Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Current use of Molecular Mechanisms and Signaling Pathways in Targeted Therapy of Prostate Cancer

Author(s): Vahideh Keyvani, Samaneh Mollazadeh, Nahid Kheradmand, Reihaneh Alsadat Mahmoudian, Amir Avan* and Kazem Anvari*

Volume 29, Issue 34, 2023

Published on: 27 October, 2023

Page: [2684 - 2691] Pages: 8

DOI: 10.2174/0113816128265464231021172202

Price: $65

Abstract

Prostate cancer (PC) is identified as a heterogeneous disease. About 20 to 30% of PC patients experience cancer recurrence, characterized by an increase in the antigen termed serum prostate-specific antigen (PSA). Clinical recurrence of PC commonly occurs after five years. Metastatic castration-resistant prostate cancer (mCRPC) has an intricate genomic background. Therapies that target genomic changes in DNA repair signaling pathways have been progressively approved in the clinic. Innovative therapies like targeting signaling pathways, bone niche, immune checkpoint, and epigenetic marks have been gaining promising results for better management of PC cases with bone metastasis. This review article summarizes the recent consideration of the molecular mechanisms and signaling pathways involved in local and metastatic prostate cancer, highlighting the clinical insinuations of the novel understanding.

Keywords: Signaling pathways, targeted therapy, prostate cancer, molecular mechanisms, heterogeneous disease, antigen.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Giridharan M, Rupani V, Banerjee S. Signaling pathways and targeted therapies for stem cells in prostate cancer. ACS Pharmacol Transl Sci 2022; 5(4): 193-206.
[http://dx.doi.org/10.1021/acsptsci.2c00019] [PMID: 35434534]
[3]
Steele CB, Li J, Huang B, Weir HK. Prostate cancer survival in the United States by race and stage (2001-2009): Findings from the CONCORD-2 study. Cancer 2017; 123(S24): 5160-77.
[4]
Jemal A, Fedewa SA, Ma J, et al. Prostate cancer incidence and PSA testing patterns in relation to USPSTF screening recommendations. JAMA 2015; 314(19): 2054-61.
[http://dx.doi.org/10.1001/jama.2015.14905] [PMID: 26575061]
[5]
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66(4): 271-89.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[6]
Mistry K, Cable G. Meta-analysis of prostate-specific antigen and digital rectal examination as screening tests for prostate carcinoma. J Am Board Fam Med 2003; 16(2): 95-101.
[http://dx.doi.org/10.3122/jabfm.16.2.95] [PMID: 12665174]
[7]
Halpern JA, Oromendia C, Shoag JE, et al. Use of digital rectal examination as an adjunct to prostate specific antigen in the detection of clinically significant prostate cancer. J Urol 2018; 199(4): 947-53.
[http://dx.doi.org/10.1016/j.juro.2017.10.021] [PMID: 29061540]
[8]
Tindall DJ, Lonergan PE. Androgen receptor signaling in prostate cancer development and progression. J Carcinog 2011; 10(1): 20.
[http://dx.doi.org/10.4103/1477-3163.83937] [PMID: 21886458]
[9]
Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin 1972; 22(4): 232-40.
[http://dx.doi.org/10.3322/canjclin.22.4.232] [PMID: 4625049]
[10]
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: Mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7(1): 198.
[http://dx.doi.org/10.1038/s41392-022-01042-7] [PMID: 35750683]
[11]
van Dessel LF, van Riet J, Smits M, et al. The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact. Nat Commun 2019; 10(1): 5251.
[http://dx.doi.org/10.1038/s41467-019-13084-7] [PMID: 31748536]
[12]
Reynolds MA. Molecular alterations in prostate cancer. Cancer Lett 2008; 271(1): 13-24.
[http://dx.doi.org/10.1016/j.canlet.2008.04.047] [PMID: 18554779]
[13]
Lonigro RJ, Grasso CS, Robinson DR, et al. Detection of somatic copy number alterations in cancer using targeted exome capture sequencing. Neoplasia 2011; 13(11): 1019-IN21.
[http://dx.doi.org/10.1593/neo.111252] [PMID: 22131877]
[14]
Demichelis F, Setlur SR, Beroukhim R, et al. Distinct genomic aberrations associated with ERG rearranged prostate cancer. Genes Chromosomes Cancer 2009; 48(4): 366-80.
[http://dx.doi.org/10.1002/gcc.20647] [PMID: 19156837]
[15]
Taylor BS, Schultz N, Hieronymus H, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18(1): 11-22.
[http://dx.doi.org/10.1016/j.ccr.2010.05.026] [PMID: 20579941]
[16]
Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310(5748): 644-8.
[http://dx.doi.org/10.1126/science.1117679] [PMID: 16254181]
[17]
Tomlins SA, Mehra R, Rhodes DR, et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006; 66(7): 3396-400.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0168] [PMID: 16585160]
[18]
Donaldson LW, Petersen JM, Graves BJ, McIntosh LP. Secondary structure of the ETS domain places murine Ets-1 in the superfamily of winged helix-turn-helix DNA-binding proteins. Biochemistry 1994; 33(46): 13509-16.
[http://dx.doi.org/10.1021/bi00250a001] [PMID: 7947760]
[19]
Vaarala MH, Porvari K, Kyllönen A, Lukkarinen O, Vihko P. The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: Detection of mutated TMPRSS2 form in a case of aggressive disease. Int J Cancer 2001; 94(5): 705-10.
[http://dx.doi.org/10.1002/ijc.1526] [PMID: 11745466]
[20]
Perner S, Mosquera JM, Demichelis F, et al. TMPRSS2-ERG fusion prostate cancer: An early molecular event associated with invasion. Am J Surg Pathol 2007; 31(6): 882-8.
[http://dx.doi.org/10.1097/01.pas.0000213424.38503.aa] [PMID: 17527075]
[21]
Goh CL, Schumacher FR, Easton D, et al. Genetic variants associated with predisposition to prostate cancer and potential clinical implications. J Intern Med 2012; 271(4): 353-65.
[http://dx.doi.org/10.1111/j.1365-2796.2012.02511.x] [PMID: 22308973]
[22]
Bookstein R, MacGrogan D, Hilsenbeck SG, Sharkey F, Allred DC. p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res 1993; 53(14): 3369-73.
[PMID: 8324747]
[23]
Holcomb IN, Young JM, Coleman IM, et al. Comparative analyses of chromosome alterations in soft-tissue metastases within and across patients with castration-resistant prostate cancer. Cancer Res 2009; 69(19): 7793-802.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3810] [PMID: 19773449]
[24]
Dreher T, Zentgraf H, Abel U, et al. Reduction of PTEN and p27kip1 expression correlates with tumor grade in prostate cancer. Analysis in radical prostatectomy specimens and needle biopsies. Virchows Archiv 2004; 444(6): 509-17.
[25]
Mateo J, Carreira S, Sandhu S, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 2015; 373(18): 1697-708.
[http://dx.doi.org/10.1056/NEJMoa1506859] [PMID: 26510020]
[26]
de Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020; 382(22): 2091-102.
[http://dx.doi.org/10.1056/NEJMoa1911440] [PMID: 32343890]
[27]
Armstrong AJ, Shen T, Halabi S, et al. A phase II trial of temsirolimus in men with castration-resistant metastatic prostate cancer. Clin Genitourin Cancer 2013; 11(4): 397-406.
[http://dx.doi.org/10.1016/j.clgc.2013.05.007] [PMID: 23830964]
[28]
Graham L, Banda K, Torres A, et al. A phase II study of the dual mTOR inhibitor MLN0128 in patients with metastatic castration resistant prostate cancer. Invest New Drugs 2018; 36(3): 458-67.
[http://dx.doi.org/10.1007/s10637-018-0578-9] [PMID: 29508246]
[29]
Chow H, Ghosh PM, deVere White R, et al. A phase 2 clinical trial of everolimus plus bicalutamide for castration-resistant prostate cancer. Cancer 2016; 122(12): 1897-904.
[http://dx.doi.org/10.1002/cncr.29927] [PMID: 27019001]
[30]
Kase AM, Copland JA III, Tan W. Novel therapeutic strategies for CDK4/6 inhibitors in metastatic castrate-resistant prostate cancer. OncoTargets Ther 2020; 13: 10499-513.
[http://dx.doi.org/10.2147/OTT.S266085] [PMID: 33116629]
[31]
Kumari S, Sharma V, Tiwari R, Maurya JP, Subudhi BB, Senapati D. Therapeutic potential of p53 reactivation in prostate cancer: Strategies and opportunities. Eur J Pharmacol 2022; 919: 174807.
[http://dx.doi.org/10.1016/j.ejphar.2022.174807] [PMID: 35151649]
[32]
Murillo-Garzón V, Kypta R. WNT signalling in prostate cancer. Nat Rev Urol 2017; 14(11): 683-96.
[http://dx.doi.org/10.1038/nrurol.2017.144] [PMID: 28895566]
[33]
Dahia PL. PTEN, a unique tumor suppressor gene. Endocr Relat Cancer 2000; 7(2): 115-29.
[http://dx.doi.org/10.1677/erc.0.0070115] [PMID: 10903528]
[34]
Suzuki H, Freije D, Nusskern DR, et al. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 1998; 58(2): 204-9.
[PMID: 9443392]
[35]
Tortorella E, Giantulli S, Sciarra A, Silvestri I. AR and PI3K/AKT in prostate cancer: A tale of two interconnected pathways. Int J Mol Sci 2023; 24(3): 2046.
[http://dx.doi.org/10.3390/ijms24032046] [PMID: 36768370]
[36]
Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003; 4(3): 209-21.
[http://dx.doi.org/10.1016/S1535-6108(03)00215-0] [PMID: 14522255]
[37]
Tu S-M, Lin S-H, Podoloff DA, Logothetis CJ. Multimodality therapy: Bone-targeted radioisotope therapy of prostate cancer. Clin Adv Hematol Oncol 2010; 8(5): 341.
[38]
Geldof AA, de Rooij L, Versteegh RT, Newling DW, Teule GJ. Combination 186Re-HEDP and cisplatin supra-additive treatment effects in prostate cancer cells. J Nucl Med 1999; 40(4): 667-71.
[PMID: 10210227]
[39]
Lam MGEH, Bosma TB, van Rijk PP, Zonnenberg BA. 188Re-HEDP combined with capecitabine in hormone-refractory prostate cancer patients with bone metastases: A phase I safety and toxicity study. Eur J Nucl Med Mol Imaging 2009; 36(9): 1425-33.
[http://dx.doi.org/10.1007/s00259-009-1119-8] [PMID: 19319526]
[40]
Pagliaro LC, Delpassand ES, Williams D, Millikan RE, Tu SM, Logothetis CJ. A phase I/II study of strontium-89 combined with gemcitabine in the treatment of patients with androgen independent prostate carcinoma and bone metastases. Cancer 2003; 97(12): 2988-94.
[http://dx.doi.org/10.1002/cncr.11412] [PMID: 12784333]
[41]
Belbina SH, Schmolze MR, Gereta S, Laviana AA. PSMA as a target for advanced prostate cancer: A systematic review. Front Urol 2022; 2: 912558.
[http://dx.doi.org/10.3389/fruro.2022.912558]
[42]
Wang F, Li Z, Feng X, Yang D, Lin M. Advances in PSMA-targeted therapy for prostate cancer. Prostate Cancer Prostatic Dis 2022; 25(1): 11-26.
[http://dx.doi.org/10.1038/s41391-021-00394-5] [PMID: 34050265]
[43]
Sun M, Niaz MO, Nelson A, Skafida M, Niaz MJ, Niaz MO. Review of 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Cureus 2020; 12(6): e8921.
[http://dx.doi.org/10.7759/cureus.8921] [PMID: 32760622]
[44]
Xing L, Ebetino FH, Boeckman RK Jr, et al. Targeting anti-can- cer agents to bone using bisphosphonates. Bone 2020; 138: 115492.
[http://dx.doi.org/10.1016/j.bone.2020.115492] [PMID: 32585321]
[45]
Mundy GR. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002; 2(8): 584-93.
[http://dx.doi.org/10.1038/nrc867] [PMID: 12154351]
[46]
Chin H, Kim J. Bone metastasis: Concise overview. Fed Pract 2015; 32(2): 24-30.
[PMID: 30766043]
[47]
Hofbauer LC, Bozec A, Rauner M, Jakob F, Perner S, Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol 2021; 18(8): 488-505.
[http://dx.doi.org/10.1038/s41571-021-00499-9] [PMID: 33875860]
[48]
Ming J, Cronin SJF, Penninger JM. Targeting the RANKL/RANK/OPG axis for cancer therapy. Front Oncol 2020; 10: 1283.
[http://dx.doi.org/10.3389/fonc.2020.01283] [PMID: 32850393]
[49]
Dell’Aquila E, Armento G, Iuliani M, et al. Denosumab for cancer-related bone loss. Expert Opin Biol Ther 2020; 20(11): 1261-74.
[http://dx.doi.org/10.1080/14712598.2020.1814731] [PMID: 32835531]
[50]
Odero-Marah VA, Wang R, Chu G, et al. Receptor activator of NF-κB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells. Cell Res 2008; 18(8): 858-70.
[http://dx.doi.org/10.1038/cr.2008.84] [PMID: 18645583]
[51]
Yamada T, Tsuda M, Takahashi T, Totsuka Y, Shindoh M, Ohba Y. RANKL expression specifically observed in vivo promotes epithelial mesenchymal transition and tumor progression. Am J Pathol 2011; 178(6): 2845-56.
[http://dx.doi.org/10.1016/j.ajpath.2011.02.003] [PMID: 21561598]
[52]
Galvano A, Scaturro D, Badalamenti G, et al. Denosumab for bone health in prostate and breast cancer patients receiving endocrine therapy? A systematic review and a meta-analysis of randomized trials. J Bone Oncol 2019; 18: 100252.
[http://dx.doi.org/10.1016/j.jbo.2019.100252] [PMID: 31440444]
[53]
Odri GA, Dumoucel S, Picarda G, et al. Zoledronic acid as a new adjuvant therapeutic strategy for Ewing’s sarcoma patients. Cancer Res 2010; 70(19): 7610-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4272] [PMID: 20841471]
[54]
Lau LH, Cliff ERS, Wong V, et al. Hypocalcaemia following denosumab in prostate cancer: A clinical review. Clin Endocrinol 2020; 92(6): 495-502.
[http://dx.doi.org/10.1111/cen.14169] [PMID: 32017154]
[55]
Garraway IP. Targeting the RANKL pathway: Putting the brakes on prostate cancer progression in bone. J Clin Oncol 2013; 31(30): 3838-40.
[http://dx.doi.org/10.1200/JCO.2013.50.1544] [PMID: 24043735]
[56]
Ardura JA, Álvarez-Carrión L, Gutiérrez-Rojas I, Alonso V. Role of calcium signaling in prostate cancer progression: Effects on cancer hallmarks and bone metastatic mechanisms. Cancers 2020; 12(5): 1071.
[http://dx.doi.org/10.3390/cancers12051071] [PMID: 32344908]
[57]
Venkatachalam S, McFarland TR, Agarwal N, Swami U. Immune checkpoint inhibitors in prostate cancer. Cancers 2021; 13(9): 2187.
[http://dx.doi.org/10.3390/cancers13092187] [PMID: 34063238]
[58]
Sena LA, Denmeade SR, Antonarakis ES. Targeting the spectrum of immune checkpoints in prostate cancer. Expert Rev Clin Pharmacol 2021; 14(10): 1253-66.
[http://dx.doi.org/10.1080/17512433.2021.1949287] [PMID: 34263692]
[59]
Kwon ED, Drake CG, Scher HI, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 2014; 15(7): 700-12.
[http://dx.doi.org/10.1016/S1470-2045(14)70189-5] [PMID: 24831977]
[60]
Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet 2012; 81(4): 303-11.
[http://dx.doi.org/10.1111/j.1399-0004.2011.01809.x] [PMID: 22082348]
[61]
Ruggero K, Farran-Matas S, Martinez-Tebar A, Aytes A. Epigenetic regulation in prostate cancer progression. Curr Mol Biol Rep 2018; 4(2): 101-15.
[http://dx.doi.org/10.1007/s40610-018-0095-9] [PMID: 29888169]
[62]
Kgatle MM, Kalla AA, Islam MM, Sathekge M, Moorad R. Prostate cancer: Rpigenetic alterations, risk factors, and therapy. Prostate cancer 2016; 2016: 5653862.
[http://dx.doi.org/10.1155/2016/5653862]
[63]
Sugiura M, Sato H, Kanesaka M, et al. Epigenetic modifications in prostate cancer. Int J Urol 2021; 28(2): 140-9.
[http://dx.doi.org/10.1111/iju.14406] [PMID: 33111429]
[64]
Fatemi M, Pao MM, Jeong S, et al. Footprinting of mammalian promoters: Use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res 2005; 33(20): e176.
[http://dx.doi.org/10.1093/nar/gni180]
[65]
Kim M, Costello J. DNA methylation: An epigenetic mark of cellular memory. Exp Mol Med 2017; 49(4): e322.
[http://dx.doi.org/10.1038/emm.2017.10]
[66]
Kamińska K, Nalejska E, Kubiak M, et al. Prognostic and predictive epigenetic biomarkers in oncology. Mol Diagn Ther 2019; 23(1): 83-95.
[http://dx.doi.org/10.1007/s40291-018-0371-7] [PMID: 30523565]
[67]
Majumdar S, Buckles E, Estrada J, Koochekpour S. Aberrant DNA methylation and prostate cancer. Curr Genomics 2011; 12(7): 486-505.
[http://dx.doi.org/10.2174/138920211797904061] [PMID: 22547956]
[68]
Jasek K, Kubatka P, Samec M, et al. DNA methylation status in cancer disease: Modulations by plant-derived natural compounds and dietary interventions. Biomolecules 2019; 9(7): 289.
[http://dx.doi.org/10.3390/biom9070289] [PMID: 31323834]
[69]
Shivapurkar N, Toyooka S, Toyooka KO, et al. Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types. Int J Cancer 2004; 109(5): 786-92.
[http://dx.doi.org/10.1002/ijc.20041] [PMID: 14999791]
[70]
Chung SK, Lee MG, Ryu BK, et al. Frequent alteration of XAF1 in human colorectal cancers: Implication for tumor cell resistance to apoptotic stresses. Gastroenterology 2007; 132(7): 2459-77.
[http://dx.doi.org/10.1053/j.gastro.2007.04.024] [PMID: 17570219]
[71]
Graff JR, Herman JG, Lapidus RG, et al. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 1995; 55(22): 5195-9.
[PMID: 7585573]
[72]
Kang GH, Lee S, Lee HJ, Hwang KS. Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J Pathol 2004; 202(2): 233-40.
[http://dx.doi.org/10.1002/path.1503]
[73]
Ouhtit A, Rizeq B, Saleh HA, Rahman MDM, Zayed H. Novel CD44-downstream signaling pathways mediating breast tumor invasion. Int J Biol Sci 2018; 14(13): 1782-90.
[http://dx.doi.org/10.7150/ijbs.23586] [PMID: 30443182]
[74]
Lee WH, Morton RA, Epstein JI, et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci 1994; 91(24): 11733-7.
[http://dx.doi.org/10.1073/pnas.91.24.11733] [PMID: 7972132]
[75]
Yegnasubramanian S, Haffner MC, Zhang Y, et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res 2008; 68(21): 8954-67.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6088] [PMID: 18974140]
[76]
Florl AR, Steinhoff C, Müller M, et al. Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br J Cancer 2004; 91(5): 985-94.
[http://dx.doi.org/10.1038/sj.bjc.6602030] [PMID: 15292941]
[77]
Ma J, Qi G, Xu J, et al. Overexpression of forkhead box M1 and urokinase-type plasminogen activator in gastric cancer is associated with cancer progression and poor prognosis. Oncol Lett 2017; 14(6): 7288-96.
[http://dx.doi.org/10.3892/ol.2017.7136] [PMID: 29344165]
[78]
Shukeir N, Pakneshan P, Chen G, Szyf M, Rabbani SA. Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Res 2006; 66(18): 9202-10.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1954] [PMID: 16982764]
[79]
Gutter-Kapon L, Alishekevitz D, Shaked Y, et al. Heparanase is required for activation and function of macrophages. Proc Natl Acad Sci USA 2016; 113(48): E7808-17.
[http://dx.doi.org/10.1073/pnas.1611380113] [PMID: 27849593]
[80]
Ogishima T, Shiina H, Breault JE, et al. Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin Cancer Res 2005; 11(3): 1028-36.
[http://dx.doi.org/10.1158/1078-0432.1028.11.3] [PMID: 15709168]
[81]
Murray GI, Taylor MC, McFadyen MC, et al. Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res 1997; 57(14): 3026-31.
[PMID: 9230218]
[82]
Tokizane T, Shiina H, Igawa M, et al. Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin Cancer Res 2005; 11(16): 5793-801.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2545] [PMID: 16115918]
[83]
Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol 2016; 8(4): a019521.
[http://dx.doi.org/10.1101/cshperspect.a019521] [PMID: 27037415]
[84]
Kang Z, Jänne OA, Palvimo JJ. Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor. Mol Endocrinol 2004; 18(11): 2633-48.
[http://dx.doi.org/10.1210/me.2004-0245] [PMID: 15308689]
[85]
Comuzzi B, Nemes C, Schmidt S, et al. The androgen receptor co-activator CBP is up-regulated following androgen withdrawal and is highly expressed in advanced prostate cancer. J Pathol 2004; 204(2): 159-66.
[http://dx.doi.org/10.1002/path.1609]
[86]
Chin SP, Dickinson JL, Holloway AF. Epigenetic regulation of prostate cancer. Clin Epigenetics 2011; 2(2): 151-69.
[http://dx.doi.org/10.1007/s13148-011-0041-7] [PMID: 22704335]
[87]
Behbahani TE, Kahl P, von der Gathen J, et al. Alterations of global histone H4K20 methylation during prostate carcinogenesis. BMC Urol 2012; 12(1): 5.
[http://dx.doi.org/10.1186/1471-2490-12-5] [PMID: 22413846]
[88]
Ellinger J, Kahl P, von der Gathen J, et al. Global levels of histone modifications predict prostate cancer recurrence. Prostate 2010; 70(1): 61-9.
[http://dx.doi.org/10.1002/pros.21038] [PMID: 19739128]
[89]
Chen Z, Wang L, Wang Q, Li W. Histone modifications and chromatin organization in prostate cancer. Epigenomics 2010; 2(4): 551-60.
[http://dx.doi.org/10.2217/epi.10.31] [PMID: 21318127]
[90]
Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419(6907): 624-9.
[http://dx.doi.org/10.1038/nature01075] [PMID: 12374981]
[91]
Metzger E, Imhof A, Patel D, et al. Phosphorylation of histone H3T6 by PKCβI controls demethylation at histone H3K4. Nature 2010; 464(7289): 792-6.
[http://dx.doi.org/10.1038/nature08839] [PMID: 20228790]
[92]
Metzger E, Yin N, Wissmann M, et al. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 2008; 10(1): 53-60.
[http://dx.doi.org/10.1038/ncb1668] [PMID: 18066052]
[93]
Mahajan K, Malla P, Lawrence HR, et al. ACK1/TNK2 regulates histone H4 Tyr88-phosphorylation and AR gene expression in castration-resistant prostate cancer. Cancer cell 2017; 31(6): 790-803. e8.
[94]
Xu K, Shimelis H, Linn DE, et al. Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell 2009; 15(4): 270-82.
[http://dx.doi.org/10.1016/j.ccr.2009.02.021] [PMID: 19345326]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy