Research Article

HMGB1/RAGE信号调控Th17/IL-17及其在支气管上皮-间质转化中的作用

卷 24, 期 11, 2024

发表于: 27 October, 2023

页: [1401 - 1412] 页: 12

弟呕挨: 10.2174/0115665240249953231024060610

价格: $65

Open Access Journals Promotions 2
摘要

背景:气道重塑是与HMGB1/RAGE信号或Th17免疫相关的严重类固醇耐受性哮喘的原因之一。 目的:本研究旨在探讨HMGB1/RAGE信号通路与Th17/IL-17信号通路在气道重塑上皮-间充质转化(EMT)中的关系。 方法:采集C57小鼠的CD4+ T淋巴细胞。流式细胞术分析CD4+ T细胞与Th17细胞的比值。ELISA法检测IL-17水平。采用RT-qPCR和免疫组化方法对埃卡迪林和α-SMA进行分析。western blot检测Ecadherin、α-SMA、p-Smad3的表达。 结果:HMGB1/RAGE信号在体外以剂量依赖性方式促进Th17细胞的分化和成熟。HMGB1/RAGE信号也促进支气管EMT的发生。Th17/IL-17与HMGB1协同促进支气管上皮细胞的EMT。RAGE的沉默降低了HMGB1的信号转导和支气管EMT的进展。 结论:HMGB1/RAGE信号通过促进Th17细胞的分化和IL-17的分泌,协同增强TGF-β1诱导的支气管EMT。

关键词: HMGB1, RAGE, Th17/IL-17, EMT,气道重塑,支气管哮喘。

[1]
Bousquet J, Dahl R, Khaltaev N. Global alliance against chronic respiratory diseases. Pneumonol Alergol Pol 2008; 76(3): 160-9.
[2]
Hackett TL. Epithelial–mesenchymal transition in the pathophysiology of airway remodelling in asthma. Curr Opin Allergy Clin Immunol 2012; 12(1): 53-9.
[http://dx.doi.org/10.1097/ACI.0b013e32834ec6eb] [PMID: 22217512]
[3]
Hackett TL, Warner SM, Stefanowicz D, et al. Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1. Am J Respir Crit Care Med 2009; 180(2): 122-33.
[http://dx.doi.org/10.1164/rccm.200811-1730OC] [PMID: 19406982]
[4]
Kolosova I, Nethery D, Kern JA. Role of Smad2/3 and p38 MAP kinase in TGF-β1-induced epithelial-mesenchymal transition of pulmonary epithelial cells. J Cell Physiol 2011; 226(5): 1248-54.
[http://dx.doi.org/10.1002/jcp.22448] [PMID: 20945383]
[5]
Bergeron C, Tulic MK, Hamid Q. Airway remodelling in asthma: From benchside to clinical practice. Can Respir J 2010; 17(4): e85-93.
[http://dx.doi.org/10.1155/2010/318029] [PMID: 20808979]
[6]
Bai TR. Evidence for airway remodeling in chronic asthma. Curr Opin Allergy Clin Immunol 2010; 10(1): 82-6.
[http://dx.doi.org/10.1097/ACI.0b013e32833363b2] [PMID: 19858714]
[7]
Cavone L, Cuppari C, Manti S, et al. Increase in the level of proinflammatory cytokine hmgb1 in nasal fluids of patients with rhinitis and its sequestration by glycyrrhizin induces eosinophil cell death. Clin Exp Otorhinolaryngol 2015; 8(2): 123-8.
[http://dx.doi.org/10.3342/ceo.2015.8.2.123] [PMID: 26045910]
[8]
Ullah MA, Loh Z, Gan WJ, et al. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation. J Allergy Clin Immunol 2014; 134(2): 440-450.e3.
[http://dx.doi.org/10.1016/j.jaci.2013.12.1035] [PMID: 24506934]
[9]
Hudson BI, Lippman ME. Targeting RAGE signaling in inflammatory disease. Annu Rev Med 2018; 69(1): 349-64.
[http://dx.doi.org/10.1146/annurev-med-041316-085215] [PMID: 29106804]
[10]
Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 2013; 25(11): 2185-97.
[http://dx.doi.org/10.1016/j.cellsig.2013.06.013] [PMID: 23838007]
[11]
Zeng S, Feirt N, Goldstein M, et al. Blockade of receptor for advanced glycation end product (RAGE) attenuates ischemia and reperfusion injury to the liver in mice. Hepatology 2004; 39(2): 422-32.
[http://dx.doi.org/10.1002/hep.20045] [PMID: 14767995]
[12]
Repapi E, Sayers I, Wain LV, et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet 2010; 42(1): 36-44.
[http://dx.doi.org/10.1038/ng.501] [PMID: 20010834]
[13]
Ouyang F, Huang H, Zhang M, et al. HMGB1 induces apoptosis and EMT in association with increased autophagy following H/R injury in cardiomyocytes. Int J Mol Med 2016; 37(3): 679-89.
[http://dx.doi.org/10.3892/ijmm.2016.2474] [PMID: 26847839]
[14]
Choy DF, Hart KM, Borthwick LA, et al. T H 2 and T H 17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med 2015; 7(301): 301ra129.
[http://dx.doi.org/10.1126/scitranslmed.aab3142] [PMID: 26290411]
[15]
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 cytokines in airway remodeling in asthma and therapy perspectives. Front Allergy 2022; 3: 806391.
[http://dx.doi.org/10.3389/falgy.2022.806391] [PMID: 35386663]
[16]
Silva MJ, de Santana MBR, Tosta BR, et al. Variants in the IL17 pathway genes are associated with atopic asthma and atopy makers in a South American population. Allergy Asthma Clin Immunol 2019; 15(1): 28.
[http://dx.doi.org/10.1186/s13223-019-0340-7] [PMID: 31168303]
[17]
Ji X, Li J, Xu L, et al. IL4 and IL-17A provide a Th2/Th17-polarized inflammatory milieu in favor of TGF-β1 to induce bronchial epithelial-mesenchymal transition (EMT). Int J Clin Exp Pathol 2013; 6(8): 1481-92.
[PMID: 23923066]
[18]
He Z, Shotorbani SS, Jiao Z, et al. HMGB1 promotes the differentiation of Th17 via up-regulating TLR2 and IL-23 of CD14+ monocytes from patients with rheumatoid arthritis. Scand J Immunol 2012; 76(5): 483-90.
[http://dx.doi.org/10.1111/j.1365-3083.2012.02759.x] [PMID: 22809173]
[19]
Li R, Wang J, Zhu F, et al. HMGB1 regulates T helper 2 and T helper17 cell differentiation both directly and indirectly in asthmatic mice. Mol Immunol 2018; 97: 45-55.
[http://dx.doi.org/10.1016/j.molimm.2018.02.014] [PMID: 29567318]
[20]
Ma L, Zeng J, Mo B, et al. High mobility group box 1: A novel mediator of Th2-type response-induced airway inflammation of acute allergic asthma. J Thorac Dis 2015; 7(10): 1732-41.
[PMID: 26623095]
[21]
Jiang Y, Li L, Pan Q, et al. Methyl-cpg-binding domain protein 2 silencing inhibits Th17 differentiation of CD4+T cells induced by ovalbumin. Iran J Immunol 2023; 20(1): 45-56.
[PMID: 36932919]
[22]
Hou C, Kong J, Liang Y, et al. HMGB1 contributes to allergen-induced airway remodeling in a murine model of chronic asthma by modulating airway inflammation and activating lung fibroblasts. Cell Mol Immunol 2015; 12(4): 409-23.
[http://dx.doi.org/10.1038/cmi.2014.60] [PMID: 25152078]
[23]
Kanazawa H, Tochino Y, Asai K, Ichimaru Y, Watanabe T, Hirata K. Validity of HMGB1 measurement in epithelial lining fluid in patients with COPD. Eur J Clin Invest 2012; 42(4): 419-26.
[http://dx.doi.org/10.1111/j.1365-2362.2011.02598.x] [PMID: 21950682]
[24]
Huang L, Yao Y, Sheng Z. Novel insights for high mobility group box 1 protein-mediated cellular immune response in sepsis:A systemic review. World J Emerg Med 2012; 3(3): 165-71.
[http://dx.doi.org/10.5847/wjem.j.issn.1920-8642.2012.03.001] [PMID: 25215057]
[25]
Gong S, Li J, Ma L, et al. Blockade of dopamine D1-like receptor signalling protects mice against OVA-induced acute asthma by inhibiting B-cell activating transcription factor signalling and Th17 function. FEBS J 2013; 280(23): 6262-73.
[http://dx.doi.org/10.1111/febs.12549] [PMID: 24112622]
[26]
Zhang L, Li K, Bing Ma L, et al. Effects and mechanism of arsenic trioxide on reversing the asthma pathologies including Th17-IL-17 axis in a mouse model. Iran J Allergy Asthma Immunol 2012; 11(2): 133-45.
[PMID: 22761187]
[27]
American Thoracic Society. Idiopathic pulmonary fibrosis: Diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med 2000; 161(2 Pt 1): 646-64.
[PMID: 10673212]
[28]
Liang Y, Hou C, Kong J, et al. HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2. Mol Cell Biochem 2015; 405(1-2): 63-71.
[http://dx.doi.org/10.1007/s11010-015-2396-0] [PMID: 25862459]
[29]
Ferhani N, Letuve S, Kozhich A, et al. Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 181(9): 917-27.
[http://dx.doi.org/10.1164/rccm.200903-0340OC] [PMID: 20133931]
[30]
Moreau JM, Velegraki M, Bolyard C, Rosenblum MD, Li Z. Transforming growth factor–β1 in regulatory T cell biology. Sci Immunol 2022; 7(69): eabi4613.
[http://dx.doi.org/10.1126/sciimmunol.abi4613] [PMID: 35302863]
[31]
Palumbo R, Galvez BG, Pusterla T, et al. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-κB activation. J Cell Biol 2007; 179(1): 33-40.
[http://dx.doi.org/10.1083/jcb.200704015] [PMID: 17923528]
[32]
Wang Q, Li H, Yao Y, Xia D, Zhou J. The overexpression of heparin-binding epidermal growth factor is responsible for Th17-induced airway remodeling in an experimental asthma model. J Immunol 2010; 185(2): 834-41.
[http://dx.doi.org/10.4049/jimmunol.0901490] [PMID: 20530256]
[33]
Li LL, Dai B, Sun YH, Zhang TT. The activation of IL-17 signaling pathway promotes pyroptosis in pneumonia-induced sepsis. Ann Transl Med 2020; 8(11): 674.
[http://dx.doi.org/10.21037/atm-19-1739] [PMID: 32617294]
[34]
Killian KN, Kosanovich JL, Lipp MA, Empey KM, Oury TD, Perkins TN. RAGE contributes to allergen driven severe neutrophilic airway inflammation via NLRP3 inflammasome activation in mice. Front Immunol 2023; 14: 1039997.
[http://dx.doi.org/10.3389/fimmu.2023.1039997] [PMID: 36776857]
[35]
Chen Y, Akirav EM, Chen W, et al. RAGE ligation affects T cell activation and controls T cell differentiation. J Immunol 2008; 181(6): 4272-8.
[http://dx.doi.org/10.4049/jimmunol.181.6.4272] [PMID: 18768885]
[36]
Su CL, Chou HC, Huang LT, Yeh TF, Chen CM. Combined effects of maternal inflammation and neonatal hyperoxia on lung fibrosis and RAGE expression in newborn rats. Pediatr Res 2014; 75(2): 273-80.
[http://dx.doi.org/10.1038/pr.2013.222] [PMID: 24226635]
[37]
Zhang F, Su X, Huang G, et al. sRAGE alleviates neutrophilic asthma by blocking HMGB1/RAGE signalling in airway dendritic cells. Sci Rep 2017; 7(1): 14268.
[http://dx.doi.org/10.1038/s41598-017-14667-4] [PMID: 29079726]
[38]
Zhang F, Huang G, Hu B, et al. Anti-HMGB1 neutralizing antibody ameliorates neutrophilic airway inflammation by suppressing dendritic cell-mediated Th17 polarization. Mediators Inflamm 2014; 2014: 1-11.
[http://dx.doi.org/10.1155/2014/257930] [PMID: 24959003]
[39]
Zhang F, Huang G, Hu B, Qian G, Song Y. Recombinant HMGB1 A box protein inhibits Th17 responses in mice with neutrophilic asthma by suppressing dendritic cell-mediated Th17 polarization. Int Immunopharmacol 2015; 24(1): 110-8.
[http://dx.doi.org/10.1016/j.intimp.2014.11.005] [PMID: 25479722]
[40]
Xing Y, Cheng D, Shi C, Shen Z. The protective role of YTHDF1-knock down macrophages on the immune paralysis of severe sepsis rats with ECMO. Microvasc Res 2021; 137: 104178.
[http://dx.doi.org/10.1016/j.mvr.2021.104178] [PMID: 34015275]
[41]
Arikkatt J, Ullah MA, Short KR, et al. RAGE deficiency predisposes mice to virus-induced paucigranulocytic asthma. eLife 2017; 6: e21199.
[http://dx.doi.org/10.7554/eLife.21199] [PMID: 28099113]
[42]
Nesi RT, Kennedy-Feitosa E, Lanzetti M, et al. Inflammatory and oxidative stress markers in experimental allergic asthma. Inflammation 2017; 40(4): 1166-76.
[http://dx.doi.org/10.1007/s10753-017-0560-2] [PMID: 28391514]
[43]
Strohbuecker L, Koenen H, van Rijssen E, et al. Increased dermal expression of chromatin-associated protein HMGB1 and concomitant T-cell expression of the DNA RAGE in patients with psoriasis vulgaris. Psoriasis 2019; 9: 7-17.
[http://dx.doi.org/10.2147/PTT.S190507] [PMID: 30859087]
[44]
He R, Chen Y, Chen X, Yuan B. Mechanism of miR-181a-5p in regulatory T/T-Helper 17 immune imbalance and asthma development in mice with allergic rhinitis. Int Arch Allergy Immunol 2022; 183(4): 375-88.
[http://dx.doi.org/10.1159/000519703] [PMID: 34942624]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy