44]
He, C.; Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009, 43(1), 67-93.
[http://dx.doi.org/10.1146/annurev-genet-102808-114910] [PMID: 19653858]
[45]
Li, S.; Gordon, W.C.; Bazan, N.G.; Jin, M. Inverse correlation between fatty acid transport protein 4 and vision in Leber congenital amaurosis associated with RPE65 mutation. Proc. Natl. Acad. Sci., 2020, 117(50), 32114-32123.
[http://dx.doi.org/10.1073/pnas.2012623117] [PMID: 33257550]
[46]
Smith, A.G.; Hooper, M.L. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol., 1987, 121(1), 1-9.
[http://dx.doi.org/10.1016/0012-1606(87)90132-1] [PMID: 3569655]
[47]
Smith, A.G.; Heath, J.K.; Donaldson, D.D.; Wong, G.G.; Moreau, J.; Stahl, M.; Rogers, D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 1988, 336(6200), 688-690.
[http://dx.doi.org/10.1038/336688a0] [PMID: 3143917]
[48]
Williams, R.L.; Hilton, D.J.; Pease, S.; Willson, T.A.; Stewart, C.L.; Gearing, D.P.; Wagner, E.F.; Metcalf, D.; Nicola, N.A.; Gough, N.M. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 1988, 336(6200), 684-687.
[http://dx.doi.org/10.1038/336684a0] [PMID: 3143916]
[49]
Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M.; Remé, C.; Grimm, C.; Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M.; Remé, C.; Grimm, C. Differential role of Jak-STAT signaling in retinal degenerations. FASEB J., 2006, 20(13), 2411-2413.
[http://dx.doi.org/10.1096/fj.06-5895fje] [PMID: 16966486]
[50]
Schaeferhoff, K.; Michalakis, S.; Tanimoto, N.; Fischer, M.D.; Becirovic, E.; Beck, S.C.; Huber, G.; Rieger, N.; Riess, O.; Wissinger, B.; Biel, M.; Seeliger, M.W.; Bonin, M. Induction of STAT3-related genes in fast degenerating cone photoreceptors of cpfl1 mice. Cell. Mol. Life Sci., 2010, 67(18), 3173-3186.
[http://dx.doi.org/10.1007/s00018-010-0376-9] [PMID: 20467778]
[51]
Jiang, K.; Wright, K.L.; Zhu, P.; Szego, M.J.; Bramall, A.N.; Hauswirth, W.W.; Li, Q.; Egan, S.E.; McInnes, R.R. STAT3 promotes survival of mutant photoreceptors in inherited photoreceptor degeneration models. Proc. Natl. Acad. Sci., 2014, 111(52), E5716-E5723.
[http://dx.doi.org/10.1073/pnas.1411248112] [PMID: 25512545]
[52]
You, L.; Wang, Z.; Li, H.; Shou, J.; Jing, Z.; Xie, J.; Sui, X.; Pan, H.; Han, W. The role of STAT3 in autophagy. Autophagy, 2015, 11(5), 729-739.
[http://dx.doi.org/10.1080/15548627.2015.1017192] [PMID: 25951043]
[53]
Intartaglia, D.; Giamundo, G.; Naso, F.; Nusco, E.; Di Giulio, S.; Salierno, F.G.; Polishchuk, E.; Conte, I. Induction of autophagy promotes clearance of RHOP23H aggregates and protects from retinal degeneration. Front. Aging Neurosci., 2022, 14, 878958.
[http://dx.doi.org/10.3389/fnagi.2022.878958] [PMID: 35847673]
[54]
Pang, J.; Chang, B.; Kumar, A.; Nusinowitz, S.; Noorwez, S.M.; Li, J.; Rani, A.; Foster, T.C.; Chiodo, V.A.; Doyle, T.; Li, H.; Malhotra, R.; Teusner, J.T.; McDowell, J.H.; Min, S.H.; Li, Q.; Kaushal, S.; Hauswirth, W.W. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol. Ther., 2006, 13(3), 565-572.
[http://dx.doi.org/10.1016/j.ymthe.2005.09.001] [PMID: 16223604]
[55]
Labonté, E.D.; Camarota, L.M.; Rojas, J.C.; Jandacek, R.J.; Gilham, D.E.; Davies, J.P.; Ioannou, Y.A.; Tso, P.; Hui, D.Y.; Howles, P.N. Reduced absorption of saturated fatty acids and resistance to diet-induced obesity and diabetes by ezetimibe-treated and Npc1l1−/− mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 295(4), G776-G783.
[http://dx.doi.org/10.1152/ajpgi.90275.2008] [PMID: 18718999]
[56]
Naples, M.; Baker, C.; Lino, M.; Iqbal, J.; Hussain, M.M.; Adeli, K. Ezetimibe ameliorates intestinal chylomicron overproduction and improves glucose tolerance in a diet-induced hamster model of insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 302(9), G1043-G1052.
[http://dx.doi.org/10.1152/ajpgi.00250.2011] [PMID: 22345552]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy