Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Methods for the Synthesis of Quinoxaline Derivatives and their Biological Activities

Author(s): Thoraya A. Farghaly*, Raghad M. Alqurashi, Ghada S. Masaret and Hanan Gaber Abdulwahab

Volume 24, Issue 9, 2024

Published on: 25 October, 2023

Page: [920 - 982] Pages: 63

DOI: 10.2174/0113895575264375231012115026

Price: $65

Open Access Journals Promotions 2
Abstract

Quinoxaline derivatives have been incorporated into numerous marketed drugs used for the treatment of various diseases. Examples include glecaprevir (Mavyret), voxilaprevir (Vosevi), Balversa (L01EX16) (erdafitinib), carbadox, XK469R (NSC698215), and becampanel (AMP397). These quinoxaline derivatives exhibit a diverse range of pharmacological activities, including antibacterial, antitubercular, antiviral, anti-HIV, anti-inflammatory, antifungal, anticancer, antiproliferative, antitumor, kinase inhibition, antimicrobial, antioxidant, and analgesic effects. Recognizing the significance of these bioactive quinoxaline derivatives, researchers have dedicated their efforts to developing various synthetic methods for their production. This review aimed to compile the most recent findings on the synthesis and biological properties of quinoxaline derivatives from 2015 to 2023.

Keywords: Quinoxaline, synthesis, biological activity, anticancer, antiviral, compound.

« Previous
Graphical Abstract
[1]
Biesen, L.; Müller, T.J.J. Multicomponent and one‐pot syntheses of quinoxalines. Adv. Synth. Catal., 2021, 363(4), 980-1006.
[http://dx.doi.org/10.1002/adsc.202001219]
[2]
Yashwantrao, G.; Saha, S. Recent advances in the synthesis and reactivity of quinoxaline. Org. Chem. Front., 2021, 8(11), 2820-2862.
[http://dx.doi.org/10.1039/D0QO01575J]
[3]
Badave, P.S.; Gaikwad, D.D.; Gaikwaid, S.D. Microwave-assisted synthesis and study of thermal effect of quinone and arylamine polymer. Res. J., 2022, 9, 2348-7143.
[4]
Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.D.S.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, its derivatives and applications: A state of the art review. Eur. J. Med. Chem., 2015, 97, 664-672.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.058] [PMID: 25011559]
[5]
Dabhi, R.A.; Dhaduk, M.P.; Bhatt, V.D.; Bhatt, B.S. Green approach for the synthesis of novel spiro quinoxaline-pyrimidone based heterocyclic compounds as anticancer agents. Mater. Today Proc., 2022, 65, 367-374.
[http://dx.doi.org/10.1016/j.matpr.2022.06.374]
[6]
Khatoon, H.; Abdulmalek, E. Novel synthetic routes to prepare biologically active quinoxalines and their derivatives: A synthetic review for the last two decades. Molecules, 2021, 26(4), 1055.
[http://dx.doi.org/10.3390/molecules26041055] [PMID: 33670436]
[7]
Raphoko, L.A.; Lekgau, K.; Lebepe, C.M.; Leboho, T.C.; Matsebatlela, T.M.; Nxumalo, W. Synthesis of novel quinoxaline-alkynyl derivatives and their anti-mycobacterium tuberculosis activity. Bioorg. Med. Chem. Lett., 2021, 35, 127784.
[http://dx.doi.org/10.1016/j.bmcl.2021.127784] [PMID: 33422606]
[8]
Kalinin, A.A. Islamova, L.N.; Shmelev, A.G.; Fazleeva, G.M.; Fominykh, O.D.; Dudkina, Y.B.; Vakhonina, T.A.; Levitskaya, A.I.; Sharipova, A.V.; Mukhtarov, A.S.; Khamatgalimov, A.R.; Nizameev, I.R.; Budnikova, Y.H.; Balakina, M.Y. D-π-A chromophores with a quinoxaline core in the π-bridge and bulky aryl groups in the acceptor: Synthesis, properties, and femtosecond nonlinear optical activity of the chromophore/PMMA guest-host materials. Dyes Pigments, 2021, 184, 108801.
[http://dx.doi.org/10.1016/j.dyepig.2020.108801]
[9]
a) Yue, H.; Guo, X.; Du, Y.; Zhang, Y.; Du, H.; Zhao, J.; Zhang, J. Synthesis and characterization of donor–acceptor type quinoxaline-based polymers and the corresponding electrochromic devices with satisfactory open circuit memory. Synth. Met., 2021, 271, 116619.
[http://dx.doi.org/10.1016/j.synthmet.2020.116619];
b) Suthar, S.K.; Chundawat, N.S.; Singh, G.P.; Padrón, J.M.; Jhala, Y.K. Quinoxaline: A comprehension of current pharmacological advancement in medicinal chemistry. Europ. J. Med. Chem. Rep., 2022, 5, 100040.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100040]
[10]
Wang, H.; Dayo, A.Q.; Wang, J.; Wang, J.; Liu, W. Trifunctional quinoxaline‐based maleimide and its polymer alloys with benzoxazine: Synthesis, characterization, and properties. J. Appl. Polym. Sci., 2021, 138(3), 49694.
[http://dx.doi.org/10.1002/app.49694]
[11]
Sallam, E.R.; Aboulnaga, S.F.; Samy, A.M.; Beltagy, D.M.; Desouky, J.M.E.; Abdel-Hamid, H.; Fetouh, H.A. Synthesis, characterization of new heterocyclic compound: Pyrazolyl hydrazino quinoxaline derivative: 3-[5-(hydroxy1methyl)-1-phenylpyrazol-3-yl]-2-[2, 4, 5-trimethoxybenzylidine] hydrazonyl-quinoxaline of potent antimicrobial, antioxidant, antiviral, and antitumor activity. J. Mol. Struct., 2023, 1271, 133983.
[http://dx.doi.org/10.1016/j.molstruc.2022.133983]
[12]
Rawat, A.; Vijaya Bhaskar Reddy, A. Recent advances on anticancer activity of Coumarin derivatives. Europ.J. Med. Chem. Rep., 2022, 5, 100038.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100038]
[13]
Dânoun, K.; Essamlali, Y.; Amadine, O.; Mahi, H.; Zahouily, M. Eco-friendly approach to access of quinoxaline derivatives using nanostructured pyrophosphate Na2PdP2O7 as a new, efficient and reusable heterogeneous catalyst. BMC Chem., 2020, 14(1), 6.
[http://dx.doi.org/10.1186/s13065-020-0662-z] [PMID: 32025664]
[14]
Keivanloo, A.; Abbaspour, S.; Sepehri, S.; Bakherad, M. Synthesis, antibacterial activity and molecular docking study of a series of 1, 3-oxazole-quinoxaline amine hybrids. Polycycl. Aromat. Compd., 2022, 42(5), 2378-2391.
[http://dx.doi.org/10.1080/10406638.2020.1833052]
[15]
Kasula, S.; Bommera, R.K.; Eppakayala, L. Evaluation of antibacterial efficacy and molecular docking studies of quinoxaline and benzthiazole-containing benzamide derivatives. J. Mat. Tod., 2022, 66(Part 4), 1585-1590.
[http://dx.doi.org/10.1016/j.matpr.2022.05.244]
[16]
Srinivasarao, S.; Nandikolla, A.; Suresh, A.; Ewa, A.K. Głogowska, A.; Ghosh, B.; Kumar, B. K.; Murugesan, S.; Pulya, S.; Aggarwal, H.; Sekhar, K. V. G. Ch. Discovery of 1,2,3-triazole based quinoxaline-1,4-di-N-oxide derivatives as potential anti-tubercular agents. Bioorg. Chem., 2020, 100, 103955.
[http://dx.doi.org/10.1016/j.bioorg.2020.103955]
[17]
Fabian, L.; Taverna Porro, M.; Gómez, N.; Salvatori, M.; Turk, G.; Estrin, D.; Moglioni, A. Design, synthesis and biological evaluation of quinoxaline compounds as anti-HIV agents targeting reverse transcriptase enzyme. Eur. J. Med. Chem., 2020, 188, 111987.
[http://dx.doi.org/10.1016/j.ejmech.2019.111987] [PMID: 31893549]
[18]
Meka, G.; Chintakunta, R. Analgesic and anti-inflammatory activity of quinoxaline derivatives: Design synthesis and characterization. Resul. Chem., 2023, 5, 100783.
[http://dx.doi.org/10.1016/j.rechem.2023.100783]
[19]
Fayed, E.A.; Ebrahim, M.A.; Fathy, U.; Saeed, H.S.E.; Khalaf, W.S. Evaluation of quinoxaline derivatives as potential ergosterol biosynthesis inhibitors: Design, synthesis, ADMET, molecular docking studies, and antifungal activities. J. Mol. Struct., 2022, 1267, 133578.
[http://dx.doi.org/10.1016/j.molstruc.2022.133578]
[20]
Alyaninezhad, Z.; Bekhradnia, A.; Gorji, R.Z.; Arshadi, S. Mercury (II) complex based on quinoxaline–aminoantipyrine: Synthesis, crystal structure, computational studies and anticancer activities evaluation. J. Mol. Struct., 2023, 1275, 134607.
[http://dx.doi.org/10.1016/j.molstruc.2022.134607]
[21]
Dhaduk, M.P.; Dabhi, R.A.; Bhatt, B.S.; Bhatt, V.D.; Patel, M.N. Palladium (II)-quinoxaline based complexes: DNA/BSA binding, DFT, docking and anticancer activity. Mater. Today Proc., 2022, 65, 221-228.
[http://dx.doi.org/10.1016/j.matpr.2022.06.119]
[22]
Lin, J.; Wang, P.; Zhang, Z.; Xue, G.; Zha, D.; Wang, J.; Xu, X.; Li, Z. Facile synthesis and anti-proliferative activity evaluation of quinoxaline derivatives. Synth. Commun., 2020, 50(6), 823-830.
[http://dx.doi.org/10.1080/00397911.2020.1714054]
[23]
Chowdhary, S.; Raza, A.; Seboletswe, P.; Cele, N.; Sharma, A.K.; Singh, P.; Kumar, V. Cu-promoted synthesis of Indolo [2, 3-b] quinoxaline-Mannich adducts via three-component reaction and their anti-proliferative evaluation on colorectal and ovarian cancer cells. J. Mol. Struct., 2023, 1275, 134627.
[http://dx.doi.org/10.1016/j.molstruc.2022.134627]
[24]
Buravchenko, G.; Treshchalin, I.; Alexander, S.; Shchekotikhin, A. PO-413 Estimation of antitumor activity of amino derivatives of quinoxaline-2-carbonitrile 1, 4-dioxide. ESMO Open, 2018, 3, A184-A185.
[http://dx.doi.org/10.1136/esmoopen-2018-EACR25.439]
[25]
Hasyeoui, M.; Lassagne, F.; Erb, W.; Nael, M.; Elokely, K.M.; Chaikuad, A.; Knapp, S.; Jorda, A.; Vallés, S.L.; Quissac, E.; Verreault, M.; Robert, Th.; Bach, S.; Samarat, A.; Mongin, F. Oxazolo [5, 4-f] quinoxaline-type selective inhibitors of glycogen synthase kinase-3α (GSK-3α): Development and impact on temozolomide treatment of glioblastoma cells. Bioorg. Chem., 2023, 134, 106456.
[http://dx.doi.org/10.1016/j.bioorg.2023.106456]
[26]
Abdelgalil, M.M.; Ammar, Y.A.; Ali, G.A.M.E.; Ali, A.Kh.; Ragab, A. A novel of quinoxaline derivatives tagged with pyrrolidinyl scaffold as a new class of antimicrobial agents: Design, synthesis, antimicrobial activity, and molecular docking simulation. J. Mol. Struct., 2023, 1274, 134443.
[http://dx.doi.org/10.1016/j.molstruc.2022.134443]
[27]
Kirubavathy, S.J.; Chitra, S. Synthesis, characterization, DFT, In-vitro anti-microbial, cytotoxicity evaluation, and DNA binding interactions of transition metal complexes of quinoxaline Schiff base ligand. Mater. Today Proc., 2020, 33, 2331-2350.
[28]
Li, Y.; Li, Y.; Liu, Q.; Wang, A. Tyrphostin AG1296, a platelet-derived growth factor receptor inhibitor, induces apoptosis, and reduces viability and migration of PLX4032-resistant melanoma cells. OncoTargets Ther., 2015, 8, 1043-1051.
[http://dx.doi.org/10.2147/OTT.S70691] [PMID: 25999739]
[29]
Heo, Y.A.; Deeks, E.D. Sofosbuvir/Velpatasvir/Voxilaprevir: A review in chronic hepatitis C. Drugs, 2018, 78(5), 577-587.
[http://dx.doi.org/10.1007/s40265-018-0895-5] [PMID: 29546556]
[30]
Zhang, D.; Liu, H.; Wei, Q.; Zhou, Q. Structure–activity relationship study of anticancer thymidine–quinoxaline conjugates under the low radiance of long wavelength ultraviolet light for photodynamic therapy. Eur. J. Med. Chem., 2016, 107, 180-191.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.006] [PMID: 26584085]
[31]
Bahleda, R.; Italiano, A.; Hierro, C.; Mita, A.; Cervantes, A.; Chan, N.; Awad, M.; Calvo, E.; Moreno, V.; Govindan, R.; Spira, A.; Gonzalez, M.; Zhong, B.; Santiago-Walker, A.; Poggesi, I.; Parekh, T.; Xie, H.; Infante, J.; Tabernero, J. Multicenter phase I study of erdafitinib (JNJ-42756493), oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced or refractory solid tumors. Clin. Cancer Res., 2019, 25(16), 4888-4897.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3334] [PMID: 31088831]
[32]
Janssen Announces, U.S. FDA breakthrough therapy designation for erdafitinib in the treatment of metastatic urothelial cancer. 2018. Available from: https://www.jnj.com/media-center/pressreleases/janssen-announces-us-fda-breakthrough-therapydesignation-for-erdafitinib-in-the-treatment-of-metastaticurothelial-cancer
[33]
Bourlière, M.; Gordon, S.C.; Flamm, S.L.; Cooper, C.L.; Ramji, A.; Tong, M.; Ravendhran, N.; Vierling, J.M.; Tran, T.T.; Pianko, S.; Bansal, M.B.; de Lédinghen, V.; Hyland, R.H.; Stamm, L.M.; Dvory-Sobol, H.; Svarovskaia, E.; Zhang, J.; Huang, K.C.; Subramanian, G.M.; Brainard, D.M.; McHutchison, J.G.; Verna, E.C.; Buggisch, P.; Landis, C.S.; Younes, Z.H.; Curry, M.P.; Strasser, S.I.; Schiff, E.R.; Reddy, K.R.; Manns, M.P.; Kowdley, K.V.; Zeuzem, S. Sofosbuvir, Velpatasvir, and voxilaprevir for previously treated HCV infection. N. Engl. J. Med., 2017, 376(22), 2134-2146.
[http://dx.doi.org/10.1056/NEJMoa1613512] [PMID: 28564569]
[34]
Xia, Q.H.; Hu, W.; Li, C.; Wu, J.F.; Yang, L.; Han, X.M.; Shen, Y.M.; Li, Z.Y.; Li, X. Design, synthesis, biological evaluation and molecular docking study on peptidomimetic analogues of XK469. Eur. J. Med. Chem., 2016, 124, 311-325.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.010] [PMID: 27597408]
[35]
Matulonis, U.; Vergote, I.; Backes, F.; Martin, L.P.; McMeekin, S.; Birrer, M.; Campana, F.; Xu, Y.; Egile, C.; Ghamande, S. Phase II study of the PI3K inhibitor pilaralisib (SAR245408; XL147) in patients with advanced or recurrent endometrial Carcinoma. Gynecol. Oncol., 2015, 136(2), 246-253.
[http://dx.doi.org/10.1016/j.ygyno.2014.12.019] [PMID: 25528496]
[36]
Kwan, P.; Brodie, M.J. Emerging drugs for Epilepsy. Expert Opin. Emerg. Drugs, 2007, 12(3), 407-422.
[http://dx.doi.org/10.1517/14728214.12.3.407] [PMID: 17874969]
[37]
Shannon, N.; Westin, M.D. MPH, K.; Ani, M. D.; Sood, L.; Robert, M. D. Targeted therapy and molecular genetics.Clinical Gynecologic Oncology, 9th; Elsevier, 2018, pp. 470-492.e10.
[38]
El Adnani, Z.; Mcharfi, M.; Sfaira, M.; Benzakour, M.; Benjelloun, A.T.; Touhami, M.E.; Hammouti, B.; Taleb, M. DFT study of 7-R-3methylquinoxalin-2 (1H)-ones (R= H; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Int. J. Electrochem. Sci., 2012, 7, 6738-6751.
[39]
Obot, I.B.; Obi-Egbedi, N.O. Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors. Corros. Sci., 2010, 52(2), 657-660.
[http://dx.doi.org/10.1016/j.corsci.2009.10.017]
[40]
Kabanda, M.M.; Murulana, L.C.; Ozcan, M.; Karadag, F.; Dehri, I.; Obot, I.B.; Ebenso, E.E. Quantum chemical studies on the corrosion inhibition of mild steel by some triazoles and benzimidazole derivatives in acidic medium. Int. J. Electrochem. Sci., 2012, 7, 5035-5056.
[41]
Sharma, G.; Raisinghani, P.; Abraham, I.; Pardasani, R.T.; Mukherjee, T. Synthesis of quinoxaline quinones and regioselectivity in their Diels-Alder cycloadditions. Indian J. Chem., 2009, 48, 1590-1596.
[42]
Justin Thomas, K.R.; Velusamy, M.; Lin, J.T.; Chuen, C.H.; Tao, Y.T. Chromophore-labeled quinoxaline derivatives as efficient electroluminescent materials. Chem. Mater., 2005, 17(7), 1860-1866.
[http://dx.doi.org/10.1021/cm047705a]
[43]
Chang, D.W.; Ko, S.J.; Kim, J.Y.; Dai, L.; Baek, J.B. Multifunctional quinoxaline containing small molecules with multiple electron-donating moieties: Solvatochromic and optoelectronic properties. Synth. Met., 2012, 162(13-14), 1169-1176.
[http://dx.doi.org/10.1016/j.synthmet.2012.04.016]
[44]
Bhutia, Z.T.; Prasannakumar, G.; Das, A.; Biswas, M.; Chatterjee, A.; Banerjee, M. A facile, catalyst-free mechano-synthesis of quinoxalines and their in-vitro antibacterial activity study. ChemistrySelect, 2017, 2(3), 1183-1187.
[http://dx.doi.org/10.1002/slct.201601672]
[45]
Sajjadifar, S.; Mansouri, G.; Amini, I.; Yari, M. Silica supported 1-(2-(sulfooxy)ethyl)pyridin-1-ium chloride (sio2/[sep](cl) as an efficient and solid acid catalyst for the synthesis of quinoxaline derivatives. J. Med. Chem. Sci., 2020, 4(1), 8-16.
[http://dx.doi.org/10.26655/JMCHEMSCI.2021.1.2]
[46]
Harsha, K.B.; Rangappa, S.; Preetham, H.D.; Swaroop, T.R.; Gilandoust, M.; Rakesh, K.S.; Rangappa, K.S. An easy and efficient method for the synthesis of quinoxalines using recyclable and heterogeneous nanomagnetic‐supported acid catalyst under solvent‐free condition. ChemistrySelect, 2018, 3(18), 5228-5232.
[http://dx.doi.org/10.1002/slct.201800053]
[47]
Rashidizadeh, A.; Ghafuri, H.; Esmaili Zand, H.R.; Goodarzi, N. Graphitic carbon nitride nano sheets covalently functionalized with biocompatible vitamin B1: Synthesis, characterization, and its superior performance for synthesis of quinoxalines. ACS Omega, 2019, 4(7), 12544-12554.
[http://dx.doi.org/10.1021/acsomega.9b01635] [PMID: 31460374]
[48]
Indalkar, K.S.; Khatri, C.K.; Chaturbhuj, G.U. Rapid, efficient and eco-friendly procedure for the synthesis of quinoxalines under solvent-free conditions using sulfated polyborate as a recyclable catalyst. J. Chem. Sci., 2017, 129(2), 141-148.
[http://dx.doi.org/10.1007/s12039-017-1235-0]
[49]
Tamami, B.; Sardarian, A.; Ataollahi, E. Synthesis and application of polyvinylimidazole-based Brnsted acidic ionic liquid grafted silica as an efficient heterogeneous catalyst in the preparation of quinoxaline derivatives. Turk. J. Chem., 2016, 40, 422-433.
[http://dx.doi.org/10.3906/kim-1504-40]
[50]
Tarpada, U.P.; Thummar, B.B.; Raval, D.K. A green protocol for the synthesis of quinoxaline derivatives catalyzed by polymer supported sulphanilic acid. Arab. J. Chem., 2017, 102, S2902-S2907.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.021]
[51]
Bandyopadhyay, D.; Mukherjee, S.; Banik, B. A selective, expeditious and sustainable entry en route to benzopyrazines and bis-benzopyrazines. Comb. Chem. High Throughput Screen., 2015, 18(1), 53-62.
[http://dx.doi.org/10.2174/1386207318666150131125053] [PMID: 25643327]
[52]
Tamuli, K.J.; Nath, S.; Bordoloi, M. In water organic synthesis: Introducing itaconic acid as a recyclable acidic promoter for efficient and scalable synthesis of quinoxaline derivatives at room temperature. J. Heterocycl. Chem., 2021, 58(4), 983-1002.
[http://dx.doi.org/10.1002/jhet.4231]
[53]
Hojati, S.F.; Nematdoust, Z.; Zeinali, T. The preparation of quinoxaline and 2,3-dihydropyrazine derivatives using selectfluor as an efficient and reusable catalyst. Iran. Chem. Commun., 2015, 3, 6-15.
[54]
Harsha, K.B.; Rangappa, K.S. One-step approach for the synthesis of functionalized quinoxalines mediated by T3P®–DMSO or T3P® via a tandem oxidation–condensation or condensation reaction. RSC Adv., 2016, 6(62), 57154-57162.
[http://dx.doi.org/10.1039/C6RA03078E]
[55]
Sosa, A.A.; Palermo, V.; Langer, P.; Luque, R.; Romanelli, G.P.; Pizzio, L.R. Tungstophosphoric acid/mesoporous silicas as suitable catalysts in quinoxaline synthesis. Molec. Cataly., 2022, 517, 112046.
[http://dx.doi.org/10.1016/j.mcat.2021.112046]
[56]
Ahamed, J.I.; Ramkumaar, G.R.; Kamalarajan, P.; Narendran, K.; Valan, M.F.; Sundareswaran, T.; Sundaravadivel, T.A.; Venkatadri, B.; Bharathi, S. Novel quinoxaline derivatives of 2, 3-diphenylquinoxaline-6-carbaldehyde and 4, 4′-(6-methylquinoxaline-2, 3-diyl) bis (N, N-diphenylaniline): Synthesis, structural, DFT-computational, molecular docking, antibacterial, antioxidant, and anticancer studies. J. Mol. Struct., 2022, 1248, 131418.
[http://dx.doi.org/10.1016/j.molstruc.2021.131418]
[57]
Shelke, S.V.; Dhumal, S.T.; Karale, A.Y.; Deshmukh, T.R.; Patil, M.K. facile synthesis of quinoxalines by using SO42−/ZrO2-TiO2 as an efficient and recyclable heterogeneous catalyst. Synth. Commun., 2022, 52, 597-607.
[http://dx.doi.org/10.1080/00397911.2022.2039711]
[58]
Wang, R.Y.; Li, C.W.; Cho, S.T.; Chang, C.H.; Chen, J.J.; Shih, T.L. Synthesis of cinnamils and quinoxalines and their biological evaluation as anticancer agents. Archiv der Pharmazie., 2022, 355, 2100448.
[http://dx.doi.org/10.1002/ardp.202100448]
[59]
Kaur, G.; Singh, A.; Kaur, N.; Banerjee, B. A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature. Synth. Commun., 2021, 51, 1121-1131.
[http://dx.doi.org/10.1080/00397911.2021.1873383]
[60]
Sagar, S.; Singh, S.; Mallareddy, J.R.; Sonawane, Y.A.; Napoleon, J.V.; Rana, S.; Contreras, J.I.; Rajesh, C.; Ezell, E.L.; Kizhake, S.; Garrison, J.C.; Radhakrishnan, P.; Natarajan, A. Structure activity relationship (SAR) study identifies a quinoxaline urea analog that modulates IKKβ phosphorylation for pancreatic cancer therapy. Eur. J. Med. Chem., 2021, 222, 113579.
[http://dx.doi.org/10.1016/j.ejmech.2021.113579]
[61]
Wu, J.; Zhang, L.; Long, J.; Zeng, Q.; Yin, B.; Li, X. Synthesis and fluorescent properties of quinoxaline derived ionic liquids. Green. Ener. Environ., 2020, 7, 996-1005.
[http://dx.doi.org/10.1016/j.gee.2020.12.018]
[62]
Wang, R.; Zhang, M.; Wang, W.; Wang, X.; Yuan, Y.; Li, J. Synthesis, crystal structure and calculation of oxides of 2-methylamino-3-methyl quinoxaline. J. Mol. Struct., 2020, 1222, 12886.
[http://dx.doi.org/10.1016/j.molstruc.2020.128826]
[63]
Bhargava, S.; Soni, P.; Rathore, D. An environmentally benign attribute for the expeditious synthesis of quinoxaline and its derivatives. J. Mol. Struct., 2019, 1198, 12678.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.005]
[64]
Daragahi, S.A.H.; Mohebat, R.; Mosslemin, M.H. Green and eco-friendly synthesis of quinoxalines by brönsted acidic ionic liquid supported on Nano-SiO2 under solvent-free conditions. Org. Prep. Proced. Int., 2018, 50(3), 301-313.
[http://dx.doi.org/10.1080/00304948.2018.1462056]
[65]
Han, X.; Lei, T.; Yang, X.L.; Zhao, L.M.; Chen, B.; Tung, C.H.; Wu, L.Z. Aerobic oxidation of β-dicarbonyls into vicinal tricarbonyls by Cu (II) salts for one-pot synthesis of quinoxalines. Tetrah. Let., 2017, 58, 1770-1774.
[http://dx.doi.org/10.1016/j.tetlet.2017.03.071]
[66]
Digwal, C.S.; Yadav, U.; Sakla, A.P.; Ramya, P.V.S.; Aaghaz, S.; Kamal, A. VOSO4 catalyzed highly efficient synthesis of benzimidazoles, benzothiazoles, and quinoxalines. Tetrah. Let., 2016, 57, 4012-4016.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.074]
[67]
Fathi, S.; Sardarian, A.R. Nitrilotris(methylenephosphonic acid) as a new highly efficient and recyclable brønested acid catalyst for the synthesis of quinoxaline derivatives under mild and green conditions. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190(9), 1471-1478.
[http://dx.doi.org/10.1080/10426507.2014.990017]
[68]
Gers-Panther, C.F.; Fischer, H.; Nordmann, J.; Seiler, T.; Behnke, T.; Würth, C.; Frank, W.; Resch-Genger, U.; Müller, T.J.J. Four-and five-component syntheses and photophysical properties of emission solvatochromic 3-aminovinylquinoxalines. J. Org. Chem., 2017, 82(1), 567-578.
[http://dx.doi.org/10.1021/acs.joc.6b02581] [PMID: 27976907]
[69]
Bajpai, S.; Singh, S.; Srivastava, V. Rutile phase nanoTiO2 as an effective heterogeneous catalyst for condensation reaction of isatin derivatives with 1, 2-diaminobenzene under solvent free conditions: A greener “NOSE” approach. Arab. J. Chem., 2019, 12, 1168-117.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.037]
[70]
Jadhav, S.A.; Sarkate, A.P.; Shioorkar, M.G.; Shinde, D.B. Expeditious one-pot multicomponent microwave-assisted green synthesis of substituted 2-phenyl Quinoxaline and 7-bromo-3-(4-ethylphenyl) pyrido[2,3-b]pyrazine in water–PEG and water–ethanol. Synth. Commun., 2017, 47(18), 1661-1667.
[http://dx.doi.org/10.1080/00397911.2017.1337153]
[71]
Mohammadi, M.; Bardajee, G.R.; Pesyan, N.N. Efficient solvent-free synthesis of pyridopyrazine and quinoxaline derivatives using copper-DiAmSar complex anchored on SBA-15 as a reusable catalyst. Chin. J. Catal., 2015, 36(8), 1379-1386.
[http://dx.doi.org/10.1016/S1872-2067(15)60845-2]
[72]
Kalhor, M.; Shayestefar, M.; Khalaj, M.; Janghorban, F. Ca(IO3)2 nanoparticles: Fabrication and application as an eco-friendly and recyclable catalyst for the green synthesis of quinoxalines, pyridopyrazines, and 2,3-dicyano pyrazines. Res. Chem. Intermed., 2023, 49(3), 885-900.
[http://dx.doi.org/10.1007/s11164-022-04914-3]
[73]
Bharathi, M.; Mathivathani, S.; Indira, S.; Vinoth, G.; Christopher Leslee, D.B.; Shanmuga Bharathi, K. Anchoring of a nickel Schiff base complex with mixed ligands on MCM-41 as a heterogeneous catalyst for the synthesis of quinoxaline derivatives by various energies. Polyhedron, 2023, 229, 116188.
[http://dx.doi.org/10.1016/j.poly.2022.116188]
[74]
Naidu, B.R.; Venkateswarlu, K. Dried water extract of pomegranate peel ash (DWEPA) as novel and biorenewable heterogeneous catalyst for biodiesel production and biopotent quinoxalines synthesis. Bioresour. Technol. Rep., 2022, 18, 101107.
[http://dx.doi.org/10.1016/j.biteb.2022.101107]
[75]
Hashemi, Z.; Ebrahimzadeh, M.A.; Biparva, P.; Abedirad, S.M. Pyridine-2-yl quinoxaline (2-CPQ) derivative as a novel pink fluorophore: Synthesis, and chemiluminescence characteristics. J. Fluoresc., 2022, 32, 723-736.
[http://dx.doi.org/10.1007/s10895-022-02890-w]
[76]
Xie, C.; Zhang, Z.; Yang, B.; Song, G.; Gao, H.; Wen, L.; Ma, C. An efficient iodine–DMSO catalyzed synthesis of quinoxaline derivatives. Tetrahedron, 2015, 71(12), 1831-1837.
[http://dx.doi.org/10.1016/j.tet.2015.02.003]
[77]
Daw, P.; Kumar, A.; Espinosa-Jalapa, N.A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Synthesis of pyrazines and quinoxalines via acceptorless dehydrogenative coupling routes catalyzed by manganese pincer complexes. ACS Catal., 2018, 8(9), 7734-7741.
[http://dx.doi.org/10.1021/acscatal.8b02208] [PMID: 31080687]
[78]
Zi, J.; Gu, D.W.; Zhang, Y.; Hu, Z.Y.; Zhang, X.Q.; Guo, X.X. Synthesis of quinoxalines through iodine-catalyzed one-pot annulation of alkynes with o -phenylenediamines. Synth. Commun., 2018, 48(8), 915-920.
[http://dx.doi.org/10.1080/00397911.2018.1428752]
[79]
Hazarika, D.; Phukan, P. Metal free synthesis of quinoxalines from alkynes via a cascade process using TsNBr2. Tetrah., 2017, 73(10), 1374-1379.
[http://dx.doi.org/10.1016/j.tet.2017.01.056]
[80]
Shen, J.; Wang, X.; Lin, X.; Yang, Z.; Cheng, G.; Cui, X. One-pot regiospecific synthesis of quinoxalines via a CH2-extrusion reaction. Org. let., 2016, 18, 1378-1381.
[http://dx.doi.org/10.1021/acs.orglett.6b00309]
[81]
Gao, J.; Ren, Z.G.; Lang, J.P. One-pot aqueous-phase synthesis of quinoxalines through oxidative cyclization of deoxybenzoins with 1, 2-phenylenediamines catalyzed by a zwtterionic Cu (II)/calix [4] arene complex. Chin. Chem. Lett., 2017, 28, 1087-1092.
[http://dx.doi.org/10.1016/j.cclet.2016.12.035]
[82]
Reddy, M.V.K.; Rao, K.Y.; Anusha, G.; Kumar, G.M.; Damu, A.G.; Reddy, K.R.; Shetti, N.P.; Aminabhavi, T.M.; Reddy, P.V.G. In-vitro evaluation of antioxidant and anticholinesterase activities of novel pyridine, quinoxaline and s-triazine derivatives. Environ. Res., 2021, 199, 111320.
[http://dx.doi.org/10.1016/j.envres.2021.111320]
[83]
Panja, D.; Paul, B.; Balasubramaniam, B.; Gupta, R.K.; Kundu, S. Application of a reusable Co-based nanocatalyst in alcohol dehydrogenative coupling strategy: Synthesis of quinoxaline and imine scaffolds. Catal. Commun., 2020, 137, 105927.
[http://dx.doi.org/10.1016/j.catcom.2020.105927]
[84]
Li, J.; Yu, M.; Duan, Z.C.; Zhu, H.; Yao, W.; Wang, D. Porous cross-linked polymer copper and iridium catalyzed the synthesis of quinoxalines and functionalized ketones under solvent-free conditions. Mater. Chem. Front., 2021, 5, 7861-7872.
[http://dx.doi.org/10.1039/D1QM00792K]
[85]
Bera, A.; Sk, M.; Singh, K.; Banerjee, D. Nickel-catalysed dehydrogenative coupling of aromatic diamines with alcohols: Selective synthesis of substituted benzimidazoles and quinoxalines. Chem. Commun., 2019, 55(42), 5958-5961.
[http://dx.doi.org/10.1039/C9CC02319D] [PMID: 31050346]
[86]
Tang, W.H.; Liu, Y.H.; Peng, S.M.; Liu, S.T. Ruthenium(II) η6-arene complexes containing a dinucleating ligand based on 1,8-naphthyridine. J. Organomet. Chem., 2015, 775, 94-100.
[http://dx.doi.org/10.1016/j.jorganchem.2014.10.028]
[87]
Jin, M.; Sadeghzadeh, S.M.; Chen, J. Visible light-induced synthesis of biomass-derived quinoxaline by using Co phthalocyanine immobilized on pyridine-doped g-C3N4. J. Ener. Chem., 2023, 82, 638-652.
[88]
Ramesh Naidu, B.; Venkateswarlu, K. WEPA: A reusable waste biomass-derived catalyst for external oxidant/metal-free quinoxaline synthesis via tandem condensation–cyclization–oxidation of α-hydroxy ketones. Green Chem., 2022, 24(16), 6215-6223.
[http://dx.doi.org/10.1039/D2GC02386E]
[89]
Zeng, P.; Li, X.; Li, L.; Liang, C.; Zhang, J.; Peng, T. An efficient synthetic route of quinoxalines from diols catalyzed by [RuCl2(p-cymene)]2/1,4-bis(diphenylphosphino)butane. J. Organomet. Chem., 2023, 993, 122713.
[http://dx.doi.org/10.1016/j.jorganchem.2023.122713]
[90]
Alsaif, N.A.; Dahab, M.A.; Alanazi, M.M.; Obaidullah, A.J.; Al-Mehizia, A.A.; Alanazi, M.M.; Aldawas, S.; Mahdy, H.A.; Elkady, H. New quinoxaline derivatives as VEGFR-2 inhibitors with anticancer and apoptotic activity: Design, molecular modeling, and synthesis. Bioorg. Chem., 2021, 110, 104807.
[http://dx.doi.org/10.1016/j.bioorg.2021.104807]
[91]
Ibrahim, M.K.; Taghour, M.S.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; Elhendawy, M.A.; Radwan, M.M.; Yassin, A.M.; El-Deeb, N.M.; Hafez, E.E.; ElSohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur. J. Med. Chem., 2018, 155, 117-134.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.004]
[92]
Alswah, M.; Bayoumi, A.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo[4,3-a]-quinoxaline Moieties as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects. Molecules, 2017, 23(1), 48-63.
[http://dx.doi.org/10.3390/molecules23010048] [PMID: 29280968]
[93]
Alanazi, M.M.; Mahdy, H.A.; Alsaif, N.A.; Obaidullah, A.J.; Alkahtani, H.M.; Al-Mehizia, A.A.; Alsubaie, S.M.; Dahab, M.A.; Eissa, I.H. New bis ([1, 2, 4] triazolo)[4, 3-a: 3′ 4′-c] quinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and anticancer evaluation. Bioorg. Chem., 2021, 112, 104949.
[http://dx.doi.org/10.1016/j.bioorg.2021.104949]
[94]
Paliwal, S.; Sharma, S.; Dwivedi, J.; Mishra, A. Synthesis of novel substituted phenyl‐3‐hydrazinyl‐quinoxaline‐2‐amine derivatives: Evaluation of antimicrobial activity and its molecular docking studies. J. Heterocycl. Chem., 2017, 54, 3689-3695.
[http://dx.doi.org/10.1002/jhet.3003]
[95]
Gopi, C.; Sastry, V.G.; Dhanaraju, M.D. Microwave-assisted synthesis, structural activity relationship and biological activity of some new quinoxaline Schiff base derivatives as highly potent spirochete bactericidal agents. J. Basic Appl. Sci., 2017, 6, 39-47.
[http://dx.doi.org/10.1016/j.bjbas.2016.12.007]
[96]
Hebade, M.J.; Deshmukh, T.R.; Dhumal, S.T. Silica supported dodecatungstophosphoric acid (DTP/SiO2): An efficient and recyclable heterogeneous catalyst for rapid synthesis of quinoxalines. Synth. Commun., 2021, 51, 2510-2520.
[http://dx.doi.org/10.1080/00397911.2021.1939060]
[97]
Sun, X.; Feng, L.; Sun, C.; Kang, C. Synthesis of quinoxaline derivatives as intermediates to obtain erdafitinib. Pharm. Chem. J., 2021, 55, 951-953.
[http://dx.doi.org/10.1007/s11094-021-02521-x]
[98]
Kumar, K.; Mudshinge, S.R.; Goyal, S.; Gangar, M.; Nair, V.A. A catalyst free, one pot approach for the synthesis of quinoxaline derivatives via oxidative cyclisation of 1, 2-diamines and phenacyl bromides. Tetrahed. let., 2015, 56, 1266-1271.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.138]
[99]
Das, A.; Dey, S.; Naresh Yadav, R.; Jyoti Boruah, P.; Bakli, P.; Sarkar, S.; Mahata, P.; Kumar Paul, A.; Hossain, M.F. An expeditious one‐pot two‐component synthesis of quinoxaline derivatives in natural deep eutectic solvents (NADESs). ChemistrySelect, 2023, 8(11), e202204651.
[http://dx.doi.org/10.1002/slct.202204651]
[100]
Pund, G.B.; Dhumal, S.T.; Hebade, M.J.; Farooqui, M.; Dobhal, B.S. Zinc ferrite as reusable and green catalyst for synthesis of quinoxaline derivatives. J. Chem. Sci., 2022, 134(3), 81.
[http://dx.doi.org/10.1007/s12039-022-02074-w]
[101]
Zhou, C.; Diao, P.; Li, X.; Ge, Y.; Guo, C. Facile photochemical synthesis of α-ketoamides and quinoxalines from amines and benzoylacetonitrile under mild conditions. Chin. Chem. Lett., 2019, 30, 371-374.
[http://dx.doi.org/10.1016/j.cclet.2018.06.019]
[102]
Missioui, M.; Mortada, S.; Guerrab, W. Demirtaş G.; Mague, J.T.; Ansar, M.; El Abbes Faouzi, M.; Essassi, E.M.; Mehdar, Y.T.H.; Aljohani, F.S.; Said, M.A.; Ramli, Y. Greener pastures in evaluating antidiabetic drug for a quinoxaline Derivative: Synthesis, characterization, molecular docking, in vitro and HSA/DFT/XRD studies. Arab. J. Chem., 2022, 15(6), 103851.
[http://dx.doi.org/10.1016/j.arabjc.2022.103851]
[103]
Missioui, M.; Said, M.A.; Demirtas, G.; Mague, J.T.; Al-Sulami, A.; Al-Kaff, N.S.; Ramli, Y. A possible potential COVID-19 drug candidate: Diethyl 2-(2-(2-(3-methyl-2-oxoquinoxalin-1 (2H)-yl) acetyl) hydrazono) malonate: Docking of disordered independent molecules of a novel crystal structure, HSA/DFT/XRD and cytotoxicity. Arab. J. Chem., 2022, 15, 103595.
[http://dx.doi.org/10.1016/j.arabjc.2021.103595]
[104]
El-Adl, K.; Sakr, H.M.; Yousef, R.G.; Mehany, A.B.M.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Abulkhairi, H.S.; Eissa, I.H. Discovery of new quinoxaline-2 (1H)-one-based anticancer agents targeting VEGFR-2 as inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg. Chem., 2021, 114, 105105.
[http://dx.doi.org/10.1016/j.bioorg.2021.105105]
[105]
Alanazi, M.M.; Elkady, H.; Alsaif, N.A.; Obaidullaha, A.J.; Alanazi, W.A.; Al-Hossaini, A.M.; Alharb, M.A.; Eissa, I.H.; Dahabb, M.A. Discovery of new quinoxaline-based derivatives as anticancer agents and potent VEGFR-2 inhibitors: Design, synthesis, and in silico study. J. Mol. Struct., 2022, 453, 132220.
[http://dx.doi.org/10.1016/j.molstruc.2021.132220]
[106]
El-Zahabi, M.A.; Sakr, H.; El-Adl, K.; Zayed, M.; Abdelraheem, A.S.; Eissa, S.I.; Elkady, H.; Eissa, I.H. Design, synthesis, and biological evaluation of new challenging thalidomide analogs as potential anticancer immunomodulatory agents. Bioorg. Chem., 2020, 104, 104218.
[http://dx.doi.org/10.1016/j.bioorg.2020.104218] [PMID: 32932121]
[107]
Zhan, Z.; Ma, H.; Cui, X.; Jiang, P.; Pu, J.; Zhang, Y.; Huang, G. Selective synthesis of (1 H-benzo [d] imidazol-2-yl)(phenyl) methanone and quinoxaline from aromatic aldehyde and o-phenylenediamine. Org. Biomol. Chem., 2019, 17, 5148-5152.
[http://dx.doi.org/10.1039/C9OB00531E]
[108]
Chen, T.; Chen, X.; Wei, J.; Lin, D.; Xie, Y.; Zeng, W. Copper-catalyzed cascade cycloamination of α-Csp 3 –H Bond of N-aryl ketimines with azides: Access to quinoxalines. Org. Lett., 2016, 18(9), 2078-2081.
[http://dx.doi.org/10.1021/acs.orglett.6b00709] [PMID: 27109741]
[109]
Ma, H.; Li, D.; Yu, W. Synthesis of quinoxaline derivatives via tandem oxidative azidation/cyclization reaction of N-arylenamines. Org. Lett., 2016, 18(4), 868-871.
[http://dx.doi.org/10.1021/acs.orglett.6b00148] [PMID: 26863185]
[110]
Wu, J.; Zhang, H.; Ding, X.; Tan, X.; Chen, J.; He, W.; Deng, H.; Song, L.; Shen, H.C.; Cao, W. Potassium iodide-promoted one-pot synthesis of fluoroalkylated quinoxalines via a tandem Michael Addition/Azidation/Cycloamination approach. J. Org. Chem., 2018, 83(16), 9422-9429.
[http://dx.doi.org/10.1021/acs.joc.8b01030] [PMID: 30025451]
[111]
Nguyen, T.; Al-Mourabit, A.; Ermolenko, L. Sodium sulfide: A sustainable solution for unbalanced redox condensation reaction between o-nitroanilines and alcohols catalyzed by an iron–sulfur system. Synthesis, 2015, 47(12), 1741-1748.
[http://dx.doi.org/10.1055/s-0034-1380134]
[112]
a) Roy, B.; Ghosh, S.; Ghosh, P.; Basu, B. Graphene oxide (GO) or reduced graphene oxide (rGO): efficient catalysts for one-pot metal-free synthesis of quinoxalines from 2-nitroaniline. Tetrahedron Lett., 2015, 56(48), 6762-6767.
[http://dx.doi.org/10.1016/j.tetlet.2015.10.065];
b) Sindhuja, D.; Gopiraman, M.; Vasanthakumar, P.; Bhuvanesh, N.; Karvembu, R. Ruthenium− p-cymene complexes with acylthiourea, and its heterogenized form on graphene oxide act as catalysts for the synthesis of quinoxaline derivatives. J. Organomet. Chem., 2021, 949, 121933.
[http://dx.doi.org/10.1016/j.jorganchem.2021.121933]
[113]
Kim, S.C.; Boggu, P.R.; Yu, H.N.; Ki, S.Y.; Jung, J.M.; Kim, Y.S.; Park, G.M.; Ma, S.H.; Kim, I.S.; Jung, Y.H. Synthesis and biological evaluation of quinoxaline derivatives as specific c-Met kinase inhibitors. Bioorg. Med. Chem. Lett., 2020, 30, 127189.
[http://dx.doi.org/10.1016/j.bmcl.2020.127189]
[114]
Liang, T.; Zhou, X.; Lu, L.; Dong, H.; Zhang, Y.; Xu, Y.; Qi, J.; Zhang, Y.; Wang, J. Structure-activity relationships and antiproliferative effects of 1, 2, 3, 4-4H-quinoxaline derivatives as tubulin polymerization inhibitors. Bioorg. Chem., 2021, 110, 104793.
[http://dx.doi.org/10.1016/j.bioorg.2021.104793]
[115]
Abulkhair, H.S.; Elmeligie, S.; Ghiaty, A. El‐Morsy, A.; Bayoumi, A. H.; Ahmed, H. E. A.; El‐Adl, K.; Zayed, M. F.; Hassan, M. H.; Akl, E. N.; El‐Zoghbi, M. S. In vivo‐and in silico driven identification of novel synthetic quinoxalines as anticonvulsants and AMPA inhibitors. Archiv der Pharmazie., 2021, 354, 2000449.
[http://dx.doi.org/10.1002/ardp.202000449]
[116]
To, T.A.; Nguyen, C.T.; Tran, M.H.P.; Huynh, T.Q.; Nguyen, T.T.; Le, N.T.H.; Nguyen, A.D.; Tran, P.D.; Phan, N.T.S. A new pathway to pyrrolo[1,2-a]quinoxalines via solvent-free one-pot strategy utilizing FeMoSe nanosheets as efficient recyclable synergistic catalyst. J. Catal., 2019, 377, 163-173.
[http://dx.doi.org/10.1016/j.jcat.2019.07.008]
[117]
Chun, S.; Ahn, J.; Putta, R.R.; Lee, S.B.; Oh, D.C.; Hong, S. Direct synthesis of pyrrolo [1, 2-α] quinoxalines via iron-catalyzed transfer hydrogenation between 1-(2-nitrophenyl) pyrroles and alcohols. J. Org. Chem., 2020, 85, 15314-15324.
[http://dx.doi.org/10.1021/acs.joc.0c02145]
[118]
Pan, Y.; Li, P.; Xie, S.; Tao, Y.; Chen, D.; Dai, M.; Hao, H.; Huang, L.; Wang, Y.; Wang, L.; Liu, Z.; Yuan, Z. 3D-QSAR analysis and biological evaluation of quinoxaline 1, 4-di-N-oxide derivatives as antituberculosis agents. Bioorg. Med. Chem. Lett., 2016, 26, 4146-4153.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.066]
[119]
Hamama, W.S.; Waly, S.M.; Said, S.B.; Zoorob, H.H. Highlights on the chemistry of 2-amino-3-cyano-quinoxaline 1, 4-dioxides and their derivatives. Synth. Commun., 2020, 50, 1737-1757.
[http://dx.doi.org/10.1080/00397911.2017.1342843]
[120]
Chouker, M.A.; Abdallaha, H.; Zeiz, A.; El-Dakdouki, M.H. Host-quest inclusion complex of quinoxaline-1, 4-dioxide derivative with 2-hydroxypropyl-β-cyclodextrin: Preparation, characterization, and antibacterial activity. J. Mol. Struct., 2021, 1235, 130273.
[http://dx.doi.org/10.1016/j.molstruc.2021.130273]
[121]
Divya, K.M.; Savith, D.P.; Krishna, G.A.; Dhanya, T.M.; Mohanan, P.V. Crystal structure, DFT studies, Hirshfeld surface and energy framework analysis of 4-(5-nitro-thiophen-2-yl)-pyrrolo [1, 2-a] quinoxaline: A potential SARS-CoV-2 main protease inhibitor. J. Mol. Struct., 2022, 1251, 131932.
[http://dx.doi.org/10.1016/j.molstruc.2021.131932]
[122]
Li, S. Xie, C.; Chu, X.; Dai, Z.; Feng, L.; Ma, C. KI‐mediated one‐pot transition‐metal‐rree synthesis of 4‐phenylpyrrolo [1, 2‐a] quinoxalines. Eur. J. Org. Chem., 2020, 2020, 4950-4956.
[http://dx.doi.org/10.1002/ejoc.202000791]
[123]
Lade, J.J.; Patil, B.N.; Vhatkar, M.V.; Vadagaonkar, K.S.; Chaskar, A.C. An efficient synthesis of pyrrolo [1, 2‐a] quinoxalines by copper‐catalyzed c− h activation of arylacetic acids. Asian J. Org. Chem., 2017, 6, 1579-1583.
[http://dx.doi.org/10.1002/ajoc.201700239]
[124]
Wang, C.; Li, Y.; Guo, R.; Tian, J.; Tao, C.; Cheng, B.; Wang, H.; Zhang, J.; Zhai, H. Iodine‐catalyzed facile synthesis of pyrrolo‐and indolo [1, 2‐a] quinoxalines. Asian J. Org. Chem., 2015, 4, 866-869.
[http://dx.doi.org/10.1002/ajoc.201500174]
[125]
Zhang, Z.; Xie, C.; Tan, X.; Song, G.; Wen, L.; Gao, H.; Ma, C.I. 2-catalyzed one-pot synthesis of pyrrolo [1, 2-a] quinoxaline and imidazo [1, 5-a] quinoxaline derivatives via sp3 and sp2 C–H cross-dehydrogenative coupling. Org. Chem. Front., 2015, 2, 942-946.
[http://dx.doi.org/10.1039/C5QO00124B]
[126]
Allan, P.N.M.; Ostrowska, M.I.; Patel, B. Acetic acid catalyzed one-pot synthesis of pyrrolo[1, 2-a]quinoxaline derivatives. Synlett, 2019, 30(19), 2148-2152.
[http://dx.doi.org/10.1055/s-0039-1690724]
[127]
Kamal, A.; Babu, K.S.; Hussaini, S.M.A.; Srikanth, P.S.; Balakrishna, M.; Alarifi, A. Sulfamic acid: An efficient and recyclable solid acid catalyst for the synthesis of 4, 5-dihydropyrrolo [1, 2-a] quinoxalines. Tetrahedron Lett., 2015, 56, 4619-4622.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.006]
[128]
Ahn, J.; Lee, S.B.; Song, I.; Chun, S.; Oh, D.C.; Hong, S. Synthesis of 4-aryl pyrrolo [1, 2-α] quinoxalines via iron-catalyzed oxidative coupling from an unactivated methyl arene. J. Org. Chem., 2021, 86, 7390-7402.
[http://dx.doi.org/10.1021/acs.joc.1c00371]
[129]
An, Z.; Zhao, L.; Wu, M.; Ni, J.; Qi, Z.; Yu, G.; Yan, R. FeCl 3 -Catalyzed synthesis of pyrrolo[1,2-a]quinoxaline derivatives from 1-(2-aminophenyl)pyrroles through annulation and cleavage of cyclic ethers. Chem. Commun., 2017, 53(84), 11572-11575.
[http://dx.doi.org/10.1039/C7CC07089F] [PMID: 28990598]
[130]
Kamal, A.; Babu, K. S.; Kovvuri, J.; Manasa, V.; Ravikumar, A.; Alarifi, A. Amberlite IR-120H: An efficient and recyclable heterogeneous catalyst for the synthesis of pyrrolo [1, 2-a] quinoxalines and 5′ H-spiro [indoline-3, 4′-pyrrolo [1, 2-a] quinoxalin]-2-ones. Tetrahed. let., 2015, 56, 7012-7015.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.003]
[131]
Chen, W.; Du, Y.; Wang, M.; Fang, Y.; Yu, W.; Chang, J. Synthesis of benzo [4, 5] imidazo [1, 2-a] quinoxalines by I 2-mediated sp3 C–H amination. Org. Chem. Front., 2020, 7, 3705-3708.
[http://dx.doi.org/10.1039/D0QO01101K]
[132]
Arumugam, N.; Almansour, A.I.; Kumar, R.S.; Kotresha, D.; Saiswaroop, R.; Venketesh, S. Dispiropyrrolidinyl-piperidone embedded indeno [1, 2-b] quinoxaline heterocyclic hybrids: Synthesis, cholinesterase inhibitory activity and their molecular docking simulation. Bioorg. Med. Chem., 2019, 27, 2621-2628.
[http://dx.doi.org/10.1016/j.bmc.2019.03.058]
[133]
Kumar, N.; Inwati, G.K.; Ahmed, E.M.; Lal, C.; Makwana, B.; Yadav, V.K.; Islam, S.; Ahn, H.J.; Yadav, K.K.; Jeon, B.H. Modified. 7-chloro-11 H-indeno [1, 2-b] quinoxaline heterocyclic system for biological activities. Catalysts, 2022, 12, 213.
[http://dx.doi.org/10.3390/catal12020213]
[134]
Mishra, A.; Singh, S. A catalyst-free expeditious green synthesis of quinoxaline, oxazine, thiazine, and dioxin derivatives in water under ultrasound irradiation. Org. Prep. Proced. Int., 2019, 51, 345-356.
[http://dx.doi.org/10.1080/00304948.2019.1596469]
[135]
Jain, A.K.; Gupta, A.; Karthikeyan, C.; Trivedi, P.; Konar, A.D. Unravelling the selectivity of 6, 7‐dimethyl quinoxaline analogs for kinase inhibition: An insight towards the development of Alzheimer’s therapeutics. Chem. Biodivers., 2021, 18, e2100364.
[http://dx.doi.org/10.1002/cbdv.202100364]
[136]
Girdhar, K.; Thakur, S.; Gaur, P.; Choubey, A.; Dogra, S.; Dehury, B.; Kumar, S.; Biswas, B.; Dwivedi, D.K.; Ghosh, S.; Mondal, P. Design, synthesis, and biological evaluation of a small molecule oral agonist of the glucagon-like-peptide-1 receptor. J. Biol. Chem., 2022, 298, 101889.
[http://dx.doi.org/10.1016/j.jbc.2022.101889]
[137]
Ghanbarimasir, Z.; Bekhradnia, A.; Morteza-Semnani, K.; Rafiei, A.; Razzghi-Asl, N.; Kardan, M. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 194, 21-35.
[http://dx.doi.org/10.1016/j.saa.2017.12.063]
[138]
Jiao, Y.X.; Wei, L.S.; Zhao, C.Y.; Wei, K.; Mo, D.L.; Pan, C.X. Isobutyl nitrite‐mediated synthesis of quinoxalines through double C-H bond amination of n‐aryl enamines. Adv. Synth. Catal., 2018, 360, 4446-4451.
[http://dx.doi.org/10.1002/adsc.201800928]
[139]
Oyallon, B.; Bracht-Botineau, M.; Logé, C.; Robert, T.; Bach, S.; Ibrahim, S.; Raoul, W.; Croix, C.; Berthelot, P.; Guillon, J.; Pinaud, N.; Gouilleux, F.; Viaud-Massuard, M.C.; Denevault-Sabourin, C. Denevault-Sabourin. New quinoxaline derivatives as dual Pim-1/2 kinase inhibitors: Design, synthesis and biological evaluation. Molecules, 2021, 26, 867.
[http://dx.doi.org/10.3390/molecules26040867]
[140]
Rouhani, M.; Ramazani, A. Perlite–SO3H nanoparticles: Very efficient and reusable catalyst for three-component synthesis of N-cyclohexyl-3-aryl-quinoxaline-2-amine derivatives under ultrasound irradiation. J. Indian Chem. Soc., 2018, 15(10), 2375-2382.
[http://dx.doi.org/10.1007/s13738-018-1426-8]
[141]
Li, F.; Tang, X.; Xu, Y.; Wang, C.; Wang, Z.; Li, Z.; Wang, L. A dual-protein cascade reaction for the regioselective synthesis of quinoxalines. Org. Lett., 2020, 22, 3900-3904.
[http://dx.doi.org/10.1021/acs.orglett.0c01186]
[142]
El Azab, I.H.; Elkanzi, N.A.A.; Gobouri, A.A. Design and synthesis of some new quinoxaline‐based heterocycles. J. Heterocycl. Chem., 2018, 55, 65-76.
[http://dx.doi.org/10.1002/jhet.2978]
[143]
Kikutake, K.; Furuya, T.; Hasebe, M.; Nagai, H.; Oda, M. Development of a novel fungicide, pyraziflumid. J. Pestic. Sci., 2020, 45(3), 184-190.
[http://dx.doi.org/10.1584/jpestics.J20-02] [PMID: 32913422]
[144]
El Rayes, S.M.; Aboelmagd, A.; Gomaa, M.S.; Ali, I.A.I.; Fathalla, W.; Pottoo, F.H.; Khan, F.A. Convenient synthesis and anticancer activity of methyl 2-[3-(3-phenyl-quinoxalin-2-ylsulfanyl)propanamido]alkanoates and N -Alkyl 3-((3-Phenyl-quinoxalin-2-yl)sulfanyl)propanamides. ACS Omega, 2019, 4(20), 18555-18566.
[http://dx.doi.org/10.1021/acsomega.9b02320] [PMID: 31737814]
[145]
Gobouri, A.A. Synthesis and biological evaluation of some N-substituted quinoxaline derivatives as antitumor agents. Russ. J. Bioorganic Chem., 2020, 46(3), 409-416.
[http://dx.doi.org/10.1134/S1068162020030097]
[146]
Liu, Q.Q.; Lu, K.; Zhu, H.M.; Kong, S.L.; Yuan, J.M.; Zhang, G.H.; Chen, N.Y.; Gu, C.X.; Pan, C.X.; Mo, D.L.; Su, G.F. Identification of 3-(benzazol-2-yl)quinoxaline derivatives as potent anticancer compounds: Privileged structure-based design, synthesis, and bioactive evaluation in vitro and in vivo. Eur. J. Med. Chem., 2019, 165, 293-308.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.004] [PMID: 30685528]
[147]
Ahmed, E.A.; Mohamed, M.F.A.; Omran, A.; Salah, H. Synthesis, EGFR-TK inhibition and anticancer activity of new quinoxaline derivatives. Synth. Commun., 2020, 50(19), 2924-2940.
[http://dx.doi.org/10.1080/00397911.2020.1787448]
[148]
El Newahie, A.M.S.; Nissan, Y.M.; Ismail, N.S.M.; El Ella, D.A.A.; Khojah, S.M.; Abouzid, K.A.M. Design and synthesis of new quinoxaline derivatives as anticancer agents and apoptotic inducers. Molecules, 2019, 24, 1175.
[http://dx.doi.org/10.3390/molecules24061175]
[149]
Bayoumi, A.H.; Ghiaty, A.H.; Abd El-Gilil, S.M.; Husseiny, E.M.; Ebrahim, M.A. Exploration of quinoxaline derivatives as antimicrobial and anticancer agents. J. Heterocycl. Chem., 2019, 56(12), 3215-3235.
[http://dx.doi.org/10.1002/jhet.3716]
[150]
Qi, J.; Dong, H.; Huang, J.; Zhang, S.; Niu, L.; Zhang, Y.; Wang, J. Synthesis and biological evaluation of N-substituted 3-oxo-1,2,3,4-tetrahydro-quinoxaline-6-carboxylic acid derivatives as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2018, 143, 8-20.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.018] [PMID: 29172084]
[151]
Ali, I.; Lee, J.; Go, A.; Choi, G.; Lee, K. Discovery of novel [1,2,4]triazolo[4,3- a]quinoxaline aminophenyl derivatives as BET inhibitors for cancer treatment. Bioorg. Med. Chem. Lett., 2017, 27(20), 4606-4613.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.025] [PMID: 28939121]
[152]
Tseng, C.H.; Chen, Y.R.; Tzeng, C.C.; Liu, W.; Chou, C.K.; Chiu, C.C.; Chen, Y.L. Discovery of indeno[1,2- b]quinoxaline derivatives as potential anticancer agents. Eur. J. Med. Chem., 2016, 108, 258-273.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.031] [PMID: 26686931]
[153]
Abbas, H.A.S.; Al-Marhabi, A.R.; Eissa, S.I.; Ammar, Y.A. Molecular modeling studies and synthesis of novel quinoxaline derivatives with potential anticancer activity as inhibitors of c-Met kinase. Bioorg. Med. Chem., 2015, 23(20), 6560-6572.
[http://dx.doi.org/10.1016/j.bmc.2015.09.023] [PMID: 26420384]
[154]
Patinote, C.; Deleuze-Masquéfa, C.; Kaddour, K.H.; Vincent, L.A.; Larive, R.; Zghaib, Z.; Guichou, J.F.; Assaf, M.D.; Cuq, P.; Bonnet, P.A. Imidazo[1,2-a]quinoxalines for melanoma treatment with original mechanism of action. Eur. J. Med. Chem., 2021, 212, 113031.
[http://dx.doi.org/10.1016/j.ejmech.2020.113031] [PMID: 33309473]
[155]
Yuan, Y.; Wang, Z.; Yang, R.; Qian, T.; Zhou, Q. Naphthyl quinoxaline thymidine conjugate is a potent anticancer agent post UVA activation and elicits marked inhibition of tumor growth through vaccination. Eur. J. Med. Chem., 2019, 171, 255-264.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.051] [PMID: 30925340]
[156]
O Aboelez, M.; Belal, A.; Xiang, G.; Ma, X. Design, synthesis, and molecular docking studies of novel pomalidomide-based PROTACs as potential anti-cancer agents targeting EGFRWT and EGFRT790M. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1196-1211.
[http://dx.doi.org/10.1080/14756366.2022.2062338] [PMID: 35470756]
[157]
Alsaif, N.A.; Elwan, A.; Alanazi, M.M.; Obaidullah, A.J.; Alanazi, W.A.; Alasmari, A.F.; Albassam, H.; Mahdy, H.A.; Taghour, M.S. Design, synthesis and molecular docking of new [1, 2, 4] triazolo [4, 3-a] quinoxaline derivatives as anticancer agents targeting VEGFR-2 kinase. Mol. Divers., 2022, 26, 1915-1932.
[http://dx.doi.org/10.1007/s11030-021-10303-6]
[158]
Alsaif, N.A.; Mahdy, H.A.; Alanazi, M.M.; Obaidullah, A.J.; Alkahtani, H.M. Al‐Hossaini, A. M.; Al‐Mehizi, A. A.; Elwan, A.; Taghour, M. S. Targeting VEGFR‐2 by new quinoxaline derivatives: Design, synthesis, antiproliferative assay, apoptosis induction, and in silico studies. Archiv der Pharmazie., 2022, 355, 2100359.
[http://dx.doi.org/10.1002/ardp.202100359]
[159]
Ibrahim, M.K.; Eissa, I.H.; Abdallah, A.E.; Metwaly, A.M.; Radwan, M.M.; ElSohly, M.A. Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of novel quinoxaline derivatives as potential PPARγ and SUR agonists. Bioorg. Med. Chem., 2017, 25(4), 1496-1513.
[http://dx.doi.org/10.1016/j.bmc.2017.01.015] [PMID: 28117121]
[160]
Dhanaraj, C.J.; Johnson, J. Quinoxaline based bio-active mixed ligand transition metal complexes: Synthesis, characterization, electrochemical, antimicrobial, DNA binding, cleavage, antioxidant and molecular docking studies. J. Photochem. Photobiol. B, 2015, 151, 100-109.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.07.010] [PMID: 26232747]
[161]
Mani, K.S.; Murugesapandian, B.; Kaminsky, W.; Rajendran, S.P. Enantioselective approach towards the synthesis of spiro-indeno [1, 2-b] quinoxaline pyrrolothiazoles as antioxidant and antiproliferative. Tetrahedron Lett., 2018, 59, 2921-2929.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.035]
[162]
Bou Karroum, N.; Moarbess, G.; Guichou, J.F.; Bonnet, P.A.; Patinote, C.; Bouharoun-Tayoun, H.; Chamat, S.; Cuq, P.; Diab-Assaf, M.; Kassab, I.; Deleuze-Masquefa, C. Novel and selective TLR7 antagonists among the imidazo[1,2-a]pyrazines, imidazo[1,5-a] quinoxalines, and pyrazolo[1,5-a] quinoxalines series. J. Med. Chem., 2019, 62(15), 7015-7031.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00411] [PMID: 31283223]
[163]
Ahammed, K.S.; Pal, R.; Chakraborty, J.; Kanungo, A.; Purnima, P.S.; Dutta, S. DNA structural alteration leading to antibacterial properties of 6-nitroquinoxaline derivatives. J. Med. Chem., 2019, 62(17), 7840-7856.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00599] [PMID: 31390524]
[164]
Patel, H.M.; Bhardwaj, V.; Sharma, P.; Noolvi, M.N.; Lohan, S.; Bansal, S.; Sharma, A. Quinoxaline-PABA bipartite hybrid derivatization approach: Design and search for antimicrobial agents. J. Mol. Struct., 2019, 1184, 562-568.
[http://dx.doi.org/10.1016/j.molstruc.2019.02.074]
[165]
Dewangan, D.; Nakhate, K.; Mishra, A.; Thakur, A.S.; Rajak, H.; Dwivedi, J.; Sharma, S.; Paliwal, S. Design, synthesis, and characterization of quinoxaline derivatives as a potent antimicrobial agent. J. Heterocycl. Chem., 2019, 56(2), 566-578.
[http://dx.doi.org/10.1002/jhet.3431]
[166]
Wang, T.; Tang, Y.; Yang, Y.; An, Q.; Sang, Z.; Yang, T.; Liu, P.; Zhang, T.; Deng, Y.; Luo, Y. Discovery of novel anti-tuberculosis agents with pyrrolo[1,2- a]quinoxaline-based scaffold. Bioorg. Med. Chem. Lett., 2018, 28(11), 2084-2090.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.043] [PMID: 29748048]
[167]
dos Santos Fernandes, G.F.; de Souza, P.C.; Moreno-Viguri, E.; Santivañez-Veliz, M.; Paucar, R.; Pérez-Silanes, S.; Chegaev, K.; Guglielmo, S.; Lazzarato, L.; Fruttero, R.; Man Chin, C.; da Silva, P.B.; Chorilli, M.; Solcia, M.C.; Ribeiro, C.M.; Silva, C.S.P.; Marino, L.B.; Bosquesi, P.L.; Hunt, D.M.; de Carvalho, L.P.S.; de Souza Costa, C.A.; Cho, S.H.; Wang, Y.; Franzblau, S.G.; Pavan, F.R.; dos Santos, J.L. Design, synthesis, and characterization of N-Oxide-Containing heterocycles with in vivo sterilizing antitubercular activity. J. Med. Chem., 2017, 60(20), 8647-8660.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01332] [PMID: 28968083]
[168]
Patel, S.B.; Patel, B.D.; Pannecouque, C.; Bhatt, H.G. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives. Eur. J. Med. Chem., 2016, 117, 230-240.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.019] [PMID: 27105027]
[169]
Carta, A.; Sanna, G.; Briguglio, I.; Madeddu, S.; Vitale, G.; Piras, S.; Corona, P.; Peana, A.T.; Laurini, E.; Fermeglia, M.; Pricl, S.; Serra, A.; Carta, E.; Loddo, R.; Giliberti, G. Quinoxaline derivatives as new inhibitors of coxsackie virus B5. Eur. J. Med. Chem., 2018, 145, 559-569.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.083] [PMID: 29339251]
[170]
Yang, L.; Wang, P.; Wu, J.F.; Yang, L.M.; Wang, R.R.; Pang, W.; Li, Y.G.; Shen, Y.M.; Zheng, Y.T.; Li, X. Design, synthesis and anti-HIV-1 evaluation of hydrazide-based peptidomimetics as selective gelatinase inhibitors. Bioorg. Med. Chem., 2016, 24(9), 2125-2136.
[http://dx.doi.org/10.1016/j.bmc.2016.03.043] [PMID: 27039251]
[171]
Cogo, J.; Kaplum, V.; Sangi, D.P.; Ueda-Nakamura, T.; Corrêa, A.G.; Nakamura, C.V. Synthesis and biological evaluation of novel 2,3-disubstituted quinoxaline derivatives as antileishmanial and antitrypanosomal agents. Eur. J. Med. Chem., 2015, 90, 107-123.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.018] [PMID: 25461316]
[172]
Liu, X.H.; Yu, W.; Min, L.J.; Wedge, D.E.; Tan, C.X.; Weng, J.Q.; Wu, H.K.; Cantrell, C.L.; Bajsa-Hirschel, J.; Hua, X.W.; Duke, S.O. Synthesis and pesticidal activities of new quinoxalines. J. Agric. Food Chem., 2020, 68(28), 7324-7332.
[http://dx.doi.org/10.1021/acs.jafc.0c01042] [PMID: 32530612]
[173]
Xia, R.; Guo, T.; Chen, M.; Su, S.; He, J.; Tang, X.; Jiang, S.; Xue, W. Synthesis, antiviral and antibacterial activities and action mechanism of penta-1, 4-dien-3-one oxime ether derivatives containing a quinoxaline moiety. New J. Chem., 2019, 43, 16461-16467.
[http://dx.doi.org/10.1039/C9NJ03019K]
[174]
Moreira, N.J. Quinoxaline derivatives substituted by aminoalcohols with potential anticancer activity and ability to stabilize silver nanoparticles; MS thesis: Brazil, 2017.
[175]
Tariq, S.; Alam, O.; Amir, M. Synthesis, anti-inflammatory, p38α MAP kinase inhibitory activities and molecular docking studies of quinoxaline derivatives containing triazole moiety. Bioorg. Chem., 2018, 76, 343-358.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy