Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Targeting the Main Sources of Reactive Oxygen Species Production: Possible Therapeutic Implications in Chronic Pain

Author(s): Peng-Fei Cheng, Yuan-He, Meng-Meng Ge, Da-Wei Ye*, Jian-Ping Chen* and Jin-Xi Wang*

Volume 22, Issue 12, 2024

Published on: 25 October, 2023

Page: [1960 - 1985] Pages: 26

DOI: 10.2174/1570159X22999231024140544

Price: $65

Abstract

Humans have long been combating chronic pain. In clinical practice, opioids are firstchoice analgesics, but long-term use of these drugs can lead to serious adverse reactions. Finding new, safe and effective pain relievers that are useful treatments for chronic pain is an urgent medical need. Based on accumulating evidence from numerous studies, excess reactive oxygen species (ROS) contribute to the development and maintenance of chronic pain. Some antioxidants are potentially beneficial analgesics in the clinic, but ROS-dependent pathways are completely inhibited only by scavenging ROS directly targeting cellular or subcellular sites. Unfortunately, current antioxidant treatments do not achieve this effect. Furthermore, some antioxidants interfere with physiological redox signaling pathways and fail to reverse oxidative damage. Therefore, the key upstream processes and mechanisms of ROS production that lead to chronic pain in vivo must be identified to discover potential therapeutic targets related to the pathways that control ROS production in vivo. In this review, we summarize the sites and pathways involved in analgesia based on the three main mechanisms by which ROS are generated in vivo, discuss the preclinical evidence for the therapeutic potential of targeting these pathways in chronic pain, note the shortcomings of current research and highlight possible future research directions to provide new targets and evidence for the development of clinical analgesics.

Keywords: Reactive oxygen species, chronic pain, mitochondria, NADPH oxidase, peroxisome, analgesics.

Graphical Abstract
[1]
Mills, S.E.E.; Nicolson, K.P.; Smith, B.H. Chronic pain: A review of its epidemiology and associated factors in population-based studies. Br. J. Anaesth., 2019, 123(2), e273-e283.
[http://dx.doi.org/10.1016/j.bja.2019.03.023] [PMID: 31079836]
[2]
Gaskin, D.J.; Richard, P. The economic costs of pain in the United States. J. Pain, 2012, 13(8), 715-724.
[http://dx.doi.org/10.1016/j.jpain.2012.03.009] [PMID: 22607834]
[3]
Kela, I.; Kakarala, C.L.; Hassan, M.; Belavadi, R.; Gudigopuram, S.V.R.; Raguthu, C.C.; Gajjela, H.; Sange, I. Chronic pain: A complex condition with a multi-tangential approach. Cureus, 2021, 13(11), e19850.
[http://dx.doi.org/10.7759/cureus.19850] [PMID: 34963858]
[4]
Zhou, Y.Q.; Tian, X.B.; Tian, Y.K.; Mei, W.; Liu, D.Q.; Ye, D.W. Wnt signaling: A prospective therapeutic target for chronic pain. Pharmacol. Ther., 2022, 231, 107984.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107984] [PMID: 34480969]
[5]
Chen, S.P.; Zhou, Y.Q.; Liu, D.Q.; Zhang, W.; Manyande, A.; Guan, X.H.; Tian, Y.; Ye, D.W.; Omar, D.M. PI3K/Akt pathway: A potential therapeutic target for chronic pain. Curr. Pharm. Des., 2017, 23(12), 1860-1868.
[http://dx.doi.org/10.2174/1381612823666170210150147] [PMID: 28190392]
[6]
Sørensen, A.T.; Rombach, J.; Gether, U.; Madsen, K.L. The scaffold protein PICK1 as a target in chronic pain. Cells, 2022, 11(8), 1255.
[http://dx.doi.org/10.3390/cells11081255] [PMID: 35455935]
[7]
Vandenberg, R.J.; Ryan, R.M.; Carland, J.E.; Imlach, W.L.; Christie, M.J. Glycine transport inhibitors for the treatment of pain. Trends Pharmacol. Sci., 2014, 35(8), 423-430.
[http://dx.doi.org/10.1016/j.tips.2014.05.006] [PMID: 24962068]
[8]
Tian, Y-K.; Ye, D-W.; Ge, M-M.; Chen, N.; Zhou, Y-Q.; Yang, H. Galectin-3 in microglia-mediated neuroinflammation: Implications for central nervous system diseases. Curr. Neuropharmacol., 2022, 20(11), 2066-2080.
[http://dx.doi.org/10.2174/1570159X20666220201094547] [PMID: 35105290]
[9]
Zhou, Y.Q.; Liu, D.Q.; Chen, S.P.; Sun, J.; Zhou, X.R.; Luo, F.; Tian, Y.K.; Ye, D.W. Cellular and molecular mechanisms of calcium/calmodulin-dependent protein kinase II in chronic pain. J. Pharmacol. Exp. Ther., 2017, 363(2), 176-183.
[http://dx.doi.org/10.1124/jpet.117.243048] [PMID: 28855373]
[10]
Chhatwal, J.; Mueller, P.P.; Chen, Q.; Kulkarni, N.; Adee, M.; Zarkin, G.; LaRochelle, M.R.; Knudsen, A.B.; Barbosa, C. Estimated reductions in opioid overdose deaths with sustainment of public health interventions in 4 US States. JAMA Netw. Open, 2023, 6(6), e2314925.
[http://dx.doi.org/10.1001/jamanetworkopen.2023.14925] [PMID: 37294571]
[11]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[12]
Veal, E.A.; Day, A.M.; Morgan, B.A. Hydrogen peroxide sensing and signaling. Mol. Cell, 2007, 26(1), 1-14.
[http://dx.doi.org/10.1016/j.molcel.2007.03.016] [PMID: 17434122]
[13]
Lancaster, J.R., Jr. Nitroxidative, nitrosative, and nitrative stress: Kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chem. Res. Toxicol., 2006, 19(9), 1160-1174.
[http://dx.doi.org/10.1021/tx060061w] [PMID: 16978020]
[14]
D’Autréaux, B.; Toledano, M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 813-824.
[http://dx.doi.org/10.1038/nrm2256] [PMID: 17848967]
[15]
Shnayder, N.A.; Petrova, M.M.; Popova, T.E.; Davidova, T.K.; Bobrova, O.P.; Trefilova, V.V.; Goncharova, P.S.; Balberova, O.V.; Petrov, K.V.; Gavrilyuk, O.A.; Soloveva, I.A.; Medvedev, G.V.; Nasyrova, R.F. Prospects for the personalized multimodal therapy approach to pain management via action on NO and NOS. Molecules, 2021, 26(9), 2431.
[http://dx.doi.org/10.3390/molecules26092431] [PMID: 33921984]
[16]
Xu, B.Y.; Sun, J.; Chen, S.P.; Wang, X.M.; Chen, N.; Li, D.Y.; Chen, G.; Mei, W.; Tian, Y.K.; Zhou, Y.Q.; Ye, D.W. Nox2 contributes to reactive oxygen species-induced redox imbalance in cancer-induced bone pain. Am. J. Transl. Res., 2021, 13(3), 1269-1279.
[PMID: 33841655]
[17]
Kashiwagi, Y.; Yi, H.; Liu, S.; Takahashi, K.; Hayashi, K.; Ikegami, D.; Zhu, X.; Gu, J.; Hao, S. Mitochondrial biogenesis factor PGC-1α suppresses spinal morphine tolerance by reducing mitochondrial superoxide. Exp. Neurol., 2021, 339, 113622.
[http://dx.doi.org/10.1016/j.expneurol.2021.113622] [PMID: 33516729]
[18]
Miao, F.; Wang, R.; Cui, G.; Li, X.; Wang, T.; Li, X. Engagement of MicroRNA-155 in exaggerated oxidative stress signal and TRPA1 in the dorsal horn of the spinal cord and neuropathic pain during chemotherapeutic oxaliplatin. Neurotox. Res., 2019, 36(4), 712-723.
[http://dx.doi.org/10.1007/s12640-019-00039-5] [PMID: 31016687]
[19]
Yan, B.; Liu, Q.; Ding, X.; Lin, Y.; Jiao, X.; Wu, Y.; Miao, H.; Zhou, C. SIRT3-mediated CypD-K166 deacetylation alleviates neuropathic pain by improving mitochondrial dysfunction and inhibiting oxidative stress. Oxid. Med. Cell. Longev., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/4722647] [PMID: 36092157]
[20]
Kallenborn-Gerhardt, W.; Schröder, K.; Del Turco, D.; Lu, R.; Kynast, K.; Kosowski, J.; Niederberger, E.; Shah, A.M.; Brandes, R.P.; Geisslinger, G.; Schmidtko, A. NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J. Neurosci., 2012, 32(30), 10136-10145.
[http://dx.doi.org/10.1523/JNEUROSCI.6227-11.2012] [PMID: 22836249]
[21]
Iqbal, R.; Mughal, M.S.; Arshad, N.; Arshad, M. Pathophysiology and antioxidant status of patients with fibromyalgia. Rheumatol. Int., 2011, 31(2), 149-152.
[http://dx.doi.org/10.1007/s00296-010-1470-x] [PMID: 20376669]
[22]
Xu, J.; Wei, X.; Gao, F.; Zhong, X.; Guo, R.; Ji, Y.; Zhou, X.; Chen, J.; Yao, P.; Liu, X.; Wei, X. Nicotinamide adenine dinucleotide phosphate oxidase 2–derived reactive oxygen species contribute to long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn and persistent mirror-image pain following high-frequency stimulus of the sciatic nerve. Pain, 2020, 161(4), 758-772.
[http://dx.doi.org/10.1097/j.pain.0000000000001761] [PMID: 32195784]
[23]
Long, H.; Zheng, H.; Ai, L.; Osman, K.; Liu, Z. Down-regulation of NOX4 expression in dorsal horn of spinal cord could alleviate cancer-induced bone pain in rats by reducing oxidative stress response. Cancer Manag. Res., 2020, 12, 10929-10938.
[http://dx.doi.org/10.2147/CMAR.S263177] [PMID: 33154672]
[24]
Ji, G.; Li, Z.; Neugebauer, V. Reactive oxygen species mediate visceral pain-related amygdala plasticity and behaviors. Pain, 2015, 156(5), 825-836.
[http://dx.doi.org/10.1097/j.pain.0000000000000120] [PMID: 25734993]
[25]
Liu, Y.; Jiang, P.; Du, M.; Chen, K.; Chen, A.; Wang, Y.; Cao, F.; Deng, S.; Xu, Y. Hyperoxia-induced immature brain injury through the TLR4 signaling pathway in newborn mice. Brain Res., 2015, 1610, 51-60.
[http://dx.doi.org/10.1016/j.brainres.2015.03.021] [PMID: 25801121]
[26]
Diaz, F.; Garcia, S.; Padgett, K.R.; Moraes, C.T. A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-dependent damage in defined brain regions. Hum. Mol. Genet., 2012, 21(23), 5066-5077.
[http://dx.doi.org/10.1093/hmg/dds350] [PMID: 22914734]
[27]
Zhou, Y.Q.; Liu, D.Q.; Chen, S.P.; Sun, J.; Zhou, X.R.; Rittner, H.; Mei, W.; Tian, Y.K.; Zhang, H.X.; Chen, F.; Ye, D.W. Reactive oxygen species scavengers ameliorate mechanical allodynia in a rat model of cancer-induced bone pain. Redox Biol., 2018, 14, 391-397.
[http://dx.doi.org/10.1016/j.redox.2017.10.011] [PMID: 29055283]
[28]
Yowtak, J.; Lee, K.Y.; Kim, H.Y.; Wang, J.; Kim, H.K.; Chung, K.; Chung, J.M. Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain, 2011, 152(4), 844-852.
[http://dx.doi.org/10.1016/j.pain.2010.12.034] [PMID: 21296500]
[29]
Yowtak, J.; Wang, J.; Kim, H.Y.; Lu, Y.; Chung, K.; Chung, J.M. Effect of antioxidant treatment on spinal GABA neurons in a neuropathic pain model in the mouse. Pain, 2013, 154(11), 2469-2476.
[http://dx.doi.org/10.1016/j.pain.2013.07.024] [PMID: 23880056]
[30]
Bittar, A.; Jun, J.; La, J.H.; Wang, J.; Leem, J.W.; Chung, J.M. Reactive oxygen species affect spinal cell type-specific synaptic plasticity in a model of neuropathic pain. Pain, 2017, 158(11), 2137-2146.
[http://dx.doi.org/10.1097/j.pain.0000000000001014] [PMID: 28708760]
[31]
Gao, X.; Kim, H.K.; Mo Chung, J.; Chung, K. Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain, 2007, 131(3), 262-271.
[http://dx.doi.org/10.1016/j.pain.2007.01.011] [PMID: 17317010]
[32]
Fu, Q.; Shi, D.; Zhou, Y.; Zheng, H.; Xiang, H.; Tian, X.; Gao, F.; Manyande, A.; Cao, F.; Tian, Y.; Ye, D. MHC-I promotes apoptosis of GABAergic interneurons in the spinal dorsal horn and contributes to cancer induced bone pain. Exp. Neurol., 2016, 286, 12-20.
[http://dx.doi.org/10.1016/j.expneurol.2016.09.002] [PMID: 27619625]
[33]
Carrasco, C.; Naziroǧlu, M.; Rodríguez, A.B.; Pariente, J.A. Neuropathic pain: Delving into the oxidative origin and the possible implication of transient receptor potential channels. Front. Physiol., 2018, 9, 95.
[http://dx.doi.org/10.3389/fphys.2018.00095] [PMID: 29491840]
[34]
Ogawa, N.; Kurokawa, T.; Mori, Y. Sensing of redox status by TRP channels. Cell Calcium, 2016, 60(2), 115-122.
[http://dx.doi.org/10.1016/j.ceca.2016.02.009] [PMID: 26969190]
[35]
Zhou, Y.Q.; Liu, Z.; Liu, H.Q.; Liu, D.Q.; Chen, S.P.; Ye, D.W.; Tian, Y.K. Targeting glia for bone cancer pain. Expert Opin. Ther. Targets, 2016, 20(11), 1365-1374.
[http://dx.doi.org/10.1080/14728222.2016.1214716] [PMID: 27428617]
[36]
Zhou, Y.Q.; Liu, Z.; Liu, Z.H.; Chen, S.P.; Li, M.; Shahveranov, A.; Ye, D.W.; Tian, Y.K. Interleukin-6: An emerging regulator of pathological pain. J. Neuroinflammation, 2016, 13(1), 141.
[http://dx.doi.org/10.1186/s12974-016-0607-6] [PMID: 27267059]
[37]
Kim, D.; You, B.; Jo, E.K.; Han, S.K.; Simon, M.I.; Lee, S.J. NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14851-14856.
[http://dx.doi.org/10.1073/pnas.1009926107] [PMID: 20679217]
[38]
Miao, H.; Xu, J.; Xu, D.; Ma, X.; Zhao, X.; Liu, L. Nociceptive behavior induced by chemotherapeutic paclitaxel and beneficial role of antioxidative pathways. Physiol. Res., 2019, 68(3), 491-500.
[http://dx.doi.org/10.33549/physiolres.933939] [PMID: 30433798]
[39]
Chen, Y.; Qin, C.; Huang, J.; Tang, X.; Liu, C.; Huang, K.; Xu, J.; Guo, G.; Tong, A.; Zhou, L. The role of astrocytes in oxidative stress of central nervous system: A mixed blessing. Cell Prolif., 2020, 53(3), e12781.
[http://dx.doi.org/10.1111/cpr.12781] [PMID: 32035016]
[40]
Zhou, Y.Q.; Liu, D.Q.; Chen, S.P.; Sun, J.; Wang, X.M.; Tian, Y.K.; Wu, W.; Ye, D.W. Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol. Res., 2018, 134, 305-310.
[http://dx.doi.org/10.1016/j.phrs.2018.07.002] [PMID: 30042091]
[41]
Abais, J.M.; Xia, M.; Zhang, Y.; Boini, K.M.; Li, P.L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Signal., 2015, 22(13), 1111-1129.
[http://dx.doi.org/10.1089/ars.2014.5994] [PMID: 25330206]
[42]
Schloss, J.M.; Colosimo, M.; Airey, C.; Masci, P.P.; Linnane, A.W.; Vitetta, L. Nutraceuticals and chemotherapy induced peripheral neuropathy (CIPN): A systematic review. Clin. Nutr., 2013, 32(6), 888-893.
[http://dx.doi.org/10.1016/j.clnu.2013.04.007] [PMID: 23647723]
[43]
Marchesi, N.; Govoni, S.; Allegri, M. Non‐drug pain relievers active on non‐opioid pain mechanisms. Pain Pract., 2022, 22(2), 255-275.
[http://dx.doi.org/10.1111/papr.13073] [PMID: 34498362]
[44]
Zorov, D.B.; Filburn, C.R.; Klotz, L.O.; Zweier, J.L.; Sollott, S.J. Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med., 2000, 192(7), 1001-1014.
[http://dx.doi.org/10.1084/jem.192.7.1001] [PMID: 11015441]
[45]
Fukai, T.; Ushio-Fukai, M. Cross-Talk between NADPH oxidase and mitochondria: Role in ROS signaling and angiogenesis. Cells, 2020, 9(8), 1849.
[http://dx.doi.org/10.3390/cells9081849] [PMID: 32781794]
[46]
Sassetti, E.; Clausen, M.H.; Laraia, L. Small-molecule inhibitors of reactive oxygen species production. J. Med. Chem., 2021, 64(9), 5252-5275.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01914] [PMID: 33856791]
[47]
Nunnari, J.; Suomalainen, A. Mitochondria: In sickness and in health. Cell, 2012, 148(6), 1145-1159.
[http://dx.doi.org/10.1016/j.cell.2012.02.035] [PMID: 22424226]
[48]
Zhang, B.; Pan, C.; Feng, C.; Yan, C.; Yu, Y.; Chen, Z.; Guo, C.; Wang, X. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep., 2022, 27(1), 45-52.
[http://dx.doi.org/10.1080/13510002.2022.2046423] [PMID: 35213291]
[49]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[50]
Thirupathi, A.; Pinho, R.A. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J. Physiol. Biochem., 2018, 74(3), 359-367.
[http://dx.doi.org/10.1007/s13105-018-0633-1] [PMID: 29713940]
[51]
Michel, H.; Behr, J.; Harrenga, A.; Kannt, A. Cytochrome C oxidase: Structure and spectroscopy. Annu. Rev. Biophys. Biomol. Struct., 1998, 27(1), 329-356.
[http://dx.doi.org/10.1146/annurev.biophys.27.1.329] [PMID: 9646871]
[52]
Miki, T. Mitochondrial complex V(ATP synthase). Jpn. J. Clin. Med., 2002, 60(Suppl. 4), 154-158.
[PMID: 12013840]
[53]
Vercellino, I.; Sazanov, L.A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol., 2022, 23(2), 141-161.
[http://dx.doi.org/10.1038/s41580-021-00415-0] [PMID: 34621061]
[54]
Sun, Q.; Zhong, W.; Zhang, W.; Zhou, Z. Defect of mitochondrial respiratory chain is a mechanism of ROS overproduction in a rat model of alcoholic liver disease: role of zinc deficiency. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 310(3), G205-G214.
[http://dx.doi.org/10.1152/ajpgi.00270.2015] [PMID: 26585415]
[55]
Paradies, G.; Paradies, V.; Ruggiero, F.M.; Petrosillo, G. Mitochondrial bioenergetics decay in aging: Beneficial effect of melatonin. Cell. Mol. Life Sci., 2017, 74(21), 3897-3911.
[http://dx.doi.org/10.1007/s00018-017-2619-5] [PMID: 28785806]
[56]
Joseph, E.K.; Levine, J.D. Mitochondrial electron transport in models of neuropathic and inflammatory pain. Pain, 2006, 121(1), 105-114.
[http://dx.doi.org/10.1016/j.pain.2005.12.010] [PMID: 16472913]
[57]
Trecarichi, A.; Flatters, S.J.L. Mitochondrial dysfunction in the pathogenesis of chemotherapy-induced peripheral neuropathy. Int. Rev. Neurobiol., 2019, 145, 83-126.
[http://dx.doi.org/10.1016/bs.irn.2019.05.001] [PMID: 31208528]
[58]
Griffiths, L.A.; Flatters, S.J.L. Pharmacological modulation of the mitochondrial electron transport chain in paclitaxel-induced painful peripheral neuropathy. J. Pain, 2015, 16(10), 981-994.
[http://dx.doi.org/10.1016/j.jpain.2015.06.008] [PMID: 26142652]
[59]
Xiao, W.H.; Bennett, G.J. Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain, 2012, 153(3), 704-709.
[http://dx.doi.org/10.1016/j.pain.2011.12.011] [PMID: 22244441]
[60]
Karu, T.I. Multiple roles of cytochrome C oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life, 2010, 62(8), 607-610.
[http://dx.doi.org/10.1002/iub.359] [PMID: 20681024]
[61]
Hamblin, R.M. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys., 2017, 4(3), 337-361.
[http://dx.doi.org/10.3934/biophy.2017.3.337] [PMID: 28748217]
[62]
Martins, D.F.; Turnes, B.L.; Cidral-Filho, F.J.; Bobinski, F.; Rosas, R.F.; Danielski, L.G.; Petronilho, F.; Santos, A.R.S. Light-emitting diode therapy reduces persistent inflammatory pain: Role of interleukin 10 and antioxidant enzymes. Neuroscience, 2016, 324, 485-495.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.035] [PMID: 27001179]
[63]
Morris, C.R.; Brown, L.A.S.; Reynolds, M.; Dampier, C.D.; Lane, P.A.; Watt, A.; Kumari, P.; Harris, F.; Manoranjithan, S.; Mendis, R.D.; Figueroa, J.; Shiva, S. Impact of arginine therapy on mitochondrial function in children with sickle cell disease during vaso-occlusive pain. Blood, 2020, 136(12), 1402-1406.
[http://dx.doi.org/10.1182/blood.2019003672] [PMID: 32384147]
[64]
Qu, H.; Guo, M.; Chai, H.; Wang, W.; Gao, Z.; Shi, D. Effects of coenzyme Q10 on statin‐induced myopathy: An updated meta‐analysis of randomized controlled trials. J. Am. Heart Assoc., 2018, 7(19), e009835.
[http://dx.doi.org/10.1161/JAHA.118.009835] [PMID: 30371340]
[65]
Sawaddiruk, P.; Apaijai, N.; Paiboonworachat, S.; Kaewchur, T.; Kasitanon, N.; Jaiwongkam, T.; Kerdphoo, S.; Chattipakorn, N.; Chattipakorn, S.C. Coenzyme Q10 supplementation alleviates pain in pregabalin-treated fibromyalgia patients via reducing brain activity and mitochondrial dysfunction. Free Radic. Res., 2019, 53(8), 901-909.
[http://dx.doi.org/10.1080/10715762.2019.1645955] [PMID: 31387429]
[66]
Khuankaew, C.; Apaijai, N.; Sawaddiruk, P.; Jaiwongkam, T.; Kerdphoo, S.; Pongsiriwet, S.; Tassaneeyakul, W.; Chattipakorn, N.; Chattipakorn, S.C. Effect of coenzyme Q10 on mitochondrial respiratory proteins in trigeminal neuralgia. Free Radic. Res., 2018, 52(4), 415-425.
[http://dx.doi.org/10.1080/10715762.2018.1438608] [PMID: 29424256]
[67]
Lauro, F.; Ilari, S.; Giancotti, L.A.; Ventura, C.A.; Morabito, C.; Gliozzi, M.; Malafoglia, V.; Palma, E.; Paolino, D.; Mollace, V.; Muscoli, C. Pharmacological effect of a new idebenone formulation in a model of carrageenan-induced inflammatory pain. Pharmacol. Res., 2016, 111, 767-773.
[http://dx.doi.org/10.1016/j.phrs.2016.07.043] [PMID: 27480201]
[68]
Montenegro, L.; Turnaturi, R.; Parenti, C.; Pasquinucci, L. Idebenone: Novel strategies to improve its systemic and local efficacy. Nanomaterials, 2018, 8(2), 87.
[http://dx.doi.org/10.3390/nano8020087] [PMID: 29401722]
[69]
Cordero, M.D.; Moreno-Fernández, A.M.; deMiguel, M.; Bonal, P.; Campa, F.; Jiménez-Jiménez, L.M.; Ruiz-Losada, A.; Sánchez-Domínguez, B.; Sánchez Alcázar, J.A.; Salviati, L.; Navas, P. Coenzyme Q10 distribution in blood is altered in patients with Fibromyalgia. Clin. Biochem., 2009, 42(7-8), 732-735.
[http://dx.doi.org/10.1016/j.clinbiochem.2008.12.010] [PMID: 19133251]
[70]
Duncan, A.J.; Heales, S.J.R.; Mills, K.; Eaton, S.; Land, J.M.; Hargreaves, I.P. Determination of coenzyme Q10 status in blood mononuclear cells, skeletal muscle, and plasma by HPLC with di-propoxy-coenzyme Q10 as an internal standard. Clin. Chem., 2005, 51(12), 2380-2382.
[http://dx.doi.org/10.1373/clinchem.2005.054643] [PMID: 16306103]
[71]
Wang, Y.; Hekimi, S. Understanding ubiquinone. Trends Cell Biol., 2016, 26(5), 367-378.
[http://dx.doi.org/10.1016/j.tcb.2015.12.007] [PMID: 26827090]
[72]
Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med., 2019, 44(1), 3-15.
[http://dx.doi.org/10.3892/ijmm.2019.4188] [PMID: 31115493]
[73]
Wu, D.; Liu, J. Occlusal interference induces oxidative stress and increases the expression of UCP3 in the masseter muscle: A rat model. Arch. Oral Biol., 2019, 102, 249-255.
[http://dx.doi.org/10.1016/j.archoralbio.2019.04.022] [PMID: 31096116]
[74]
Simonić-Kocijan, S.; Uhac, I.; Braut, V.; Kovac, Z.; Pavicić, D.K.; Fugosić, V.; Urek, M.M. Influence of chronic stress and oclusal interference on masseter muscle pain in rat. Coll. Antropol., 2009, 33(3), 863-866.
[PMID: 19860116]
[75]
Micheli, L.; Testai, L.; Angeli, A.; Carrino, D.; Pacini, A.; Margiotta, F.; Flori, L.; Supuran, C.T.; Calderone, V.; Ghelardini, C.; Di Cesare Mannelli, L. Inhibitors of mitochondrial human carbonic anhydrases VA and VB as a therapeutic strategy against paclitaxel-induced neuropathic pain in mice. Int. J. Mol. Sci., 2022, 23(11), 6229.
[http://dx.doi.org/10.3390/ijms23116229] [PMID: 35682907]
[76]
Price, T.O.; Sheibani, N.; Shah, G.N. Regulation of high glucose-induced apoptosis of brain pericytes by mitochondrial CA VA: A specific target for prevention of diabetic cerebrovascular pathology. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(4), 929-935.
[http://dx.doi.org/10.1016/j.bbadis.2017.01.025] [PMID: 28131914]
[77]
Willemen, H.L.D.M.; Kavelaars, A.; Prado, J.; Maas, M.; Versteeg, S.; Nellissen, L.J.J.; Tromp, J.; Gonzalez Cano, R.; Zhou, W.; Jakobsson, M.E.; Małecki, J.; Posthuma, G.; Habib, A.M.; Heijnen, C.J.; Falnes, P.Ø.; Eijkelkamp, N. Identification of FAM173B as a protein methyltransferase promoting chronic pain. PLoS Biol., 2018, 16(2), e2003452.
[http://dx.doi.org/10.1371/journal.pbio.2003452] [PMID: 29444090]
[78]
Małecki, J.M.; Willemen, H.L.D.M.; Pinto, R.; Ho, A.Y.Y.; Moen, A.; Kjønstad, I.F.; Burgering, B.M.T.; Zwartkruis, F.; Eijkelkamp, N.; Falnes, P.Ø. Lysine methylation by the mitochondrial methyltransferase FAM173B optimizes the function of mitochondrial ATP synthase. J. Biol. Chem., 2019, 294(4), 1128-1141.
[http://dx.doi.org/10.1074/jbc.RA118.005473] [PMID: 30530489]
[79]
Sulem, P.; Helgason, H.; Oddson, A.; Stefansson, H.; Gudjonsson, S.A.; Zink, F.; Hjartarson, E.; Sigurdsson, G.T.; Jonasdottir, A.; Jonasdottir, A.; Sigurdsson, A.; Magnusson, O.T.; Kong, A.; Helgason, A.; Holm, H.; Thorsteinsdottir, U.; Masson, G.; Gudbjartsson, D.F.; Stefansson, K. Identification of a large set of rare complete human knockouts. Nat. Genet., 2015, 47(5), 448-452.
[http://dx.doi.org/10.1038/ng.3243] [PMID: 25807282]
[80]
Flatters, S.J.L.; Dougherty, P.M.; Colvin, L.A. Clinical and preclinical perspectives on chemotherapy-induced peripheral neuropathy (CIPN): A narrative review. Br. J. Anaesth., 2017, 119(4), 737-749.
[http://dx.doi.org/10.1093/bja/aex229] [PMID: 29121279]
[81]
Kong, H.; Jiang, C.Y.; Hu, L.; Teng, P.; Zhang, Y.; Pan, X.X.; Sun, X.D.; Liu, W.T. Morphine induces dysfunction of PINK1/Parkin-mediated mitophagy in spinal cord neurons implying involvement in antinociceptive tolerance. J. Mol. Cell Biol., 2019, 11(12), 1056-1068.
[http://dx.doi.org/10.1093/jmcb/mjz002] [PMID: 30698724]
[82]
Fischer, F.; Hamann, A.; Osiewacz, H.D. Mitochondrial quality control: An integrated network of pathways. Trends Biochem. Sci., 2012, 37(7), 284-292.
[http://dx.doi.org/10.1016/j.tibs.2012.02.004] [PMID: 22410198]
[83]
Li, W.; Cheng, H.; Li, G.; Zhang, L. Mitochondrial damage and the road to exhaustion. Cell Metab., 2020, 32(6), 905-907.
[http://dx.doi.org/10.1016/j.cmet.2020.11.004] [PMID: 33264601]
[84]
Ul Fatima, N.; Ananthanarayanan, V. Mitochondrial movers and shapers: Recent insights into regulators of fission, fusion and transport. Curr. Opin. Cell Biol., 2023, 80, 102150.
[http://dx.doi.org/10.1016/j.ceb.2022.102150] [PMID: 36580830]
[85]
Luo, T.T.; Dai, C.Q.; Wang, J.Q.; Wang, Z.M.; Yang, Y.; Zhang, K.L.; Wu, F.F.; Yang, Y.L.; Wang, Y.Y. Drp1 is widely, yet heterogeneously, distributed in the mouse central nervous system. Mol. Brain, 2020, 13(1), 90.
[http://dx.doi.org/10.1186/s13041-020-00628-y] [PMID: 32522292]
[86]
Yu, T.; Sheu, S.S.; Robotham, J.L.; Yoon, Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc. Res., 2008, 79(2), 341-351.
[http://dx.doi.org/10.1093/cvr/cvn104] [PMID: 18440987]
[87]
Sun, H.; Li, X.; Chen, X.; Xiong, Y.; Cao, Y.; Wang, Z. Drp1 activates ROS/HIF-1α/EZH2 and triggers mitochondrial fragmentation to deteriorate hypercalcemia-associated neuronal injury in mouse model of chronic kidney disease. J. Neuroinflammation, 2022, 19(1), 213.
[http://dx.doi.org/10.1186/s12974-022-02542-7] [PMID: 36050772]
[88]
Zhou, S.; Pan, Y.; Zhang, Y.; Gu, L.; Ma, L.; Xu, Q.; Wang, W.; Sun, J. Antisense oligodeoxynucleotides against dynamin-related protein 1 reduce remifentanil-induced hyperalgesia by modulating spinal N-methyl-D-aspartate receptor expression in rats. Korean J. Pain, 2023, 36(3), 316-327.
[http://dx.doi.org/10.3344/kjp.22398] [PMID: 37183652]
[89]
Sheffer, R.; Douiev, L.; Edvardson, S.; Shaag, A.; Tamimi, K.; Soiferman, D.; Meiner, V.; Saada, A. Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function. Am. J. Med. Genet. A., 2016, 170(6), 1603-1607.
[http://dx.doi.org/10.1002/ajmg.a.37624] [PMID: 26992161]
[90]
Kanda, H.; Liu, S.; Iida, T.; Yi, H.; Huang, W.; Levitt, R.C.; Lubarsky, D.A.; Candiotti, K.A.; Hao, S. Inhibition of mitochondrial fission protein reduced mechanical allodynia and suppressed spinal mitochondrial superoxide induced by perineural human immunodeficiency virus gp120 in rats. Anesth. Analg., 2016, 122(1), 264-272.
[http://dx.doi.org/10.1213/ANE.0000000000000962] [PMID: 26418124]
[91]
Zhan, L.; Li, R.; Sun, Y.; Dou, M.; Yang, W.; He, S.; Zhang, Y. Effect of mito-TEMPO, a mitochondria-targeted antioxidant, in rats with neuropathic pain. Neuroreport, 2018, 29(15), 1275-1281.
[http://dx.doi.org/10.1097/WNR.0000000000001105] [PMID: 30052549]
[92]
Flippo, K.H.; Strack, S. Mitochondrial dynamics in neuronal injury, development and plasticity. J. Cell Sci., 2017, 130(4), jcs.171017.
[http://dx.doi.org/10.1242/jcs.171017] [PMID: 28154157]
[93]
Xie, M.; Cheng, M.; Wang, B.; Jiao, M.; Yu, L.; Zhu, H. 2-Bromopalmitate attenuates inflammatory pain by maintaining mitochondrial fission/fusion balance and function. Acta Biochim. Biophys. Sin., 2020, 53(1), 72-84.
[http://dx.doi.org/10.1093/abbs/gmaa150] [PMID: 33253369]
[94]
Dong, Z.B.; Wang, Y.J.; Cheng, M.L.; Wang, B.J.; Lu, H.; Zhu, H.L.; Liu, L.; Xie, M. 2-Bromopalmitate decreases spinal inflammation and attenuates oxaliplatin-induced neuropathic pain via reducing Drp1-mediated mitochondrial dysfunction. PLoS One, 2022, 17(10), e0275428.
[http://dx.doi.org/10.1371/journal.pone.0275428] [PMID: 36315519]
[95]
Zhang, K.L.; Li, S.J.; Pu, X.Y.; Wu, F.F.; Liu, H.; Wang, R.Q.; Liu, B.Z.; Li, Z.; Li, K.F.; Qian, N.S.; Yang, Y.L.; Yuan, H.; Wang, Y.Y. Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission. Redox Biol., 2022, 49, 102216.
[http://dx.doi.org/10.1016/j.redox.2021.102216] [PMID: 34954498]
[96]
Li, P.A.; Hou, X.; Hao, S. Mitochondrial biogenesis in neurodegeneration. J. Neurosci. Res., 2017, 95(10), 2025-2029.
[http://dx.doi.org/10.1002/jnr.24042] [PMID: 28301064]
[97]
Witte, M.E.; Nijland, P.G.; Drexhage, J.A.R.; Gerritsen, W.; Geerts, D.; van het Hof, B.; Reijerkerk, A.; de Vries, H.E.; van der Valk, P.; van Horssen, J. Reduced expression of PGC-1α partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol., 2013, 125(2), 231-243.
[http://dx.doi.org/10.1007/s00401-012-1052-y] [PMID: 23073717]
[98]
Sun, J.; Li, J.Y.; Zhang, L.Q.; Li, D.Y.; Wu, J.Y.; Gao, S.J.; Liu, D.Q.; Zhou, Y.Q.; Mei, W. Nrf2 activation attenuates chronic constriction injury-induced neuropathic pain via induction of pgc-1α-mediated mitochondrial biogenesis in the spinal cord. Oxid. Med. Cell. Longev., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/9577874] [PMID: 34721761]
[99]
Chen, N.; Ge, M.M.; Li, D.Y.; Wang, X.M.; Liu, D.Q.; Ye, D.W.; Tian, Y.K.; Zhou, Y.Q.; Chen, J.P. β2-adrenoreceptor agonist ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain via induction of mitochondrial biogenesis. Biomed. Pharmacother., 2021, 144, 112331.
[http://dx.doi.org/10.1016/j.biopha.2021.112331] [PMID: 34673421]
[100]
Zhang, L.Q.; Zhou, Y.Q.; Li, J.Y.; Sun, J.; Zhang, S.; Wu, J.Y.; Gao, S.J.; Tian, X.B.; Mei, W. 5-HT1F receptor agonist ameliorates mechanical allodynia in neuropathic pain via induction of mitochondrial biogenesis and suppression of neuroinflammation. Front. Pharmacol., 2022, 13, 834570.
[http://dx.doi.org/10.3389/fphar.2022.834570] [PMID: 35308244]
[101]
Zhou, Y.; Liu, D.; Chen, S.; Chen, N.; Sun, J.; Wang, X.; Cao, F.; Tian, Y.; Ye, D. Nrf2 activation ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain. Acta Pharmacol. Sin., 2020, 41(8), 1041-1048.
[http://dx.doi.org/10.1038/s41401-020-0394-6] [PMID: 32203087]
[102]
Zhou, Y.Q.; Mei, W.; Tian, X.B.; Tian, Y.K.; Liu, D.Q.; Ye, D.W. The therapeutic potential of Nrf2 inducers in chronic pain: Evidence from preclinical studies. Pharmacol. Ther., 2021, 225, 107846.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107846] [PMID: 33819559]
[103]
Gureev, A.P.; Shaforostova, E.A.; Popov, V.N. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α signaling pathways. Front. Genet., 2019, 10, 435.
[http://dx.doi.org/10.3389/fgene.2019.00435] [PMID: 31139208]
[104]
Santin, Y.; Resta, J.; Parini, A.; Mialet-Perez, J. Monoamine oxidases in age-associated diseases: New perspectives for old enzymes. Ageing Res. Rev., 2021, 66, 101256.
[http://dx.doi.org/10.1016/j.arr.2021.101256] [PMID: 33434685]
[105]
Park, S.E.; Neupane, C.; Noh, C.; Sharma, R.; Shin, H.J.; Pham, T.L.; Lee, G.S.; Park, K.D.; Lee, C.J.; Kang, D.W.; Lee, S.Y.; Kim, H.W.; Park, J.B. Antiallodynic effects of KDS2010, a novel MAO-B inhibitor, via ROS-GABA inhibitory transmission in a paclitaxel-induced tactile hypersensitivity model. Mol. Brain, 2022, 15(1), 41.
[http://dx.doi.org/10.1186/s13041-022-00924-9] [PMID: 35526002]
[106]
Yao, X.; Li, L.; Kandhare, A.D.; Mukherjee-Kandhare, A.A.; Bodhankar, S.L. Attenuation of reserpine-induced fibromyalgia via ROS and serotonergic pathway modulation by fisetin, a plant flavonoid polyphenol. Exp. Ther. Med., 2020, 19(2), 1343-1355.
[PMID: 32010308]
[107]
Jóźwiak-Bębenista, M.; Wiktorowska-Owczarek, A.; Kowalczyk, E. Beta-adrenoceptor-mediated cyclic AMP signal in different types of cultured nerve cells in normoxic and hypoxic conditions. Mol. Biol., 2016, 50(5), 838-846.
[PMID: 27830686]
[108]
Zhang, H.; Kong, Q.; Wang, J.; Jiang, Y.; Hua, H. Complex roles of cAMP–PKA–CREB signaling in cancer. Exp. Hematol. Oncol., 2020, 9(1), 32.
[http://dx.doi.org/10.1186/s40164-020-00191-1] [PMID: 33292604]
[109]
Chen, S.P.; Sun, J.; Zhou, Y.Q.; Cao, F.; Braun, C.; Luo, F.; Ye, D.W.; Tian, Y.K. Sinomenine attenuates cancer-induced bone pain via suppressing microglial JAK2/STAT3 and neuronal CAMKII/CREB cascades in rat models. Mol. Pain, 2018, 14.
[http://dx.doi.org/10.1177/1744806918793232] [PMID: 30027795]
[110]
Iida, T.; Yi, H.; Liu, S.; Huang, W.; Kanda, H.; Lubarsky, D.A.; Hao, S. Spinal CPEB-mtROS-CBP signaling pathway contributes to perineural HIV gp120 with ddC-related neuropathic pain in rats. Exp. Neurol., 2016, 281, 17-27.
[http://dx.doi.org/10.1016/j.expneurol.2016.04.012] [PMID: 27090160]
[111]
Vanfleteren, L.; Fabbri, L.M.; Papi, A.; Petruzzelli, S.; Celli, B. Triple therapy (ICS/LABA/LAMA) in COPD: Time for a reappraisal. Int. J. Chron. Obstruct. Pulmon. Dis., 2018, 13, 3971-3981.
[http://dx.doi.org/10.2147/COPD.S185975] [PMID: 30587953]
[112]
Lamb, Y.N. Lasmiditan: First Approval. Drugs, 2019, 79(18), 1989-1996.
[http://dx.doi.org/10.1007/s40265-019-01225-7] [PMID: 31749059]
[113]
Gottlieb, R.A.; Carreira, R.S. Autophagy in health and disease. 5. Mitophagy as a way of life. Am. J. Physiol. Cell Physiol., 2010, 299(2), C203-C210.
[http://dx.doi.org/10.1152/ajpcell.00097.2010] [PMID: 20357180]
[114]
Wang, D.B.; Garden, G.A.; Kinoshita, C.; Wyles, C.; Babazadeh, N.; Sopher, B.; Kinoshita, Y.; Morrison, R.S. Declines in Drp1 and parkin expression underlie DNA damage-induced changes in mitochondrial length and neuronal death. J. Neurosci., 2013, 33(4), 1357-1365.
[http://dx.doi.org/10.1523/JNEUROSCI.3365-12.2013] [PMID: 23345212]
[115]
Yamashita, A.; Matsuoka, Y.; Matsuda, M.; Kawai, K.; Sawa, T.; Amaya, F. Dysregulation of p53 and parkin induce mitochondrial dysfunction and leads to the diabetic neuropathic pain. Neuroscience, 2019, 416, 9-19.
[http://dx.doi.org/10.1016/j.neuroscience.2019.07.045] [PMID: 31377450]
[116]
Krukowski, K.; Nijboer, C.H.; Huo, X.; Kavelaars, A.; Heijnen, C.J. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-μ. Pain, 2015, 156(11), 2184-2192.
[http://dx.doi.org/10.1097/j.pain.0000000000000290] [PMID: 26473292]
[117]
Maj, M.A.; Ma, J.; Krukowski, K.N.; Kavelaars, A.; Heijnen, C.J. Inhibition of mitochondrial p53 accumulation by PFT-μ prevents cisplatin-induced peripheral neuropathy. Front. Mol. Neurosci., 2017, 10, 108.
[http://dx.doi.org/10.3389/fnmol.2017.00108] [PMID: 28458631]
[118]
Leu, J.I.J.; Pimkina, J.; Frank, A.; Murphy, M.E.; George, D.L. A small molecule inhibitor of inducible heat shock protein 70. Mol. Cell, 2009, 36(1), 15-27.
[http://dx.doi.org/10.1016/j.molcel.2009.09.023] [PMID: 19818706]
[119]
Shang, X.; Lin, K.; Zhang, Y.; Li, M.; Xu, J.; Chen, K.; Zhu, P.; Yu, R. Mst1 deletion reduces septic cardiomyopathy via activating Parkin‐related mitophagy. J. Cell. Physiol., 2020, 235(1), 317-327.
[http://dx.doi.org/10.1002/jcp.28971] [PMID: 31215035]
[120]
Huang, Z.; Xiao, P.Y.; Chen, J.Y.; Zeng, Q.; Huang, B.X.; Yu, J.; Liao, S.J. Mammalian sterile 20-like kinase 1 mediates neuropathic pain associated with its effects on regulating mitophagy in schwann cells. Oxid. Med. Cell. Longev., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/3458283] [PMID: 35656021]
[121]
Ilari, S.; Giancotti, L.A.; Lauro, F.; Dagostino, C.; Gliozzi, M.; Malafoglia, V.; Sansone, L.; Palma, E.; Tafani, M.; Russo, M.A.; Tomino, C.; Fini, M.; Salvemini, D.; Mollace, V.; Muscoli, C. Antioxidant modulation of sirtuin 3 during acute inflammatory pain: The ROS control. Pharmacol. Res., 2020, 157, 104851.
[http://dx.doi.org/10.1016/j.phrs.2020.104851] [PMID: 32423865]
[122]
Jeninga, E.H.; Schoonjans, K.; Auwerx, J. Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene, 2010, 29(33), 4617-4624.
[http://dx.doi.org/10.1038/onc.2010.206] [PMID: 20531298]
[123]
Zahedi, E.; Sadr, S.S.; Sanaeierad, A.; Roghani, M. Valproate-induced murine autism spectrum disorder is associated with dysfunction of amygdala parvalbumin interneurons and downregulation of AMPK/SIRT1/PGC1α signaling. Metab. Brain Dis., 2023, 38(6), 2093-2103.
[http://dx.doi.org/10.1007/s11011-023-01227-1] [PMID: 37184727]
[124]
Li, X.; Yang, S.; Wang, L.; Liu, P.; Zhao, S.; Li, H.; Jiang, Y.; Guo, Y.; Wang, X. Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K/Akt and SIRT1/PGC1α pathway. J. Pain Res., 2019, 12, 879-890.
[http://dx.doi.org/10.2147/JPR.S185873] [PMID: 30881098]
[125]
Hao, C.; Ma, B.; Gao, N.; Jin, T.; Liu, X. Translocator protein (TSPO) alleviates neuropathic pain by activating spinal autophagy and nuclear SIRT1/PGC-1α signaling in a rat L5 SNL model. J. Pain Res., 2022, 15, 767-778.
[http://dx.doi.org/10.2147/JPR.S359397] [PMID: 35356265]
[126]
Cheng, Y.Y.; Kao, C.L.; Ma, H.I.; Hung, C.H.; Wang, C.T.; Liu, D.H.; Chen, P.Y.; Tsai, K.L. SIRT1-related inhibition of pro-inflammatory responses and oxidative stress are involved in the mechanism of nonspecific low back pain relief after exercise through modulation of Toll-like receptor 4. J. Biochem., 2015, 158(4), 299-308.
[http://dx.doi.org/10.1093/jb/mvv041] [PMID: 25922201]
[127]
Tseng, A.H.H.; Shieh, S.S.; Wang, D.L. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic. Biol. Med., 2013, 63, 222-234.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.002] [PMID: 23665396]
[128]
Cheng, A.; Yang, Y.; Zhou, Y.; Maharana, C.; Lu, D.; Peng, W.; Liu, Y.; Wan, R.; Marosi, K.; Misiak, M.; Bohr, V.A.; Mattson, M.P. Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges. Cell Metab., 2016, 23(1), 128-142.
[http://dx.doi.org/10.1016/j.cmet.2015.10.013] [PMID: 26698917]
[129]
Zhou, C.; Zhang, Y.; Jiao, X.; Wang, G.; Wang, R.; Wu, Y. SIRT3 alleviates neuropathic pain by deacetylating FoxO3a in the spinal dorsal horn of diabetic model rats. Reg. Anesth. Pain Med., 2021, 46(1), 49-56.
[http://dx.doi.org/10.1136/rapm-2020-101918] [PMID: 33127810]
[130]
Fritz, K.S.; Galligan, J.J.; Smathers, R.L.; Roede, J.R.; Shearn, C.T.; Reigan, P.; Petersen, D.R. 4-Hydroxynonenal inhibits SIRT3 via thiol-specific modification. Chem. Res. Toxicol., 2011, 24(5), 651-662.
[http://dx.doi.org/10.1021/tx100355a] [PMID: 21449565]
[131]
Turnley, A.M.; Stapleton, D.; Mann, R.J.; Witters, L.A.; Kemp, B.E.; Bartlett, P.F. Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J. Neurochem., 1999, 72(4), 1707-1716.
[http://dx.doi.org/10.1046/j.1471-4159.1999.721707.x] [PMID: 10098881]
[132]
Herzig, S.; Shaw, R.J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[133]
Ge, M.M.; Li, D.Y.; Wang, L.; Zhang, L.Q.; Liu, D.Q.; Tian, Y.K.; Ye, D.W.; Liu, Z.H.; Zhou, Y.Q.; Yang, H. Naringenin promoted spinal microglia M2 polarization in rat model of cancer-induced bone pain via regulating AMPK/PGC-1α signaling axis. Biomed. Pharmacother., 2022, 149, 112912.
[http://dx.doi.org/10.1016/j.biopha.2022.112912] [PMID: 35856853]
[134]
Xu, W.; Mo, J.; Ocak, U.; Travis, Z.D.; Enkhjargal, B.; Zhang, T.; Wu, P.; Peng, J.; Li, T.; Zuo, Y.; Shao, A.; Tang, J.; Zhang, J.; Zhang, J.H. Activation of melanocortin 1 receptor attenuates early brain injury in a rat model of subarachnoid hemorrhage viathe suppression of neuroinflammation through AMPK/TBK1/NF-κB pathway in rats. Neurotherapeutics, 2020, 17(1), 294-308.
[http://dx.doi.org/10.1007/s13311-019-00772-x] [PMID: 31486022]
[135]
Han, C.; Zheng, J.; Sun, L.; Yang, H.; Cao, Z.; Zhang, X.; Zheng, L.; Zhen, X. The oncometabolite 2-hydroxyglutarate inhibits microglial activation via the AMPK/mTOR/NF-κB pathway. Acta Pharmacol. Sin., 2019, 40(10), 1292-1302.
[http://dx.doi.org/10.1038/s41401-019-0225-9] [PMID: 31015738]
[136]
Song, J.; Zhang, W.; Wang, J.; Yang, H.; Zhao, X.; Zhou, Q.; Wang, H.; Li, L.; Du, G. Activation of Nrf2 signaling by salvianolic acid C attenuates NF κB mediated inflammatory response both in vivo and in vitro. Int. Immunopharmacol., 2018, 63, 299-310.
[http://dx.doi.org/10.1016/j.intimp.2018.08.004] [PMID: 30142530]
[137]
Morgan, M.J.; Liu, Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103-115.
[http://dx.doi.org/10.1038/cr.2010.178] [PMID: 21187859]
[138]
Sun, J.; Zhou, Y.; Xu, B.; Li, J.; Zhang, L.; Li, D.; Zhang, S.; Wu, J.; Gao, S.; Ye, D.; Mei, W. STING/NF-κB/IL-6-mediated inflammation in microglia contributes to spared nerve injury (SNI)-induced pain initiation. J. Neuroimmune Pharmacol., 2022, 17(3-4), 453-469.
[http://dx.doi.org/10.1007/s11481-021-10031-6] [PMID: 34727296]
[139]
Maixner, D.W.; Yan, X.; Gao, M.; Yadav, R.; Weng, H.R. Adenosine monophosphate–activated protein kinase regulates interleukin-1β expression and glial glutamate transporter function in rodents with neuropathic pain. Anesthesiology, 2015, 122(6), 1401-1413.
[http://dx.doi.org/10.1097/ALN.0000000000000619] [PMID: 25710409]
[140]
Maixner, D.W.; Yan, X.; Hooks, S.B.; Weng, H.R. AMPKα1 knockout enhances nociceptive behaviors and spinal glutamatergic synaptic activities via production of reactive oxygen species in the spinal dorsal horn. Neuroscience, 2016, 326, 158-169.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.061] [PMID: 27058143]
[141]
Yang, H.; Wang, Y.; Zhen, S.; Wang, B.; Jiao, M.; Liu, L.; Li, D.; Zhu, H.; Xie, M. AMPK activation attenuates cancer-induced bone pain by reducing mitochondrial dysfunction-mediated neuroinflammation. Acta Biochim. Biophys. Sin., 2023, 55(3), 460-471.
[http://dx.doi.org/10.3724/abbs.2023039] [PMID: 36971458]
[142]
Chen, S.P.; Zhou, Y.Q.; Wang, X.M.; Sun, J.; Cao, F. HaiSam, S.; Ye, D.W.; Tian, Y.K. Pharmacological inhibition of the NLRP3 inflammasome as a potential target for cancer-induced bone pain. Pharmacol. Res., 2019, 147, 104339.
[http://dx.doi.org/10.1016/j.phrs.2019.104339] [PMID: 31276771]
[143]
Haddad, M.; Eid, S.; Harb, F.; Massry, M.E.L.; Azar, S.; Sauleau, E.A.; Eid, A.A. Activation of 20-HETE synthase triggers oxidative injury and peripheral nerve damage in type 2 diabetic mice. J. Pain, 2022, 23(8), 1371-1388.
[http://dx.doi.org/10.1016/j.jpain.2022.02.011] [PMID: 35339661]
[144]
Wu, C.; Chen, H.; Zhuang, R.; Zhang, H.; Wang, Y.; Hu, X.; Xu, Y.; Li, J.; Li, Y.; Wang, X.; Xu, H.; Ni, W.; Zhou, K. Betulinic acid inhibits pyroptosis in spinal cord injury by augmenting autophagy via the AMPK-mTOR-TFEB signaling pathway. Int. J. Biol. Sci., 2021, 17(4), 1138-1152.
[http://dx.doi.org/10.7150/ijbs.57825] [PMID: 33867836]
[145]
Holmström, K.M.; Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol., 2014, 15(6), 411-421.
[http://dx.doi.org/10.1038/nrm3801] [PMID: 24854789]
[146]
Cross, A.R.; Segal, A.W. The NADPH oxidase of professional phagocytes-prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta Bioenerg., 2004, 1657(1), 1-22.
[http://dx.doi.org/10.1016/j.bbabio.2004.03.008] [PMID: 15238208]
[147]
Kim, J.S.; Yeo, S.; Shin, D.G.; Bae, Y.S.; Lee, J.J.; Chin, B.R.; Lee, C.H.; Baek, S.H. Glycogen synthase kinase 3β and β-catenin pathway is involved in toll-like receptor 4-mediated NADPH oxidase 1 expression in macrophages. FEBS J., 2010, 277(13), 2830-2837.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07700.x] [PMID: 20528914]
[148]
Ibi, M.; Matsuno, K.; Matsumoto, M.; Sasaki, M.; Nakagawa, T.; Katsuyama, M.; Iwata, K.; Zhang, J.; Kaneko, S.; Yabe-Nishimura, C. Involvement of NOX1/NADPH oxidase in morphine-induced analgesia and tolerance. J. Neurosci., 2011, 31(49), 18094-18103.
[http://dx.doi.org/10.1523/JNEUROSCI.4136-11.2011] [PMID: 22159121]
[149]
Ibi, M.; Matsuno, K.; Shiba, D.; Katsuyama, M.; Iwata, K.; Kakehi, T.; Nakagawa, T.; Sango, K.; Shirai, Y.; Yokoyama, T.; Kaneko, S.; Saito, N.; Yabe-Nishimura, C. Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J. Neurosci., 2008, 28(38), 9486-9494.
[http://dx.doi.org/10.1523/JNEUROSCI.1857-08.2008] [PMID: 18799680]
[150]
Kumar, S.; Vinayak, M. NADPH oxidase1 inhibition leads to regression of central sensitization during formalin induced acute nociception via attenuation of ERK1/2-NFκB signaling and glial activation. Neurochem. Int., 2020, 134, 104652.
[http://dx.doi.org/10.1016/j.neuint.2019.104652] [PMID: 31891736]
[151]
Song, Z.; Xiong, B.; Zheng, H.; Manyande, A.; Guan, X.; Cao, F.; Ren, L.; Zhou, Y.; Ye, D.; Tian, Y. STAT1 as a downstream mediator of ERK signaling contributes to bone cancer pain by regulating MHC II expression in spinal microglia. Brain Behav. Immun., 2017, 60, 161-173.
[http://dx.doi.org/10.1016/j.bbi.2016.10.009] [PMID: 27742579]
[152]
Ibi, M.; Liu, J.; Arakawa, N.; Kitaoka, S.; Kawaji, A.; Matsuda, K.; Iwata, K.; Matsumoto, M.; Katsuyama, M.; Zhu, K.; Teramukai, S.; Furuyashiki, T.; Yabe-Nishimura, C. Depressive-Like Behaviors Are Regulated by NOX1/NADPH Oxidase by Redox Modification of NMDA Receptor 1. J. Neurosci., 2017, 37(15), 4200-4212.
[http://dx.doi.org/10.1523/JNEUROSCI.2988-16.2017] [PMID: 28314819]
[153]
Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic Pain: From mechanisms to treatment. Physiol. Rev., 2021, 101(1), 259-301.
[http://dx.doi.org/10.1152/physrev.00045.2019] [PMID: 32584191]
[154]
Kallenborn-Gerhardt, W.; Hohmann, S.W.; Syhr, K.M.J.; Schröder, K.; Sisignano, M.; Weigert, A.; Lorenz, J.E.; Lu, R.; Brüne, B.; Brandes, R.P.; Geisslinger, G.; Schmidtko, A. Nox2-dependent signaling between macrophages and sensory neurons contributes to neuropathic pain hypersensitivity. Pain, 2014, 155(10), 2161-2170.
[http://dx.doi.org/10.1016/j.pain.2014.08.013] [PMID: 25139590]
[155]
Sabirzhanov, B.; Li, Y.; Coll-Miro, M.; Matyas, J.J.; He, J.; Kumar, A.; Ward, N.; Yu, J.; Faden, A.I.; Wu, J. Inhibition of NOX2 signaling limits pain-related behavior and improves motor function in male mice after spinal cord injury: Participation of IL-10/miR-155 pathways. Brain Behav. Immun., 2019, 80, 73-87.
[http://dx.doi.org/10.1016/j.bbi.2019.02.024] [PMID: 30807841]
[156]
De Logu, F.; Nassini, R.; Materazzi, S.; Carvalho Gonçalves, M.; Nosi, D. Rossi Degl’Innocenti, D.; Marone, I.M.; Ferreira, J.; Li Puma, S.; Benemei, S.; Trevisan, G.; Souza Monteiro de Araújo, D.; Patacchini, R.; Bunnett, N.W.; Geppetti, P. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat. Commun., 2017, 8(1), 1887.
[http://dx.doi.org/10.1038/s41467-017-01739-2] [PMID: 29192190]
[157]
Hackel, D.; Pflücke, D.; Neumann, A.; Viebahn, J.; Mousa, S.; Wischmeyer, E.; Roewer, N.; Brack, A.; Rittner, H.L. The connection of monocytes and reactive oxygen species in pain. PLoS One, 2013, 8(5), e63564.
[http://dx.doi.org/10.1371/journal.pone.0063564] [PMID: 23658840]
[158]
Doyle, T.; Esposito, E.; Bryant, L.; Cuzzocrea, S.; Salvemini, D. NADPH-oxidase 2 activation promotes opioid-induced antinociceptive tolerance in mice. Neuroscience, 2013, 241, 1-9.
[http://dx.doi.org/10.1016/j.neuroscience.2013.02.042] [PMID: 23454539]
[159]
Roos, D. Chronic granulomatous disease. Methods Mol. Biol., 2019, 1982, 531-542.
[http://dx.doi.org/10.1007/978-1-4939-9424-3_32] [PMID: 31172494]
[160]
Geis, C.; Geuss, E.; Sommer, C.; Schmidt, H.H.H.W.; Kleinschnitz, C. NOX4 is an early initiator of neuropathic pain. Exp. Neurol., 2017, 288, 94-103.
[http://dx.doi.org/10.1016/j.expneurol.2016.11.008] [PMID: 27856286]
[161]
Wack, G.; Metzner, K.; Kuth, M.S.; Wang, E.; Bresnick, A.; Brandes, R.P.; Schröder, K.; Wittig, I.; Schmidtko, A.; Kallenborn-Gerhardt, W. Nox4-dependent upregulation of S100A4 after peripheral nerve injury modulates neuropathic pain processing. Free Radic. Biol. Med., 2021, 168, 155-167.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.03.021] [PMID: 33789124]
[162]
Vendrov, A.E.; Madamanchi, N.R.; Niu, X.L.; Molnar, K.C.; Runge, M.; Szyndralewiez, C.; Page, P.; Runge, M.S. NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J. Biol. Chem., 2010, 285(34), 26545-26557.
[http://dx.doi.org/10.1074/jbc.M110.143917] [PMID: 20558727]
[163]
Eid, S.A.; El Massry, M.; Hichor, M.; Haddad, M.; Grenier, J.; Dia, B.; Barakat, R.; Boutary, S.; Chanal, J.; Aractingi, S.; Wiesel, P.; Szyndralewiez, C.; Azar, S.T.; Boitard, C.; Zaatari, G.; Eid, A.A.; Massaad, C. Targeting the NADPH oxidase-4 and liver X receptor pathway preserves schwann cell integrity in diabetic mice. Diabetes, 2020, 69(3), 448-464.
[http://dx.doi.org/10.2337/db19-0517] [PMID: 31882567]
[164]
Zhou, Y.Q.; Chen, S.P.; Liu, D.Q.; Manyande, A.; Zhang, W.; Yang, S.B.; Xiong, B.R.; Fu, Q.C.; Song, Z.; Rittner, H.; Ye, D.W.; Tian, Y.K. The role of spinal GABAB receptors in cancer-induced bone pain in rats. J. Pain, 2017, 18(8), 933-946.
[http://dx.doi.org/10.1016/j.jpain.2017.02.438] [PMID: 28323246]
[165]
Takeya, R.; Ueno, N.; Kami, K.; Taura, M.; Kohjima, M.; Izaki, T.; Nunoi, H.; Sumimoto, H. Novel human homologues of p47 and p67 participate in activation of superoxide-producing NADPH oxidases. J. Biol. Chem., 2015, 290(10), 6003.
[http://dx.doi.org/10.1074/jbc.A114.212856] [PMID: 25750260]
[166]
Brandes, R.P.; Weissmann, N.; Schröder, K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic. Biol. Med., 2014, 76, 208-226.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.07.046] [PMID: 25157786]
[167]
Chocry, M.; Leloup, L. The NADPH oxidase family and its inhibitors. Antioxid. Redox Signal., 2020, 33(5), 332-353.
[http://dx.doi.org/10.1089/ars.2019.7915] [PMID: 31826639]
[168]
Takeya, R.; Ueno, N.; Kami, K.; Taura, M.; Kohjima, M.; Izaki, T.; Nunoi, H.; Sumimoto, H. Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J. Biol. Chem., 2003, 278(27), 25234-25246.
[http://dx.doi.org/10.1074/jbc.M212856200] [PMID: 12716910]
[169]
Cheng, G.; Ritsick, D.; Lambeth, J.D. Nox3 Regulation by NOXO1, p47, and p67. J. Biol. Chem., 2004, 279(33), 34250-34255.
[http://dx.doi.org/10.1074/jbc.M400660200] [PMID: 15181005]
[170]
Ambruso, D.R.; Knall, C.; Abell, A.N.; Panepinto, J.; Kurkchubasche, A.; Thurman, G.; Gonzalez-Aller, C.; Hiester, A.; deBoer, M.; Harbeck, R.J.; Oyer, R.; Johnson, G.L.; Roos, D. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc. Natl. Acad. Sci. USA, 2000, 97(9), 4654-4659.
[http://dx.doi.org/10.1073/pnas.080074897] [PMID: 10758162]
[171]
Roos, D.; de Boer, M.; Kuribayashi, F.; Meischl, C.; Weening, R.S.; Segal, A.W.; Ahlin, A.; Nemet, K.; Hossle, J.P.; Bernatowska-Matuszkiewicz, E.; Middleton-Price, H. Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood, 1996, 87(5), 1663-1681.
[http://dx.doi.org/10.1182/blood.V87.5.1663.1663] [PMID: 8634410]
[172]
Csányi, G.; Cifuentes-Pagano, E.; Al Ghouleh, I.; Ranayhossaini, D.J.; Egaña, L.; Lopes, L.R.; Jackson, H.M.; Kelley, E.E.; Pagano, P.J. Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2. Free Radic. Biol. Med., 2011, 51(6), 1116-1125.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.025] [PMID: 21586323]
[173]
Hodge, R.G.; Ridley, A.J. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol., 2016, 17(8), 496-510.
[http://dx.doi.org/10.1038/nrm.2016.67] [PMID: 27301673]
[174]
Acevedo, A.; González-Billault, C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic. Biol. Med., 2018, 116, 101-113.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.01.008] [PMID: 29330095]
[175]
Price, M.O.; Atkinson, S.J.; Knaus, U.G.; Dinauer, M.C. Rac activation induces NADPH oxidase activity in transgenic COSphox cells, and the level of superoxide production is exchange factor-dependent. J. Biol. Chem., 2002, 277(21), 19220-19228.
[http://dx.doi.org/10.1074/jbc.M200061200] [PMID: 11896053]
[176]
Tan, A.M.; Samad, O.A.; Liu, S.; Bandaru, S.; Zhao, P.; Waxman, S.G. Burn injury-induced mechanical allodynia is maintained by Rac1-regulated dendritic spine dysgenesis. Exp. Neurol., 2013, 248, 509-519.
[http://dx.doi.org/10.1016/j.expneurol.2013.07.017] [PMID: 23933578]
[177]
Chen, Z.; Zhang, S.; Nie, B.; Huang, J.; Han, Z.; Chen, X.; Bai, X.; Ouyang, H. Distinct roles of srGAP3‐Rac1 in the initiation and maintenance phases of neuropathic pain induced by paclitaxel. J. Physiol., 2020, 598(12), 2415-2430.
[http://dx.doi.org/10.1113/JP279525] [PMID: 32237255]
[178]
Tell, G.; Damante, G.; Caldwell, D.; Kelley, M.R. The intracellular localization of APE1/Ref-1: More than a passive phenomenon? Antioxid. Redox Signal., 2005, 7(3-4), 367-384.
[http://dx.doi.org/10.1089/ars.2005.7.367] [PMID: 15706084]
[179]
Angkeow, P.; Deshpande, S.S.; Qi, B.; Liu, Y-X.; Park, Y.C.; Jeon, B.H.; Ozaki, M.; Irani, K. Redox factor-1: An extra-nuclear role in the regulation of endothelial oxidative stress and apoptosis. Cell Death Differ., 2002, 9(7), 717-725.
[http://dx.doi.org/10.1038/sj.cdd.4401025] [PMID: 12058277]
[180]
Zaky, A.; Bouali-Benazzouz, R.; Favereaux, A.; Tell, G.; Landry, M. APE1/Ref-1 redox function contributes to inflammatory pain sensitization. Exp. Neurol., 2018, 307, 1-11.
[http://dx.doi.org/10.1016/j.expneurol.2018.05.014] [PMID: 29772245]
[181]
Santulli, G.; Lewis, D.; des Georges, A.; Marks, A.R.; Frank, J. Ryanodine receptor structure and function in health and disease. Subcell. Biochem., 2018, 87, 329-352.
[http://dx.doi.org/10.1007/978-981-10-7757-9_11] [PMID: 29464565]
[182]
Jin, M.; Guan, C.; Jiang, Y.; Chen, G.; Zhao, C.; Cui, K.; Song, Y.; Wu, C.; Poo, M.; Yuan, X. Ca2+-dependent regulation of rho GTPases triggers turning of nerve growth cones. J. Neurosci., 2005, 25(9), 2338-2347.
[http://dx.doi.org/10.1523/JNEUROSCI.4889-04.2005] [PMID: 15745960]
[183]
Liao, B.; Zhang, Y.; Sun, H.; Ma, B.; Qian, J. Ryanodine receptor 2 plays a critical role in spinal cord injury via induction of oxidative stress. Cell. Physiol. Biochem., 2016, 38(3), 1129-1137.
[http://dx.doi.org/10.1159/000443063] [PMID: 26963898]
[184]
Wilson, C.; Muñoz-Palma, E.; Henríquez, D.R.; Palmisano, I.; Núñez, M.T.; Di Giovanni, S.; González-Billault, C. A feed-forward mechanism involving the NOX complex and RyR-mediated Ca2+ release during axonal specification. J. Neurosci., 2016, 36(43), 11107-11119.
[http://dx.doi.org/10.1523/JNEUROSCI.1455-16.2016] [PMID: 27798190]
[185]
Sanmartín, C.D.; Paula-Lima, A.C.; García, A.; Barattini, P.; Hartel, S.; Núñez, M.T.; Hidalgo, C. Ryanodine receptor-mediated Ca2+ release underlies iron-induced mitochondrial fission and stimulates mitochondrial Ca2+ uptake in primary hippocampal neurons. Front. Mol. Neurosci., 2014, 7, 13.
[PMID: 24653672]
[186]
Godai, K.; Takahashi, K.; Kashiwagi, Y.; Liu, C.H.; Yi, H.; Liu, S.; Dong, C.; Lubarsky, D.A.; Hao, S. Ryanodine receptor to mitochondrial reactive oxygen species pathway plays an important role in chronic human immunodeficiency virus gp120MN-induced neuropathic pain in rats. Anesth. Analg., 2019, 129(1), 276-286.
[http://dx.doi.org/10.1213/ANE.0000000000003916] [PMID: 30507840]
[187]
Fridolfsson, H.N.; Roth, D.M.; Insel, P.A.; Patel, H.H. Regulation of intracellular signaling and function by caveolin. FASEB J., 2014, 28(9), 3823-3831.
[http://dx.doi.org/10.1096/fj.14-252320] [PMID: 24858278]
[188]
Zhang, Y.; Peng, F.; Gao, B.; Ingram, A.J.; Krepinsky, J.C. Mechanical strain-induced RhoA activation requires NADPH oxidase-mediated ROS generation in caveolae. Antioxid. Redox Signal., 2010, 13(7), 959-973.
[http://dx.doi.org/10.1089/ars.2009.2908] [PMID: 20380579]
[189]
Chen, J.L.; Lu, J.H.; Xie, C.S.; Shen, Y.J.; Wang, J.W.; Ye, X.Y.; Zhang, M.B.; Jia, G.L.; Tao, Y.X.; Li, J.; Cao, H. Caveolin-1 in spinal cord modulates type-2 diabetic neuropathic pain through the Rac1/NOX2/NR2B signaling pathway. Am. J. Transl. Res., 2020, 12(5), 1714-1727.
[PMID: 32509171]
[190]
El-Benna, J.; Dang, P.M.C.; Gougerot-Pocidalo, M.A.; Marie, J.C.; Braut-Boucher, F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: Structure, phosphorylation and implication in diseases. Exp. Mol. Med., 2009, 41(4), 217-225.
[http://dx.doi.org/10.3858/emm.2009.41.4.058] [PMID: 19372727]
[191]
Zhao, W.C.; Zhang, B.; Liao, M.J.; Zhang, W.X.; He, W.Y.; Wang, H.B.; Yang, C.X. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord. Neurosci. Lett., 2014, 560, 81-85.
[http://dx.doi.org/10.1016/j.neulet.2013.12.019] [PMID: 24370596]
[192]
Hultqvist, M.; Bäcklund, J.; Bauer, K.; Gelderman, K.A.; Holmdahl, R. Lack of reactive oxygen species breaks T cell tolerance to collagen type II and allows development of arthritis in mice. J. Immunol., 2007, 179(3), 1431-1437.
[http://dx.doi.org/10.4049/jimmunol.179.3.1431] [PMID: 17641008]
[193]
Shin, H.J.; Park, H.; Shin, N.; Kwon, H.H.; Yin, Y.; Hwang, J.A.; Kim, S.I.; Kim, S.R.; Kim, S.; Joo, Y.; Kim, Y.; Kim, J.; Beom, J.; Kim, D.W. p47phox siRNA-loaded PLGA nanoparticles suppress ROS/oxidative stress-induced chondrocyte damage in osteoarthritis. Polymers, 2020, 12(2), 443.
[http://dx.doi.org/10.3390/polym12020443] [PMID: 32069893]
[194]
Yin, D.H.; Liang, X.C.; Zhao, L.; Zhang, H.; Sun, Q.; Wang, P.Y.; Sun, L.Q. Jinmaitong decreases sciatic nerve DNA oxidative damage and apoptosis in a streptozotocin-induced diabetic rat model. Exp. Ther. Med., 2015, 10(2), 778-786.
[http://dx.doi.org/10.3892/etm.2015.2543] [PMID: 26622393]
[195]
Sandoval, R.; Lazcano, P.; Ferrari, F.; Pinto-Pardo, N.; González-Billault, C.; Utreras, E. TNF-α increases production of reactive oxygen species through Cdk5 activation in nociceptive neurons. Front. Physiol., 2018, 9, 65.
[http://dx.doi.org/10.3389/fphys.2018.00065] [PMID: 29467671]
[196]
Sun, J.; Chen, F.; Braun, C.; Zhou, Y.Q.; Rittner, H.; Tian, Y.K.; Cai, X.Y.; Ye, D.W. Role of curcumin in the management of pathological pain. Phytomedicine, 2018, 48, 129-140.
[http://dx.doi.org/10.1016/j.phymed.2018.04.045] [PMID: 30195871]
[197]
Demaurex, N.; El Chemaly, A. Physiological roles of voltage-gated proton channels in leukocytes. J. Physiol., 2010, 588(23), 4659-4665.
[http://dx.doi.org/10.1113/jphysiol.2010.194225] [PMID: 20693294]
[198]
Peng, J.; Yi, M.H.; Jeong, H.; McEwan, P.P.; Zheng, J.; Wu, G.; Ganatra, S.; Ren, Y.; Richardson, J.R.; Oh, S.B.; Wu, L.J. The voltage-gated proton channel Hv1 promotes microglia-astrocyte communication and neuropathic pain after peripheral nerve injury. Mol. Brain, 2021, 14(1), 99.
[http://dx.doi.org/10.1186/s13041-021-00812-8] [PMID: 34183051]
[199]
Zhang, Q.; Ren, Y.; Mo, Y.; Guo, P.; Liao, P.; Luo, Y.; Mu, J.; Chen, Z.; Zhang, Y.; Li, Y.; Yang, L.; Liao, D.; Fu, J.; Shen, J.; Huang, W.; Xu, X.; Guo, Y.; Mei, L.; Zuo, Y.; Liu, J.; Yang, H.; Jiang, R. Inhibiting Hv1 channel in peripheral sensory neurons attenuates chronic inflammatory pain and opioid side effects. Cell Res., 2022, 32(5), 461-476.
[http://dx.doi.org/10.1038/s41422-022-00616-y] [PMID: 35115667]
[200]
Wang, Y.; Li, S.J.; Wu, X.; Che, Y.; Li, Q. Clinicopathological and biological significance of human voltage-gated proton channel Hv1 protein overexpression in breast cancer. J. Biol. Chem., 2012, 287(17), 13877-13888.
[http://dx.doi.org/10.1074/jbc.M112.345280] [PMID: 22367212]
[201]
Shimizu, S.; Takahashi, N.; Mori, Y. TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Handb. Exp. Pharmacol., 2014, 223, 767-794.
[http://dx.doi.org/10.1007/978-3-319-05161-1_3] [PMID: 24961969]
[202]
De Logu, F.; Li Puma, S.; Landini, L.; Portelli, F.; Innocenti, A.; de Araujo, D.S.M.; Janal, M.N.; Patacchini, R.; Bunnett, N.W.; Geppetti, P.; Nassini, R. Schwann cells expressing nociceptive channel TRPA1 orchestrate ethanol-evoked neuropathic pain in mice. J. Clin. Invest., 2019, 129(12), 5424-5441.
[http://dx.doi.org/10.1172/JCI128022] [PMID: 31487269]
[203]
Marone, I.M.; De Logu, F.; Nassini, R.; De Carvalho Goncalves, M.; Benemei, S.; Ferreira, J.; Jain, P.; Li Puma, S.; Bunnett, N.W.; Geppetti, P.; Materazzi, S. TRPA1/NOX in the soma of trigeminal ganglion neurons mediates migraine-related pain of glyceryl trinitrate in mice. Brain, 2018, 141(8), 2312-2328.
[http://dx.doi.org/10.1093/brain/awy177] [PMID: 29985973]
[204]
De Logu, F.; De Siena, G.; Landini, L.; Marini, M.; Souza Monteiro de Araujo, D.; Albanese, V.; Preti, D.; Romitelli, A.; Chieca, M.; Titiz, M.; Iannone, L.F.; Geppetti, P.; Nassini, R. Non-neuronal TRPA1 encodes mechanical allodynia associated with neurogenic inflammation and partial nerve injury in rats. Br. J. Pharmacol., 2022.
[PMID: 36494916]
[205]
Savio, L.E.B.; Leite-Aguiar, R.; Alves, V.S.; Coutinho-Silva, R.; Wyse, A.T.S. Purinergic signaling in the modulation of redox biology. Redox Biol., 2021, 47, 102137.
[http://dx.doi.org/10.1016/j.redox.2021.102137] [PMID: 34563872]
[206]
Chessell, I.P.; Hatcher, J.P.; Bountra, C.; Michel, A.D.; Hughes, J.P.; Green, P.; Egerton, J.; Murfin, M.; Richardson, J.; Peck, W.L.; Grahames, C.B.A.; Casula, M.A.; Yiangou, Y.; Birch, R.; Anand, P.; Buell, G.N. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain, 2005, 114(3), 386-396.
[http://dx.doi.org/10.1016/j.pain.2005.01.002] [PMID: 15777864]
[207]
Munoz, F.M.; Gao, R.; Tian, Y.; Henstenburg, B.A.; Barrett, J.E.; Hu, H. Neuronal P2X7 receptor-induced reactive oxygen species production contributes to nociceptive behavior in mice. Sci. Rep., 2017, 7(1), 3539.
[http://dx.doi.org/10.1038/s41598-017-03813-7] [PMID: 28615626]
[208]
Apolloni, S.; Parisi, C.; Pesaresi, M.G.; Rossi, S.; Carrì, M.T.; Cozzolino, M.; Volonté, C.; D’Ambrosi, N. The NADPH oxidase pathway is dysregulated by the P2X7 receptor in the SOD1-G93A microglia model of amyotrophic lateral sclerosis. J. Immunol., 2013, 190(10), 5187-5195.
[http://dx.doi.org/10.4049/jimmunol.1203262] [PMID: 23589615]
[209]
Qian, Y.; Xu, S.; Yang, X.; Xiao, Q. Purinergic receptor P2Y6 contributes to 1-methyl-4-phenylpyridinium-induced oxidative stress and cell death in neuronal SH-SY5Y cells. J. Neurosci. Res., 2018, 96(2), 253-264.
[http://dx.doi.org/10.1002/jnr.24119] [PMID: 28752899]
[210]
Wang, Z.; Zhao, W.; Shen, X.; Wan, H.; Yu, J.M. The role of P2Y6 receptors in the maintenance of neuropathic pain and its improvement of oxidative stress in rats. J. Cell. Biochem., 2019, 120(10), 17123-17130.
[http://dx.doi.org/10.1002/jcb.28972] [PMID: 31106899]
[211]
Cirillo, G.; Colangelo, A.M.; Berbenni, M.; Ippolito, V.M.; De Luca, C.; Verdesca, F.; Savarese, L.; Alberghina, L.; Maggio, N.; Papa, M. Purinergic modulation of spinal neuroglial maladaptive plasticity following peripheral nerve injury. Mol. Neurobiol., 2015, 52(3), 1440-1457.
[http://dx.doi.org/10.1007/s12035-014-8943-y] [PMID: 25352445]
[212]
Park, H.S.; Jung, H.Y.; Park, E.Y.; Kim, J.; Lee, W.J.; Bae, Y.S. Cutting edge: Direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J. Immunol., 2004, 173(6), 3589-3593.
[http://dx.doi.org/10.4049/jimmunol.173.6.3589] [PMID: 15356101]
[213]
Janciauskiene, S.; Vijayan, V.; Immenschuh, S. TLR4 signaling by heme and the role of heme-binding blood proteins. Front. Immunol., 2020, 11, 1964.
[http://dx.doi.org/10.3389/fimmu.2020.01964] [PMID: 32983129]
[214]
Lei, J.; Paul, J.; Wang, Y.; Gupta, M.; Vang, D.; Thompson, S.; Jha, R.; Nguyen, J.; Valverde, Y.; Lamarre, Y.; Jones, M.K.; Gupta, K. Heme causes pain in sickle mice via toll-like receptor 4-mediated reactive oxygen species- and endoplasmic reticulum stress-induced glial activation. Antioxid. Redox Signal., 2021, 34(4), 279-293.
[http://dx.doi.org/10.1089/ars.2019.7913] [PMID: 32729340]
[215]
Soh, W.T.; Zhang, J.; Hollenberg, M.D.; Vliagoftis, H.; Rothenberg, M.E.; Sokol, C.L.; Robinson, C.; Jacquet, A. Protease allergens as initiators–regulators of allergic inflammation. Allergy, 2023, 78(5), 1148-1168.
[http://dx.doi.org/10.1111/all.15678] [PMID: 36794967]
[216]
Monnet, F.P. Sigma-1 receptor as regulator of neuronal intracellular Ca2+: clinical and therapeutic relevance. Biol. Cell, 2005, 97(12), 873-883.
[http://dx.doi.org/10.1042/BC20040149] [PMID: 16293108]
[217]
Roh, D.H.; Kim, H.W.; Yoon, S.Y.; Seo, H.S.; Kwon, Y.B.; Kim, K.W.; Han, H.J.; Beitz, A.J.; Lee, J.H. Intrathecal administration of sigma-1 receptor agonists facilitates nociception: Involvement of a protein kinase C-dependent pathway. J. Neurosci. Res., 2008, 86(16), 3644-3654.
[http://dx.doi.org/10.1002/jnr.21802] [PMID: 18655205]
[218]
Dang, P.M.C.; Fontayne, A.; Hakim, J.; El Benna, J.; Périanin, A. Protein kinase C zeta phosphorylates a subset of selective sites of the NADPH oxidase component p47phox and participates in formyl peptide-mediated neutrophil respiratory burst. J. Immunol., 2001, 166(2), 1206-1213.
[http://dx.doi.org/10.4049/jimmunol.166.2.1206] [PMID: 11145703]
[219]
Choi, S.R.; Roh, D.H.; Yoon, S.Y.; Kang, S.Y.; Moon, J.Y.; Kwon, S.G.; Choi, H.S.; Han, H.J.; Beitz, A.J.; Oh, S.B.; Lee, J.H. Spinal sigma-1 receptors activate NADPH oxidase 2 leading to the induction of pain hypersensitivity in mice and mechanical allodynia in neuropathic rats. Pharmacol. Res., 2013, 74, 56-67.
[http://dx.doi.org/10.1016/j.phrs.2013.05.004] [PMID: 23732704]
[220]
Choi, S.R.; Kwon, S.G.; Choi, H.S.; Han, H.J.; Beitz, A.J.; Lee, J.H. Neuronal NOS activates spinal NADPH oxidase 2 contributing to central sigma-1 receptor-induced pain hypersensitivity in mice. Biol. Pharm. Bull., 2016, 39(12), 1922-1931.
[http://dx.doi.org/10.1248/bpb.b16-00326] [PMID: 27601184]
[221]
Roh, D.H.; Kim, H.W.; Yoon, S.Y.; Seo, H.S.; Kwon, Y.B.; Kim, K.W.; Han, H.J.; Beitz, A.J.; Na, H.S.; Lee, J.H. Intrathecal injection of the sigma(1) receptor antagonist BD1047 blocks both mechanical allodynia and increases in spinal NR1 expression during the induction phase of rodent neuropathic pain. Anesthesiology, 2008, 109(5), 879-889.
[http://dx.doi.org/10.1097/ALN.0b013e3181895a83] [PMID: 18946301]
[222]
Schmitz, J.; Owyang, A.; Oldham, E.; Song, Y.; Murphy, E.; McClanahan, T.K.; Zurawski, G.; Moshrefi, M.; Qin, J.; Li, X.; Gorman, D.M.; Bazan, J.F.; Kastelein, R.A. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity, 2005, 23(5), 479-490.
[http://dx.doi.org/10.1016/j.immuni.2005.09.015] [PMID: 16286016]
[223]
Yin, C.; Liu, B.; Li, Y.; Li, X.; Wang, J.; Chen, R.; Tai, Y.; Shou, Q.; Wang, P.; Shao, X.; Liang, Y.; Zhou, H.; Mi, W.; Fang, J.; Liu, B. IL-33/ST2 induces neutrophil-dependent reactive oxygen species production and mediates gout pain. Theranostics, 2020, 10(26), 12189-12203.
[http://dx.doi.org/10.7150/thno.48028] [PMID: 33204337]
[224]
Li, Y.; Li, H.; Han, J. Sphingosine‐1‐phosphate receptor 2 modulates pain sensitivity by suppressing the ROS‐RUNX3 pathway in a rat model of neuropathy. J. Cell. Physiol., 2020, 235(4), 3864-3873.
[http://dx.doi.org/10.1002/jcp.29280] [PMID: 31603252]
[225]
Levanon, D.; Bettoun, D.; Harris-Cerruti, C.; Woolf, E.; Negreanu, V.; Eilam, R.; Bernstein, Y.; Goldenberg, D.; Xiao, C.; Fliegauf, M.; Kremer, E.; Otto, F.; Brenner, O.; Lev-Tov, A.; Groner, Y. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J., 2002, 21(13), 3454-3463.
[http://dx.doi.org/10.1093/emboj/cdf370] [PMID: 12093746]
[226]
Serafim, K.G.G.; Navarro, S.A.; Zarpelon, A.C.; Pinho-Ribeiro, F.A.; Fattori, V.; Cunha, T.M.; Alves-Filho, J.C.; Cunha, F.Q.; Casagrande, R.; Verri, W.A., Jr Bosentan, a mixed endothelin receptor antagonist, inhibits superoxide anion-induced pain and inflammation in mice. Naunyn Schmiedebergs Arch. Pharmacol., 2015, 388(11), 1211-1221.
[http://dx.doi.org/10.1007/s00210-015-1160-z] [PMID: 26246053]
[227]
Fattori, V.; Serafim, K.G.G.; Zarpelon, A.C.; Borghi, S.M.; Pinho-Ribeiro, F.A.; Alves-Filho, J.C.; Cunha, T.M.; Cunha, F.Q.; Casagrande, R.; Verri, W.A., Jr Differential regulation of oxidative stress and cytokine production by endothelin ET A and ET B receptors in superoxide anion-induced inflammation and pain in mice. J. Drug Target., 2017, 25(3), 264-274.
[http://dx.doi.org/10.1080/1061186X.2016.1245308] [PMID: 27701898]
[228]
Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[229]
Im, Y.B.; Jee, M.K.; Choi, J.I.; Cho, H.T.; Kwon, O.H.; Kang, S.K. Molecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord. Cell Death Dis., 2012, 3(11), e426.
[http://dx.doi.org/10.1038/cddis.2012.168] [PMID: 23152062]
[230]
López-González, M.J.; Landry, M.; Favereaux, A. MicroRNA and chronic pain: From mechanisms to therapeutic potential. Pharmacol. Ther., 2017, 180, 1-15.
[http://dx.doi.org/10.1016/j.pharmthera.2017.06.001] [PMID: 28579386]
[231]
Gambari, R.; Fabbri, E.; Borgatti, M.; Lampronti, I.; Finotti, A.; Brognara, E.; Bianchi, N.; Manicardi, A.; Marchelli, R.; Corradini, R. Targeting microRNAs involved in human diseases: A novel approach for modification of gene expression and drug development. Biochem. Pharmacol., 2011, 82(10), 1416-1429.
[http://dx.doi.org/10.1016/j.bcp.2011.08.007] [PMID: 21864506]
[232]
Boveris, A.; Oshino, N.; Chance, B. The cellular production of hydrogen peroxide. Biochem. J., 1972, 128(3), 617-630.
[http://dx.doi.org/10.1042/bj1280617] [PMID: 4404507]
[233]
Fransen, M.; Nordgren, M.; Wang, B.; Apanasets, O. Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(9), 1363-1373.
[http://dx.doi.org/10.1016/j.bbadis.2011.12.001] [PMID: 22178243]
[234]
De Duve, C.; Baudhuin, P. Peroxisomes (microbodies and related particles). Physiol. Rev., 1966, 46(2), 323-357.
[http://dx.doi.org/10.1152/physrev.1966.46.2.323] [PMID: 5325972]
[235]
Huang, J.L.; Chen, X.L.; Guo, C.; Wang, Y.X. Contributions of spinal d-amino acid oxidase to bone cancer pain. Amino Acids, 2012, 43(5), 1905-1918.
[http://dx.doi.org/10.1007/s00726-012-1390-z] [PMID: 22996731]
[236]
Yamanaka, M.; Miyoshi, Y.; Ohide, H.; Hamase, K.; Konno, R. d-Amino acids in the brain and mutant rodents lacking d-amino-acid oxidase activity. Amino Acids, 2012, 43(5), 1811-1821.
[http://dx.doi.org/10.1007/s00726-012-1384-x] [PMID: 22892863]
[237]
Ma, S.; Li, X.Y.; Gong, N.; Wang, Y.X. Contributions of spinal d-amino acid oxidase to chronic morphine-induced hyperalgesia. J. Pharm. Biomed. Anal., 2015, 116, 131-138.
[http://dx.doi.org/10.1016/j.jpba.2015.03.021] [PMID: 25850373]
[238]
Lu, J.M.; Gong, N.; Wang, Y.C.; Wang, Y.X. D-Amino acid] oxidase-mediated increase in spinal hydrogen peroxide is mainly responsible for formalin-induced tonic pain. Br. J. Pharmacol., 2012, 165(6), 1941-1955.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01680.x] [PMID: 21950354]
[239]
Zhao, W.J.; Gao, Z.Y.; Wei, H.; Nie, H.Z.; Zhao, Q.; Zhou, X.J.; Wang, Y.X. Spinal D-amino acid oxidase contributes to neuropathic pain in rats. J. Pharmacol. Exp. Ther., 2010, 332(1), 248-254.
[http://dx.doi.org/10.1124/jpet.109.158816] [PMID: 19828879]
[240]
Wei, H.; Gong, N.; Huang, J.L.; Fan, H.; Ma, A.N.; Li, X.Y.; Wang, Y.X.; Pertovaara, A. Spinal D-amino acid oxidase contributes to mechanical pain hypersensitivity induced by sleep deprivation in the rat. Pharmacol. Biochem. Behav., 2013, 111, 30-36.
[http://dx.doi.org/10.1016/j.pbb.2013.08.003] [PMID: 23958579]
[241]
Gong, N.; Li, X.Y.; Xiao, Q.; Wang, Y.X. Identification of a novel spinal dorsal horn astroglial D-amino acid oxidase-hydrogen peroxide pathway involved in morphine antinociceptive tolerance. Anesthesiology, 2014, 120(4), 962-975.
[http://dx.doi.org/10.1097/ALN.0b013e3182a66d2a] [PMID: 23928652]
[242]
Zhao, W.; Konno, R.; Zhou, X.J.; Yin, M.; Wang, Y.X. Inhibition of D-amino-Acid oxidase activity induces pain relief in mice. Cell. Mol. Neurobiol., 2008, 28(4), 581-591.
[http://dx.doi.org/10.1007/s10571-007-9200-y] [PMID: 17874293]
[243]
Hopkins, S.C.; Zhao, F.Y.; Bowen, C.A.; Fang, X.; Wei, H.; Heffernan, M.L.R.; Spear, K.L.; Spanswick, D.C.; Varney, M.A.; Large, T.H. Pharmacodynamic effects of a D-amino acid oxidase inhibitor indicate a spinal site of action in rat models of neuropathic pain. J. Pharmacol. Exp. Ther., 2013, 345(3), 502-511.
[http://dx.doi.org/10.1124/jpet.113.204016] [PMID: 23520265]
[244]
Wake, K.; Yamazaki, H.; Hanzawa, S.; Konno, R.; Sakio, H.; Niwa, A.; Hori, Y. Exaggerated responses to chronic nociceptive stimuli and enhancement of N-methyl-d-aspartate receptor-mediated synaptic transmission in mutant mice lacking d-amino-acid oxidase. Neurosci. Lett., 2001, 297(1), 25-28.
[http://dx.doi.org/10.1016/S0304-3940(00)01658-X] [PMID: 11114476]
[245]
Choi, S.R.; Moon, J.Y.; Roh, D.H.; Yoon, S.Y.; Kwon, S.G.; Choi, H.S.; Kang, S.Y.; Han, H.J.; Beitz, A.J.; Lee, J.H. Spinal D-serine increases PKC-dependent GluN1 phosphorylation contributing to the sigma-1 receptor-induced development of mechanical allodynia in a mouse model of neuropathic pain. J. Pain, 2017, 18(4), 415-427.
[http://dx.doi.org/10.1016/j.jpain.2016.12.002] [PMID: 27986591]
[246]
Dieb, W.; Hafidi, A. Astrocytes are involved in trigeminal dynamic mechanical allodynia: potential role of D-serine. J. Dent. Res., 2013, 92(9), 808-813.
[http://dx.doi.org/10.1177/0022034513498898] [PMID: 23881719]
[247]
Mothet, J.P.; Parent, A.T.; Wolosker, H.; Brady, R.O., Jr; Linden, D.J.; Ferris, C.D.; Rogawski, M.A.; Snyder, S.H. D -Serine is an endogenous ligand for the glycine site of the N -methyl- D -aspartate receptor. Proc. Natl. Acad. Sci. USA, 2000, 97(9), 4926-4931.
[http://dx.doi.org/10.1073/pnas.97.9.4926] [PMID: 10781100]
[248]
Inoguchi, T.; Nawata, H. NAD(P)H oxidase activation: A potential target mechanism for diabetic vascular complications, progressive beta-cell dysfunction and metabolic syndrome. Curr. Drug Targets, 2005, 6(4), 495-501.
[http://dx.doi.org/10.2174/1389450054021927] [PMID: 16026268]
[249]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[250]
Wilkaniec, A.; Cieślik, M.; Murawska, E.; Babiec, L.; Gąssowska-Dobrowolska, M.; Pałasz, E.; Jęśko, H.; Adamczyk, A. P2X7 receptor is involved in mitochondrial dysfunction induced by extracellular alpha synuclein in neuroblastoma SH-SY5Y Cells. Int. J. Mol. Sci., 2020, 21(11), 3959.
[http://dx.doi.org/10.3390/ijms21113959] [PMID: 32486485]
[251]
Ushio-Fukai, M. Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid. Redox Signal., 2009, 11(6), 1289-1299.
[http://dx.doi.org/10.1089/ars.2008.2333] [PMID: 18999986]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy