Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Research Article

Leukemia Inhibitory Factor Protects against Degeneration of Cone Photoreceptors Caused by RPE65 Deficiency

Author(s): Shuqian Dong, Fangyuan Zhen, Tongdan Zou, Yongwei Zhou, Jiahui Wu, Ting Wang and Houbin Zhang*

Volume 31, Issue 25, 2024

Published on: 31 October, 2023

Page: [4022 - 4033] Pages: 12

DOI: 10.2174/0109298673240896231027053716

Price: $65

Abstract

Background: Retinal pigment epithelium (RPE) 65 is a key enzyme in the visual cycle involved in the regeneration of 11-cis-retinal. Mutations in the human RPE65 gene cause Leber’s congenital amaurosis (LCA), a severe form of an inherited retinal disorder. Animal models carrying Rpe65 mutations develop early-onset retinal degeneration. In particular, the cones degenerate faster than the rods. To date, gene therapy has been used successfully to treat RPE65-associated retinal disorders. However, gene therapy does not completely prevent progressive retinal degeneration in patients, possibly due to the vulnerability of cones in these patients. In the present study, we tested whether leukemia inhibitory factor (LIF), a trophic factor, protects cones in rd12 mice harboring a nonsense mutation in Rpe65.

Methods: LIF was administered to rd12 mice by intravitreal microinjection. Apoptosis of retinal cells was analyzed by TUNEL assay. The degeneration of cone cells was evaluated by immunostaining of retinal sections and retinal flat-mounts. Signaling proteins regulated by LIF in the retinal and cultured cells were determined by immunoblotting.

Results: Intravitreal administration of LIF activated the STAT3 signaling pathway, thereby inhibiting photoreceptor apoptosis and preserving cones in rd12 mice. Niclosamide (NCL), an inhibitor of STAT3 signaling, effectively blocked STAT3 signaling and autophagy in cultured 661W cells treated with LIF. Co-administration of LIF with NCL to rd12 mice abolished the protective effect of LIF, suggesting that STAT3 signaling and autophagy mediate the protection.

Conclusion: LIF is a potent factor that protects cones in rd12 mice. This finding implies that LIF can be used in combination with gene therapy to achieve better therapeutic outcomes for patients with RPE65-associated LCA.

Keywords: LCA, RPE65, rd12 , leukemia inhibitory factor, STAT3, autophagy.

[1]
Tsang, S.H.; Sharma, T. Leber congenital amaurosis. Adv. Exp. Med. Biol., 2018, 1085, 131-137.
[http://dx.doi.org/10.1007/978-3-319-95046-4_26] [PMID: 30578499]
[2]
Duan, W.; Zhou, T.; Jiang, H.; Zhang, M.; Hu, M.; Zhang, L. A novel nonsense variant (c.1499C>G) in CRB1 caused Leber congenital amaurosis-8 in a Chinese family and a literature review. BMC Med. Genomics, 2022, 15(1), 197.
[http://dx.doi.org/10.1186/s12920-022-01356-z] [PMID: 36115989]
[3]
Kumaran, N.; Moore, A.T.; Weleber, R.G.; Michaelides, M. Leber congenital amaurosis/early-onset severe retinal dystrophy: Clinical features, molecular genetics and therapeutic interventions. Br. J. Ophthalmol., 2017, 101(9), 1147-1154.
[http://dx.doi.org/10.1136/bjophthalmol-2016-309975] [PMID: 28689169]
[4]
Kiser, P.D. Retinal pigment epithelium 65 kDa protein (RPE65): An update. Prog. Retin. Eye Res., 2022, 88, 101013.
[http://dx.doi.org/10.1016/j.preteyeres.2021.101013] [PMID: 34607013]
[5]
Hofmann, K.P.; Lamb, T.D. Rhodopsin, light-sensor of vision. Prog. Retin. Eye Res., 2023, 93, 101116.
[http://dx.doi.org/10.1016/j.preteyeres.2022.101116] [PMID: 36273969]
[6]
Seeliger, M.W.; Grimm, C.; Ståhlberg, F.; Friedburg, C.; Jaissle, G.; Zrenner, E.; Guo, H.; Remé, C.E.; Humphries, P.; Hofmann, F.; Biel, M.; Fariss, R.N.; Redmond, T.M.; Wenzel, A. New views on RPE65 deficiency: The rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nat. Genet., 2001, 29(1), 70-74.
[http://dx.doi.org/10.1038/ng712] [PMID: 11528395]
[7]
Redmond, T.M.; Yu, S.; Lee, E.; Bok, D.; Hamasaki, D.; Chen, N.; Goletz, P.; Ma, J.X.; Crouch, R.K.; Pfeifer, K. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet., 1998, 20(4), 344-351.
[http://dx.doi.org/10.1038/3813] [PMID: 9843205]
[8]
Pang, J.J.; Chang, B.; Hawes, N.L.; Hurd, R.E.; Davisson, M.T.; Li, J.; Noorwez, S.M.; Malhotra, R.; McDowell, J.H.; Kaushal, S.; Hauswirth, W.W.; Nusinowitz, S.; Thompson, D.A.; Heckenlively, J.R. Retinal degeneration 12 (rd12): A new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol. Vis., 2005, 11, 152-162.
[PMID: 15765048]
[9]
Fan, J.; Rohrer, B.; Moiseyev, G.; Ma, J.; Crouch, R.K. Isorhodopsin rather than rhodopsin mediates rod function in RPE65 knock-out mice. Proc. Natl. Acad. Sci., 2003, 100(23), 13662-13667.
[http://dx.doi.org/10.1073/pnas.2234461100] [PMID: 14578454]
[10]
Fan, J.; Rohrer, B.; Frederick, J.M.; Baehr, W.; Crouch, R.K. Rpe65-/- and Lrat-/- mice: Comparable models of leber congenital amaurosis. Invest. Ophthalmol. Vis. Sci., 2008, 49(6), 2384-2389.
[http://dx.doi.org/10.1167/iovs.08-1727] [PMID: 18296659]
[11]
Zhang, H.; Fan, J.; Li, S.; Karan, S.; Rohrer, B.; Palczewski, K.; Frederick, J.M.; Crouch, R.K.; Baehr, W. Trafficking of membrane-associated proteins to cone photoreceptor outer segments requires the chromophore 11-cis-retinal. J. Neurosci., 2008, 28(15), 4008-4014.
[http://dx.doi.org/10.1523/JNEUROSCI.0317-08.2008] [PMID: 18400900]
[12]
Zhang, T.; Zhang, N.; Baehr, W.; Fu, Y. Cone opsin determines the time course of cone photoreceptor degeneration in Leber congenital amaurosis. Proc. Natl. Acad. Sci., 2011, 108(21), 8879-8884.
[http://dx.doi.org/10.1073/pnas.1017127108] [PMID: 21555576]
[13]
Zhang, T.; Fu, Y. A Phe-rich region in short-wavelength sensitive opsins is responsible for their aggregation in the absence of 11- cis- retinal. FEBS Lett., 2013, 587(15), 2430-2434.
[http://dx.doi.org/10.1016/j.febslet.2013.06.012] [PMID: 23792161]
[14]
Maeda, T.; Cideciyan, A.V.; Maeda, A.; Golczak, M.; Aleman, T.S.; Jacobson, S.G.; Palczewski, K. Loss of cone photoreceptors caused by chromophore depletion is partially prevented by the artificial chromophore pro-drug, 9-cis-retinyl acetate. Hum. Mol. Genet., 2009, 18(12), 2277-2287.
[http://dx.doi.org/10.1093/hmg/ddp163] [PMID: 19339306]
[15]
Maeda, T.; Maeda, A.; Casadesus, G.; Palczewski, K.; Margaron, P. Evaluation of 9-cis-retinyl acetate therapy in Rpe65-/- mice. Invest. Ophthalmol. Vis. Sci., 2009, 50(9), 4368-4378.
[http://dx.doi.org/10.1167/iovs.09-3700] [PMID: 19407008]
[16]
Dai, X.; Jin, X.; Ye, Q.; Huang, H.; Duo, L.; Lu, C.; Bao, J.; Chen, H. Intraperitoneal chromophore injections delay early-onset and rapid retinal cone degeneration in a mouse model of Leber congenital amaurosis. Exp. Eye Res., 2021, 212, 108776.
[http://dx.doi.org/10.1016/j.exer.2021.108776] [PMID: 34582935]
[17]
Koenekoop, R.K.; Sui, R.; Sallum, J.; van den Born, L.I.; Ajlan, R.; Khan, A.; den Hollander, A.I.; Cremers, F.P.M.; Mendola, J.D.; Bittner, A.K.; Dagnelie, G.; Schuchard, R.A.; Saperstein, D.A. Oral 9-cis retinoid for childhood blindness due to Leber congenital amaurosis caused by RPE65 or LRAT mutations: An open-label phase 1b trial. Lancet, 2014, 384(9953), 1513-1520.
[http://dx.doi.org/10.1016/S0140-6736(14)60153-7] [PMID: 25030840]
[18]
Acland, G.M.; Aguirre, G.D.; Ray, J.; Zhang, Q.; Aleman, T.S.; Cideciyan, A.V.; Pearce-Kelling, S.E.; Anand, V.; Zeng, Y.; Maguire, A.M.; Jacobson, S.G.; Hauswirth, W.W.; Bennett, J. Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet., 2001, 28(1), 92-95.
[http://dx.doi.org/10.1038/ng0501-92] [PMID: 11326284]
[19]
Maguire, A.M.; Simonelli, F.; Pierce, E.A.; Pugh, E.N., Jr; Mingozzi, F.; Bennicelli, J.; Banfi, S.; Marshall, K.A.; Testa, F.; Surace, E.M.; Rossi, S.; Lyubarsky, A.; Arruda, V.R.; Konkle, B.; Stone, E.; Sun, J.; Jacobs, J.; Dell’Osso, L.; Hertle, R.; Ma, J.; Redmond, T.M.; Zhu, X.; Hauck, B.; Zelenaia, O.; Shindler, K.S.; Maguire, M.G.; Wright, J.F.; Volpe, N.J.; McDonnell, J.W.; Auricchio, A.; High, K.A.; Bennett, J. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med., 2008, 358(21), 2240-2248.
[http://dx.doi.org/10.1056/NEJMoa0802315] [PMID: 18441370]
[20]
Mowat, F.M.; Breuwer, A.R.; Bartoe, J.T.; Annear, M.J.; Zhang, Z.; Smith, A.J.; Bainbridge, J.W.B.; Petersen-Jones, S.M.; Ali, R.R. RPE65 gene therapy slows cone loss in Rpe65-deficient dogs. Gene Ther., 2013, 20(5), 545-555.
[http://dx.doi.org/10.1038/gt.2012.63] [PMID: 22951453]
[21]
Narfstro¨m, K.; Katz, M.L.; Bragadottir, R.; Seeliger, M.; Boulanger, A.; Redmond, T.M.; Caro, L.; Lai, C.M.; Rakoczy, P.E. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest. Ophthalmol. Vis. Sci., 2003, 44(4), 1663-1672.
[http://dx.doi.org/10.1167/iovs.02-0595] [PMID: 12657607]
[22]
She, K.; Liu, Y.; Zhao, Q.; Jin, X.; Yang, Y.; Su, J.; Li, R.; Song, L.; Xiao, J.; Yao, S.; Lu, F.; Wei, Y.; Yang, Y. Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. Signal Transduct. Target. Ther., 2023, 8(1), 57.
[http://dx.doi.org/10.1038/s41392-022-01234-1] [PMID: 36740702]
[23]
U.S.F.D.. FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. 2017. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-novel-gene-therapy-treat-patients-rare-form-inherited-vision-loss
[24]
Cideciyan, A.V.; Jacobson, S.G.; Beltran, W.A.; Sumaroka, A.; Swider, M.; Iwabe, S.; Roman, A.J.; Olivares, M.B.; Schwartz, S.B.; Komáromy, A.M.; Hauswirth, W.W.; Aguirre, G.D. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc. Natl. Acad. Sci., 2013, 110(6), E517-E525.
[http://dx.doi.org/10.1073/pnas.1218933110] [PMID: 23341635]
[25]
Jacobson, S.G.; Cideciyan, A.V.; Roman, A.J.; Sumaroka, A.; Schwartz, S.B.; Heon, E.; Hauswirth, W.W. Improvement and decline in vision with gene therapy in childhood blindness. N. Engl. J. Med., 2015, 372(20), 1920-1926.
[http://dx.doi.org/10.1056/NEJMoa1412965] [PMID: 25936984]
[26]
Bainbridge, J.W.B.; Mehat, M.S.; Sundaram, V.; Robbie, S.J.; Barker, S.E.; Ripamonti, C.; Georgiadis, A.; Mowat, F.M.; Beattie, S.G.; Gardner, P.J.; Feathers, K.L.; Luong, V.A.; Yzer, S.; Balaggan, K.; Viswanathan, A.; de Ravel, T.J.L.; Casteels, I.; Holder, G.E.; Tyler, N.; Fitzke, F.W.; Weleber, R.G.; Nardini, M.; Moore, A.T.; Thompson, D.A.; Petersen-Jones, S.M.; Michaelides, M.; van den Born, L.I.; Stockman, A.; Smith, A.J.; Rubin, G.; Ali, R.R. Long-term effect of gene therapy on Leber’s congenital amaurosis. N. Engl. J. Med., 2015, 372(20), 1887-1897.
[http://dx.doi.org/10.1056/NEJMoa1414221] [PMID: 25938638]
[27]
Wang, X.; Yu, C.; Tzekov, R.T.; Zhu, Y.; Li, W. The effect of human gene therapy for RPE65-associated Leber’s congenital amaurosis on visual function: A systematic review and meta-analysis. Orphanet J. Rare Dis., 2020, 15(1), 49.
[http://dx.doi.org/10.1186/s13023-020-1304-1] [PMID: 32059734]
[28]
Sengillo, J.D.; Gregori, N.Z.; Sisk, R.A.; Weng, C.Y.; Berrocal, A.M.; Davis, J.L.; Mendoza-Santiesteban, C.E.; Zheng, D.D.; Feuer, W.J.; Lam, B.L. Visual acuity, retinal morphology, and patients’ perceptions after voretigene neparovec-rzyl therapy for RPE65-associated retinal disease. Ophthalmol. Retina, 2022, 6(4), 273-283.
[http://dx.doi.org/10.1016/j.oret.2021.11.005] [PMID: 34896323]
[29]
Rebelo Neves, E.; Carvalho, A.L.; Mesquita, T.; Paiva, C.; Alfaiate, M.; Figueira, J.; Murta, J.; Marques, J.P. Bilateral functional worsening following voretigene neparvovec therapy. Eye, 2023, 37(13), 2828-2829.
[http://dx.doi.org/10.1038/s41433-023-02411-4]
[30]
Kolomeyer, A.M.; Zarbin, M.A. Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv. Ophthalmol., 2014, 59(2), 134-165.
[http://dx.doi.org/10.1016/j.survophthal.2013.09.004] [PMID: 24417953]
[31]
Dong, S.; Zhen, F.; Xu, H.; Li, Q.; Wang, J. Leukemia inhibitory factor protects photoreceptor cone cells against oxidative damage through activating JAK/STAT3 signaling. Ann. Transl. Med., 2021, 9(2), 152.
[http://dx.doi.org/10.21037/atm-20-8040] [PMID: 33569454]
[32]
Ueki, Y.; Wang, J.; Chollangi, S.; Ash, J.D. STAT3 activation in photoreceptors by leukemia inhibitory factor is associated with protection from light damage. J. Neurochem., 2008, 105(3), 784-796.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05180.x] [PMID: 18088375]
[33]
Joly, S.; Lange, C.; Thiersch, M.; Samardzija, M.; Grimm, C. Leukemia inhibitory factor extends the lifespan of injured photoreceptors in vivo. J. Neurosci., 2008, 28(51), 13765-13774.
[http://dx.doi.org/10.1523/JNEUROSCI.5114-08.2008] [PMID: 19091967]
[34]
Jorgensen, M.M.; de la Puente, P. Leukemia inhibitory factor: An important cytokine in pathologies and cancer. Biomolecules, 2022, 12(2), 217.
[http://dx.doi.org/10.3390/biom12020217] [PMID: 35204717]
[35]
Yang, J.L.; Zou, T.D.; Yang, F.; Yang, Z.L.; Zhang, H.B. Inhibition of mTOR signaling by rapamycin protects photoreceptors from degeneration in rd1 mice. Zool. Res., 2021, 42(4), 482-486.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2021.049] [PMID: 34235896]
[36]
Yang, J.; Zou, T.; Yang, F.; Zhang, Z.; Sun, C.; Yang, Z.; Zhang, H. A quick protocol for the preparation of mouse retinal cryosections for immunohistochemistry. Open Biol., 2021, 11(7), 210076.
[http://dx.doi.org/10.1098/rsob.210076] [PMID: 34315273]
[37]
Yang, J.; Chen, Y.; Zou, T.; Xue, B.; Yang, F.; Wang, X.; Huo, Y.; Yan, B.; Xu, Y.; He, S.; Yin, Y.; Wang, J.; Zhu, X.; Zhang, L.; Zhou, Y.; Tai, Z.; Shuai, P.; Yu, M.; Luo, Q.; Cheng, Y.; Gong, B.; Zhang, J.; Sun, X.; Lin, Y.; Zhang, H.; Yang, Z. Cholesterol homeostasis regulated by ABCA1 is critical for retinal ganglion cell survival. Sci. China Life Sci., 2022, 66(2), 211-25.
[PMID: 35829808]
[38]
Niwa, H.; Burdon, T.; Chambers, I.; Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev., 1998, 12(13), 2048-2060.
[http://dx.doi.org/10.1101/gad.12.13.2048] [PMID: 9649508]
[39]
Tan, E.; Ding, X.Q.; Saadi, A.; Agarwal, N.; Naash, M.I.; Al-Ubaidi, M.R. Expression of cone-photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest. Ophthalmol. Vis. Sci., 2004, 45(3), 764-768.
[http://dx.doi.org/10.1167/iovs.03-1114] [PMID: 14985288]
[40]
Yamada, E.; Bastie, C.C.; Koga, H.; Wang, Y.; Cuervo, A.M.; Pessin, J.E. Mouse skeletal muscle fiber-type-specific macroautophagy and muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling pathway. Cell Rep., 2012, 1(5), 557-569.
[http://dx.doi.org/10.1016/j.celrep.2012.03.014] [PMID: 22745922]
[41]
Pratt, J.; Annabi, B. Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1-MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells. Cell. Signal., 2014, 26(5), 917-924.
[http://dx.doi.org/10.1016/j.cellsig.2014.01.012] [PMID: 24462646]
[42]
Besirli, C.G.; Chinskey, N.D.; Zheng, Q.D.; Zacks, D.N. Autophagy activation in the injured photoreceptor inhibits fas-mediated apoptosis. Invest. Ophthalmol. Vis. Sci., 2011, 52(7), 4193-4199.
[http://dx.doi.org/10.1167/iovs.10-7090] [PMID: 21421874]
[43]
Das, G.; Shravage, B.V.; Baehrecke, E.H. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb. Perspect. Biol., 2012, 4(6), a008813.
[http://dx.doi.org/10.1101/cshperspect.a008813] [PMID: 22661635]
[44]
He, C.; Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009, 43(1), 67-93.
[http://dx.doi.org/10.1146/annurev-genet-102808-114910] [PMID: 19653858]
[45]
Li, S.; Gordon, W.C.; Bazan, N.G.; Jin, M. Inverse correlation between fatty acid transport protein 4 and vision in Leber congenital amaurosis associated with RPE65 mutation. Proc. Natl. Acad. Sci., 2020, 117(50), 32114-32123.
[http://dx.doi.org/10.1073/pnas.2012623117] [PMID: 33257550]
[46]
Smith, A.G.; Hooper, M.L. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol., 1987, 121(1), 1-9.
[http://dx.doi.org/10.1016/0012-1606(87)90132-1] [PMID: 3569655]
[47]
Smith, A.G.; Heath, J.K.; Donaldson, D.D.; Wong, G.G.; Moreau, J.; Stahl, M.; Rogers, D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 1988, 336(6200), 688-690.
[http://dx.doi.org/10.1038/336688a0] [PMID: 3143917]
[48]
Williams, R.L.; Hilton, D.J.; Pease, S.; Willson, T.A.; Stewart, C.L.; Gearing, D.P.; Wagner, E.F.; Metcalf, D.; Nicola, N.A.; Gough, N.M. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 1988, 336(6200), 684-687.
[http://dx.doi.org/10.1038/336684a0] [PMID: 3143916]
[49]
Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M.; Remé, C.; Grimm, C.; Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M.; Remé, C.; Grimm, C. Differential role of Jak-STAT signaling in retinal degenerations. FASEB J., 2006, 20(13), 2411-2413.
[http://dx.doi.org/10.1096/fj.06-5895fje] [PMID: 16966486]
[50]
Schaeferhoff, K.; Michalakis, S.; Tanimoto, N.; Fischer, M.D.; Becirovic, E.; Beck, S.C.; Huber, G.; Rieger, N.; Riess, O.; Wissinger, B.; Biel, M.; Seeliger, M.W.; Bonin, M. Induction of STAT3-related genes in fast degenerating cone photoreceptors of cpfl1 mice. Cell. Mol. Life Sci., 2010, 67(18), 3173-3186.
[http://dx.doi.org/10.1007/s00018-010-0376-9] [PMID: 20467778]
[51]
Jiang, K.; Wright, K.L.; Zhu, P.; Szego, M.J.; Bramall, A.N.; Hauswirth, W.W.; Li, Q.; Egan, S.E.; McInnes, R.R. STAT3 promotes survival of mutant photoreceptors in inherited photoreceptor degeneration models. Proc. Natl. Acad. Sci., 2014, 111(52), E5716-E5723.
[http://dx.doi.org/10.1073/pnas.1411248112] [PMID: 25512545]
[52]
You, L.; Wang, Z.; Li, H.; Shou, J.; Jing, Z.; Xie, J.; Sui, X.; Pan, H.; Han, W. The role of STAT3 in autophagy. Autophagy, 2015, 11(5), 729-739.
[http://dx.doi.org/10.1080/15548627.2015.1017192] [PMID: 25951043]
[53]
Intartaglia, D.; Giamundo, G.; Naso, F.; Nusco, E.; Di Giulio, S.; Salierno, F.G.; Polishchuk, E.; Conte, I. Induction of autophagy promotes clearance of RHOP23H aggregates and protects from retinal degeneration. Front. Aging Neurosci., 2022, 14, 878958.
[http://dx.doi.org/10.3389/fnagi.2022.878958] [PMID: 35847673]
[54]
Pang, J.; Chang, B.; Kumar, A.; Nusinowitz, S.; Noorwez, S.M.; Li, J.; Rani, A.; Foster, T.C.; Chiodo, V.A.; Doyle, T.; Li, H.; Malhotra, R.; Teusner, J.T.; McDowell, J.H.; Min, S.H.; Li, Q.; Kaushal, S.; Hauswirth, W.W. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol. Ther., 2006, 13(3), 565-572.
[http://dx.doi.org/10.1016/j.ymthe.2005.09.001] [PMID: 16223604]
[55]
Labonté, E.D.; Camarota, L.M.; Rojas, J.C.; Jandacek, R.J.; Gilham, D.E.; Davies, J.P.; Ioannou, Y.A.; Tso, P.; Hui, D.Y.; Howles, P.N. Reduced absorption of saturated fatty acids and resistance to diet-induced obesity and diabetes by ezetimibe-treated and Npc1l1−/− mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 295(4), G776-G783.
[http://dx.doi.org/10.1152/ajpgi.90275.2008] [PMID: 18718999]
[56]
Naples, M.; Baker, C.; Lino, M.; Iqbal, J.; Hussain, M.M.; Adeli, K. Ezetimibe ameliorates intestinal chylomicron overproduction and improves glucose tolerance in a diet-induced hamster model of insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 302(9), G1043-G1052.
[http://dx.doi.org/10.1152/ajpgi.00250.2011] [PMID: 22345552]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy