Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Recent Updates in Inhalable Drug Delivery System against Various Pulmonary Diseases: Challenges and Future Perspectives

Author(s): Kabi Raj Chaudhary*, Karanvir Singh and Charan Singh*

Volume 21, Issue 10, 2024

Published on: 20 October, 2023

Page: [1320 - 1345] Pages: 26

DOI: 10.2174/0115672018265571231011093546

Price: $65

Abstract

In the current scenario, pulmonary disease has become a prime burden for morbidity and mortality alongside tremendous social and economic crises throughout the world. Numerous conventional drug delivery system and treatment approach targeting the respiratory region has been driven out. However, effective and accurate recovery has not been achieved yet. In this regard, nanotechnological- based inhalable drug delivery strategy including polymeric, lipidic, or metallic-based respirable microparticles plays an indispensable role in circumventing numerous challenges faced during traditional treatment. Excellent aerodynamic performance leads to enhanced lung targetability, reduced dosing frequency and hence systemic toxicities, as well as improved pharmaceutical attributes, and therefore pharmacokinetic profiles are interminable factors associated with nanotechnologicalbased inhalable delivery. In this review, we comprehensively explored recent advancements in nanotechnologically engineered inhalable formulations targeting each of the mentioned pulmonary diseases. Moreover, we systematically discussed possible respiratory or systemic toxicities about the indeterminate and undefined physicochemical characteristics of inhaled particles.

Keywords: Nanoparticulate carriers, microparticles, spray drying, aerosolization, antibacterial, lung cancer, inhalable toxicity.

Graphical Abstract
[1]
Dua, K.; Malyla, V.; Singhvi, G.; Wadhwa, R.; Krishna, R.V.; Shukla, S.D.; Shastri, M.D.; Chellappan, D.K.; Maurya, P.K.; Satija, S.; Mehta, M.; Gulati, M.; Hansbro, N.; Collet, T.; Awasthi, R.; Gupta, G.; Hsu, A.; Hansbro, P.M. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: An emerging need for novel drug delivery systems. Chem. Biol. Interact., 2019, 299, 168-178.
[http://dx.doi.org/10.1016/j.cbi.2018.12.009] [PMID: 30553721]
[2]
Mehta, M. Deeksha; Tewari, D.; Gupta, G.; Awasthi, R.; Singh, H.; Pandey, P.; Chellappan, D.K.; Wadhwa, R.; Collet, T.; Hansbro, P.M.; Kumar, S.R.; Thangavelu, L.; Negi, P.; Dua, K.; Satija, S. Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem. Biol. Interact., 2019, 308, 206-215.
[http://dx.doi.org/10.1016/j.cbi.2019.05.028] [PMID: 31136735]
[3]
Venkatesan, P. GOLD COPD report: 2023 update. Lancet Respir. Med., 2023, 11(1), 18.
[http://dx.doi.org/10.1016/S2213-2600(22)00494-5] [PMID: 36462509]
[4]
Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; Montes de Oca, M.; Mortimer, K.; Papi, A.; Pavord, I.; Roche, N.; Salvi, S.; Sin, D.D.; Singh, D.; Stockley, R.; López Varela, M.V.; Wedzicha, J.A.; Vogelmeier, C.F. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Am. J. Respir. Crit. Care Med., 2023, 207(7), 819-837.
[http://dx.doi.org/10.1164/rccm.202301-0106PP] [PMID: 36856433]
[5]
Halpin, D.M.; Vogelmeier, C.F.; Agusti, A. Lung Health for All: Chronic Obstructive Lung Disease and World Lung Day 2022. Am. J. Respir. Crit. Care Med., 2022, 206(6), 669-671.
[6]
Singh, D.; Agusti, A.; Martinez, F.J.; Papi, A.; Pavord, I.D.; Wedzicha, J.A.; Vogelmeier, C.F.; Halpin, D.M.G. Blood eosinophils and chronic obstructive pulmonary disease: A global initiative for chronic obstructive lung disease science committee 2022 review. Am. J. Respir. Crit. Care Med., 2022, 206(1), 17-24.
[http://dx.doi.org/10.1164/rccm.202201-0209PP] [PMID: 35737975]
[7]
Abdelaziz, H.M.; Gaber, M.; Abd-Elwakil, M.M.; Mabrouk, M.T.; Elgohary, M.M.; Kamel, N.M.; Kabary, D.M.; Freag, M.S.; Samaha, M.W.; Mortada, S.M.; Elkhodairy, K.A.; Fang, J.Y.; Elzoghby, A.O. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J. Control. Release, 2018, 269, 374-392.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.036] [PMID: 29180168]
[8]
Jazieh, A.R.; Zeitouni, M.; Alghamdi, M.; Alrujaib, M.; Lotfi, S.; Abu Daff, S.; Alomair, A.; Alshehri, S.; Alhusaini, H.; Allehebi, A.; Ansari, J.; Alnassar, M.; Jafar, H.; Alfarsi, A.; Abdelhafeez, N.; Alkattan, K. Management guidelines for stage III non-small cell lung cancer. Crit. Rev. Oncol. Hematol., 2021, 157, 103144.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103144] [PMID: 33254035]
[9]
WHO. Pneumonia in children. 2022. Available From: https://www.who.int/news-room/fact-sheets/detail/pneumonia
[10]
Doroudian, M.; O’ Neill, A.; Mac Loughlin, R.; Prina-Mello, A.; Volkov, Y.; Donnelly, S.C. Nanotechnology in pulmonary medicine. Curr. Opin. Pharmacol., 2021, 56, 85-92.
[http://dx.doi.org/10.1016/j.coph.2020.11.002] [PMID: 33341460]
[11]
Sharma, P.; Mehta, M.; Dhanjal, D.S.; Kaur, S.; Gupta, G.; Singh, H.; Thangavelu, L.; Rajeshkumar, S.; Tambuwala, M.; Bakshi, H.A.; Chellappan, D.K.; Dua, K.; Satija, S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact., 2019, 309, 108720.
[http://dx.doi.org/10.1016/j.cbi.2019.06.033] [PMID: 31226287]
[12]
Yıldız-Peköz, A.; Ehrhardt, C. Advances in Pulmonary Drug Delivery. Pharmaceutics, 2020, 12(10), 911.
[13]
Azarmi, S.; Roa, W.H.; Löbenberg, R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliv. Rev., 2008, 60(8), 863-875.
[http://dx.doi.org/10.1016/j.addr.2007.11.006] [PMID: 18308418]
[14]
Tiwari, G.; Tiwari, R.; Bannerjee, S.K.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, B. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[15]
Chandel, A.; Goyal, A.K.; Ghosh, G.; Rath, G. Recent advances in aerosolised drug delivery. Biomed. Pharmacother., 2019, 112, 108601.
[http://dx.doi.org/10.1016/j.biopha.2019.108601] [PMID: 30780107]
[16]
Cazzola, M.; Cavalli, F.; Usmani, O.S.; Rogliani, P. Advances in pulmonary drug delivery devices for the treatment of chronic obstructive pulmonary disease. Expert Opin. Drug Deliv., 2020, 17(5), 635-646.
[http://dx.doi.org/10.1080/17425247.2020.1739021] [PMID: 32130023]
[17]
Melani, A.S. Inhalatory therapy training: A priority challenge for the physician. Acta Biomed., 2007, 78(3), 233-245.
[PMID: 18330086]
[18]
Ibrahim, M.; Verma, R.; Garcia-Contreras, L. 2015, Inhalation drug delivery devices: Technology update. Med. Devices (Auckl.), 2015, 8, 131-139.
[19]
Patwa, A.; Shah, A. Anatomy and physiology of respiratory system relevant to anaesthesia. Indian J. Anaesth., 2015, 59(9), 533-541.
[http://dx.doi.org/10.4103/0019-5049.165849] [PMID: 26556911]
[20]
Intagliata, S.; Rizzo, A.; Gossman, W. Physiology, lung dead space; StatPearls: St. Petersburg, Florida, 2018.
[21]
Ganesan, S.; Comstock, A.T.; Sajjan, U.S. Barrier function of airway tract epithelium. Tissue Barriers, 2013, 1(4), e24997.
[http://dx.doi.org/10.4161/tisb.24997] [PMID: 24665407]
[22]
Bustamante-Marin, X.M.; Ostrowski, L.E. Cilia and mucociliary clearance. Cold Spring Harb. Perspect. Biol., 2017, 9(4), a028241.
[http://dx.doi.org/10.1101/cshperspect.a028241] [PMID: 27864314]
[23]
Trapnell, B.C.; Whitsett, J.A. Gm-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu. Rev. Physiol., 2002, 64(1), 775-802.
[http://dx.doi.org/10.1146/annurev.physiol.64.090601.113847] [PMID: 11826288]
[24]
Liu, Q.; Guan, J.; Qin, L.; Zhang, X.; Mao, S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov. Today, 2020, 25(1), 150-159.
[http://dx.doi.org/10.1016/j.drudis.2019.09.023] [PMID: 31600580]
[25]
Kilburn, K.H. A hypothesis for pulmonary clearance and its implications. Am. Rev. Respir. Dis., 1968, 98(3), 449-463.
[PMID: 5691682]
[26]
Zissel, G.; Ernst, M.; Rabe, K.; Papadopoulos, T.; Magnussen, H.; Schlaak, M. Human alveolar epithelial cells type II are capable of regulating T-cell activity. J. Investig. Med., 2000, 48(1), 66-75.
[27]
Chen, J.; Chen, Z.; Narasaraju, T.; Jin, N.; Liu, L. Isolation of highly pure alveolar epithelial type I and type II cells from rat lungs. Lab. Invest., 2004, 84(6), 727-735.
[http://dx.doi.org/10.1038/labinvest.3700095] [PMID: 15077123]
[28]
Tao, H.; Xu, Y.; Zhang, S. The Role of Macrophages and Alveolar Epithelial Cells in the Development of ARDS. Inflammation, 2022, 1-9.
[PMID: 36048270]
[29]
Veldhuizen, R.; Nag, K.; Orgeig, S.; Possmayer, F. The role of lipids in pulmonary surfactant. Biochim. Biophys. Acta Mol. Basis Dis., 1998, 1408(2-3), 90-108.
[http://dx.doi.org/10.1016/S0925-4439(98)00061-1]
[30]
Chroneos, Z.; Sever-Chroneos, Z.; Shepherd, V. Pulmonary surfactant: An immunological perspective Cell. Physiol. Biochem., 2010, 25(1), 013-026.
[http://dx.doi.org/10.1159/000272047] [PMID: 20054141]
[31]
Hogg, J.C. Response of the lung to inhaled particles. Med. J. Aust., 1985, 142(13), 675-678.
[http://dx.doi.org/10.5694/j.1326-5377.1985.tb113589.x] [PMID: 4010587]
[32]
Lombry, C.; Edwards, D.A.; Préat, V.; Vanbever, R. Alveolar macrophages are a primary barrier to pulmonary absorption of macromolecules. Am. J. Physiol. Lung Cell. Mol. Physiol., 2004, 286(5), L1002-L1008.
[http://dx.doi.org/10.1152/ajplung.00260.2003] [PMID: 14695119]
[33]
Oberdörster, G.; Cox, C.; Gelein, R. Intratracheal instillation versus intratracheal-inhalation of tracer particles for measuring lung clearance function. Exp. Lung Res., 1997, 23(1), 17-34.
[http://dx.doi.org/10.3109/01902149709046045] [PMID: 9028797]
[34]
Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect., 2005, 113(7), 823-839.
[http://dx.doi.org/10.1289/ehp.7339] [PMID: 16002369]
[35]
Videira, M.A.; Botelho, M.F.; Santos, A.C.; Gouveia, L.F.; Pedroso de Lima, J.J.; Almeida, A.J. Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J. Drug Target., 2002, 10(8), 607-613.
[http://dx.doi.org/10.1080/1061186021000054933] [PMID: 12683665]
[36]
Luo, M.X.; Hua, S.; Shang, Q.Y. Application of nanotechnology in drug delivery systems for respiratory diseases (Review). Mol. Med. Rep., 2021, 23(5), 325.
[http://dx.doi.org/10.3892/mmr.2021.11964] [PMID: 33760125]
[37]
Andrade, F.; Rafael, D.; Videira, M.; Ferreira, D.; Sosnik, A.; Sarmento, B. Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1816-1827.
[http://dx.doi.org/10.1016/j.addr.2013.07.020] [PMID: 23932923]
[38]
Chvatal, A.; Farkas, Á.; Balásházy, I.; Szabó-Révész, P.; Ambrus, R. Aerodynamic properties and in silico deposition of meloxicam potassium incorporated in a carrier-free DPI pulmonary system. Int. J. Pharm., 2017, 520(1-2), 70-78.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.070] [PMID: 28161667]
[39]
Carvalho, T.C.; Peters, J.I.; Williams, R.O., III Influence of particle size on regional lung deposition – What evidence is there? Int. J. Pharm., 2011, 406(1-2), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.040] [PMID: 21232585]
[40]
Gerrity, T.R.; Lee, P.S.; Hass, F.J.; Marinelli, A.; Werner, P.; Lourenço, R.V. Calculated deposition of inhaled particles in the airway generations of normal subjects. J. Appl. Physiol., 1979, 47(4), 867-873.
[http://dx.doi.org/10.1152/jappl.1979.47.4.867] [PMID: 511695]
[41]
Fernández Tena, A.; Casan Clarà, P. Deposition of inhaled particles in the lungs. Arch. Bronconeumol., 2012, 48(7), 240-246.
[http://dx.doi.org/10.1016/j.arbr.2012.02.006] [PMID: 22464044]
[42]
Mulla, J.A.S.; Mabrouk, M.; Choonara, Y.E.; Kumar, P.; Chejara, D.R.; du Toit, L.C.; Pillay, V. Development of respirable rifampicin-loaded nano-lipomer composites by microemulsion-spray drying for pulmonary delivery. J. Drug Deliv. Sci. Technol., 2017, 41, 13-19.
[http://dx.doi.org/10.1016/j.jddst.2017.06.017]
[43]
Ravi Kumar, M.N. Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharm. Sci., 2000, 3(2), 234-258.
[PMID: 10994037]
[44]
Chaudhary, K.R.; Kujur, S.; Singh, K. Recent Advances of Nanotechnology in COVID 19: A critical review and future perspective. OpenNano, 2023, 9, 100118.
[45]
Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects, 2019, 20, 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[46]
Ahmad, A.; Gadgeel, S.M. Lung cancer and personalized medicine: Novel therapies and clinical management; Springer: Berlin, Heidelberg, 2016.
[http://dx.doi.org/10.1007/978-3-319-24223-1]
[47]
Sharma, A.; Goyal, A.K.; Rath, G. Recent advances in metal nanoparticles in cancer therapy. J. Drug Target., 2018, 26(8), 617-632.
[http://dx.doi.org/10.1080/1061186X.2017.1400553] [PMID: 29095640]
[48]
Andleeb, A.; Andleeb, A.; Asghar, S.; Zaman, G.; Tariq, M.; Mehmood, A.; Nadeem, M.; Hano, C.; Lorenzo, J.M.; Abbasi, B.H. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers (Basel), 2021, 13(11), 2818.
[http://dx.doi.org/10.3390/cancers13112818] [PMID: 34198769]
[49]
Craparo, E.F.; Cabibbo, M.; Scialabba, C.; Giammona, G.; Cavallaro, G. Inhalable Formulation Based on Lipid–Polymer Hybrid Nanoparticles for the Macrophage Targeted Delivery of Roflumilast. Biomacromolecules, 2022, 23(8), 3439-3451.
[http://dx.doi.org/10.1021/acs.biomac.2c00576] [PMID: 35899612]
[50]
Mohamed, A.; Pekoz, A.Y.; Ross, K.; Hutcheon, G.A.; Saleem, I.Y. Pulmonary delivery of Nanocomposite Microparticles (NCMPs) incorporating miR-146a for treatment of COPD. Int. J. Pharm., 2019, 569, 118524.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118524] [PMID: 31319144]
[51]
Sabuj, M.Z.R.; Huygens, F.; Spann, K.M.; Tarique, A.A.; Dargaville, T.R.; Will, G.; Wahab, M.A.; Islam, N. Cytotoxic and Bactericidal Effects of Inhalable Ciprofloxacin-Loaded Poly(2-ethyl-2-oxazoline) Nanoparticles with Traces of Zinc Oxide. Int. J. Mol. Sci., 2023, 24(5), 4532.
[http://dx.doi.org/10.3390/ijms24054532] [PMID: 36901963]
[52]
Kwon, Y.B.; Kang, J.H.; Kim, Y.J.; Kim, D.W.; Lee, S.H.; Park, C.W. Preparation and Evaluation of Mucus-Penetrating Inhalable Microparticles of Tiotropium Bromide Containing Sodium Glycocholate. Pharmaceutics, 2022, 14(7), 1409.
[http://dx.doi.org/10.3390/pharmaceutics14071409] [PMID: 35890304]
[53]
Li, J.; Zheng, H.; Xu, E.Y.; Moehwald, M.; Chen, L.; Zhang, X.; Mao, S. Inhalable PLGA microspheres: Tunable lung retention and systemic exposure via polyethylene glycol modification. Acta Biomater., 2021, 123, 325-334.
[http://dx.doi.org/10.1016/j.actbio.2020.12.061] [PMID: 33454386]
[54]
Abdel-Gawad, R.; Osman, R.; Awad, G.A.S.; Mortada, N. Lecithin-based modified soft agglomerate composite microparticles for inhalable montelukast: Development, tolerability and pharmacodynamic activity. Powder Technol., 2020, 360, 1167-1176.
[http://dx.doi.org/10.1016/j.powtec.2019.11.029]
[55]
Chen, J.; Ahmed, M.U.; Zhu, C.; Yu, S.; Pan, W.; Velkov, T.; Li, J.; Tony Zhou, Q. In vitro evaluation of drug delivery behavior for inhalable amorphous nanoparticle formulations in a human lung epithelial cell model. Int. J. Pharm., 2021, 596, 120211.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120211] [PMID: 33486036]
[56]
Patel, K.K.; Tripathi, M.; Pandey, N.; Agrawal, A.K.; Gade, S.; Anjum, M.M.; Tilak, R.; Singh, S. Alginate lyase immobilized chitosan nanoparticles of ciprofloxacin for the improved antimicrobial activity against the biofilm associated mucoid P. aeruginosa infection in cystic fibrosis. Int. J. Pharm., 2019, 563, 30-42.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.051] [PMID: 30926526]
[57]
Bai, X.; Zhao, G.; Chen, Q.; Li, Z.; Gao, M.; Ho, W.; Xu, X.; Zhang, X.Q. Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. Sci. Adv., 2022, 8(25), eabn7162.
[http://dx.doi.org/10.1126/sciadv.abn7162] [PMID: 35731866]
[58]
Cresti, L.; Conte, G.; Cappello, G.; Brunetti, J.; Falciani, C.; Bracci, L.; Quaglia, F.; Ungaro, F.; d’Angelo, I.; Pini, A. Inhalable polymeric nanoparticles for pulmonary delivery of antimicrobial peptide SET-M33: Antibacterial activity and toxicity in vitro and in vivo. Pharmaceutics, 2022, 15(1), 3.
[http://dx.doi.org/10.3390/pharmaceutics15010003] [PMID: 36678633]
[59]
Costabile, G.; Mitidieri, E.; Visaggio, D.; Provenzano, R.; Miro, A.; Quaglia, F.; d’Angelo, I.; Frangipani, E.; Sorrentino, R.; Visca, P.; d’Emmanuele di Villa Bianca, R.; Ungaro, F. Boosting lung accumulation of gallium with inhalable nano-embedded microparticles for the treatment of bacterial pneumonia. Int. J. Pharm., 2022, 629, 122400.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122400] [PMID: 36384182]
[60]
Wang, Q.; Shen, Y.; Mi, G.; He, D.; Zhang, Y.; Xiong, Y.; Webster, T.J.; Tu, J. Fumaryl diketopiperazine based effervescent microparticles to escape macrophage phagocytosis for enhanced treatment of pneumonia via pulmonary delivery. Biomaterials, 2020, 228, 119575.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119575] [PMID: 31677394]
[61]
Abdelaziz, M.M.; Hefnawy, A.; Anter, A.; Abdellatif, M.M.; Khalil, M.A.F.; Khalil, I.A. Inhalable vancomycin-loaded lactose microparticles for treatment of MRSA pneumonia. J. Drug Deliv. Sci. Technol., 2023, 80, 104150.
[http://dx.doi.org/10.1016/j.jddst.2023.104150]
[62]
Ren, H.M.; Han, L.; Zhang, L.; Zhao, Y.Q.; Lei, C.; Xiu, Z.; Zhao, N.; Yu, B.; Zhou, F.; Duan, S.; Xu, F-J. Inhalable responsive polysaccharide-based antibiotic delivery nanoparticles to overcome mucus barrier for lung infection treatment. Nano Today, 2022, 44, 101489.
[http://dx.doi.org/10.1016/j.nantod.2022.101489]
[63]
Mehanny, M.; Boese, A.; Bornamehr, B.; Hoppstädter, J.; Presser, V.; Kiemer, A.K.; Lehr, C.M.; Fuhrmann, G. Spray-dried pneumococcal membrane vesicles are promising candidates for pulmonary immunization. Int. J. Pharm., 2022, 621, 121794.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121794] [PMID: 35525468]
[64]
Teymouri Rad, R.; Dadashzadeh, S.; Vatanara, A.; Alavi, S.; Ghasemian, E.; Mortazavi, S.A. Tadalafil nanocomposites as a dry powder formulation for inhalation, a new strategy for pulmonary arterial hypertension treatment. Eur. J. Pharm. Sci., 2019, 133, 275-286.
[http://dx.doi.org/10.1016/j.ejps.2019.04.001] [PMID: 30953751]
[65]
Zhang, H.; Hao, L.Z.; Pan, J.A.; Gao, Q.; Zhang, J.F.; Kankala, R.K.; Wang, S.B.; Chen, A.Z.; Zhang, H.L. Microfluidic fabrication of inhalable large porous microspheres loaded with H2S-releasing aspirin derivative for pulmonary arterial hypertension therapy. J. Control. Release, 2021, 329, 286-298.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.060] [PMID: 33279605]
[66]
Shahin, H.I.; Vinjamuri, B.P.; Mahmoud, A.A.; Shamma, R.N.; Mansour, S.M.; Ammar, H.O.; Ghorab, M.M.; Chougule, M.B.; Chablani, L. Design and evaluation of novel inhalable sildenafil citrate spray-dried microparticles for pulmonary arterial hypertension. J. Control. Release, 2019, 302, 126-139.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.029] [PMID: 30940497]
[67]
Lee, H.J.; Kwon, Y.B.; Kang, J.H.; Oh, D.W.; Park, E.S.; Rhee, Y.S.; Kim, J.Y.; Shin, D.H.; Kim, D.W.; Park, C.W. Inhaled bosentan microparticles for the treatment of monocrotaline-induced pulmonary arterial hypertension in rats. J. Control. Release, 2021, 329, 468-481.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.050] [PMID: 32871206]
[68]
Dhoble, S.; Ghodake, V.; Peshattiwar, V.; Patravale, V. Site-specific delivery of inhalable antiangiogenic liposomal dry powder inhaler technology ameliorates experimental pulmonary hypertension. J. Drug Deliv. Sci. Technol., 2021, 62, 102396.
[http://dx.doi.org/10.1016/j.jddst.2021.102396]
[69]
Muralidharan, P.; Acosta, M.F.; Gomez, A.I.; Grijalva, C.; Tang, H.; Yuan, J.X.J.; Mansour, H.M. Design and comprehensive characterization of tetramethylpyrazine (TMP) for targeted lung delivery as inhalation aerosols in pulmonary hypertension (PH): In vitro human lung cell culture and in vivo efficacy. Antioxidants, 2021, 10(3), 427.
[http://dx.doi.org/10.3390/antiox10030427] [PMID: 33799587]
[70]
Makled, S.; Boraie, N.; Nafee, N. Nanoparticle-mediated macrophage targeting—a new inhalation therapy tackling tuberculosis. Drug Deliv. Transl. Res., 2021, 11(3), 1037-1055.
[http://dx.doi.org/10.1007/s13346-020-00815-3] [PMID: 32617866]
[71]
Puri, V.; Chaudhary, K.R.; Singh, A.; Singh, C. Inhalation potential of N-Acetylcysteine loaded PLGA nanoparticles for the management of tuberculosis: In vitro lung deposition and efficacy studies. Current Research in Pharmacology and Drug Discovery, 2022, 3, 100084.
[http://dx.doi.org/10.1016/j.crphar.2022.100084] [PMID: 35112077]
[72]
Ma, C.; Wu, M.; Ye, W.; Huang, Z.; Ma, X.; Wang, W.; Wang, W.; Huang, Y.; Pan, X.; Wu, C. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: Macrophage-targeting and pH-sensitive properties. Drug Deliv. Transl. Res., 2021, 11(3), 1218-1235.
[http://dx.doi.org/10.1007/s13346-020-00849-7] [PMID: 32946043]
[73]
Singh, A.K.; Verma, R.K.; Mukker, J.K.; Yadav, A.B.; Muttil, P.; Sharma, R.; Mohan, M.; Agrawal, A.K.; Gupta, A.; Dwivedi, A.K.; Gupta, P.; Gupta, U.D.; Mani, U.; Chaudhari, B.P.; Murthy, R.C.; Sharma, S.; Bhadauria, S.; Singh, S.; Rath, S.K.; Misra, A. Inhalable particles containing isoniazid and rifabutin as adjunct therapy for safe, efficacious and relapse-free cure of experimental animal tuberculosis in one month. Tuberculosis (Edinb.), 2021, 128, 102081.
[http://dx.doi.org/10.1016/j.tube.2021.102081] [PMID: 33915379]
[74]
Sharma, A.; Vaghasiya, K.; Gupta, P.; Singh, A.K.; Gupta, U.D.; Verma, R.K. Dynamic mucus penetrating microspheres for efficient pulmonary delivery and enhanced efficacy of host defence peptide (HDP) in experimental tuberculosis. J. Control. Release, 2020, 324, 17-33.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.013] [PMID: 32418903]
[75]
Shah, S.; Cristopher, D.; Sharma, S.; Soniwala, M.; Chavda, J. Inhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: Design, development and in vitro evaluation. J. Drug Deliv. Sci. Technol., 2020, 60, 102013.
[http://dx.doi.org/10.1016/j.jddst.2020.102013]
[76]
Rodrigues, S.; da Costa, A.; Flórez-Fernández, N.; Torres, M.; Faleiro, M.; Buttini, F.; Grenha, A. Inhalable spray-dried chondroitin sulphate microparticles: Effect of different solvents on particle properties and drug activity. Polymers (Basel), 2020, 12(2), 425.
[http://dx.doi.org/10.3390/polym12020425] [PMID: 32059360]
[77]
Vishwa, B.; Moin, A.; Gowda, D.V.; Rizvi, S.M.D.; Hegazy, W.A.H.; Abu Lila, A.S.; Khafagy, E.S.; Allam, A.N. Pulmonary targeting of inhalable moxifloxacin microspheres for effective management of tuberculosis. Pharmaceutics, 2021, 13(1), 79.
[http://dx.doi.org/10.3390/pharmaceutics13010079] [PMID: 33430162]
[78]
Shao, Z.; Tai, W.; Qiu, Y.; Man, R.C.H.; Liao, Q.; Chow, M.Y.T.; Kwok, P.C.L.; Lam, J.K.W. Spray-dried powder formulation of capreomycin designed for inhaled tuberculosis therapy. Pharmaceutics, 2021, 13(12), 2044.
[http://dx.doi.org/10.3390/pharmaceutics13122044] [PMID: 34959328]
[79]
Shao, Z.; Chow, M.Y.T.; Chow, S.F.; Lam, J.K.W. Co-Delivery of D-LAK Antimicrobial Peptide and Capreomycin as Inhaled Powder Formulation to Combat Drug-Resistant Tuberculosis. Pharm. Res., 2023, 40(5), 1073-1086.
[http://dx.doi.org/10.1007/s11095-023-03488-y] [PMID: 36869245]
[80]
Galdopórpora, J.M.; Martinena, C.; Bernabeu, E.; Riedel, J.; Palmas, L.; Castangia, I.; Manca, M.L.; Garcés, M.; Lázaro-Martinez, J.; Salgueiro, M.J.; Evelson, P.; Tateosian, N.L.; Chiappetta, D.A.; Moretton, M.A. Inhalable mannosylated rifampicin–curcumin co-loaded nanomicelles with enhanced in vitroantimicrobial efficacy for an optimized pulmonary tuberculosis therapy. Pharmaceutics, 2022, 14(5), 959.
[http://dx.doi.org/10.3390/pharmaceutics14050959] [PMID: 35631546]
[81]
Bahlool, A.Z.; Fattah, S.; O’Sullivan, A.; Cavanagh, B.; MacLoughlin, R.; Keane, J.; O’Sullivan, M.P.; Cryan, S.A. Development of inhalable ATRA-Loaded PLGA nanoparticles as host-directed immunotherapy against tuberculosis. Pharmaceutics, 2022, 14(8), 1745.
[http://dx.doi.org/10.3390/pharmaceutics14081745] [PMID: 36015371]
[82]
O’Connor, G.; Krishnan, N.; Fagan-Murphy, A.; Cassidy, J.; O’Leary, S.; Robertson, B.D.; Keane, J.; O’Sullivan, M.P.; Cryan, S.A. Inhalable poly(lactic-co-glycolic acid) (PLGA) microparticles encapsulating all-trans-Retinoic acid (ATRA) as a host-directed, adjunctive treatment for Mycobacterium tuberculosis infection. Eur. J. Pharm. Biopharm., 2019, 134, 153-165.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.020] [PMID: 30385419]
[83]
Shiehzadeh, F.; Hadizadeh, F.; Mohammadpour, A.; Aryan, E.; Gholami, L.; Tafaghodi, M. Streptomycin sulfate dry powder inhalers for the new tuberculosis treatment schedule. J. Drug Deliv. Sci. Technol., 2019, 52, 957-967.
[http://dx.doi.org/10.1016/j.jddst.2019.05.052]
[84]
Mehanna, M.M.; Mohyeldin, S.M.; Elgindy, N.A. Rifampicin-carbohydrate spray-dried nanocomposite: A futuristic multiparticulate platform for pulmonary delivery. Int. J. Nanomedicine, 2019, 14, 9089-9112.
[http://dx.doi.org/10.2147/IJN.S211182] [PMID: 31819421]
[85]
Grotz, E.; Tateosian, N.L.; Salgueiro, J.; Bernabeu, E.; Gonzalez, L.; Manca, M.L.; Amiano, N.; Valenti, D.; Manconi, M.; García, V.; Moretton, M.A.; Chiappetta, D.A. Pulmonary delivery of rifampicin-loaded soluplus micelles against Mycobacterium tuberculosis. J. Drug Deliv. Sci. Technol., 2019, 53, 101170.
[http://dx.doi.org/10.1016/j.jddst.2019.101170]
[86]
Momin, M.A.M.; Rangnekar, B.; Sinha, S.; Cheung, C.Y.; Cook, G.M.; Das, S.C. Inhalable dry powder of bedaquiline for pulmonary tuberculosis: In vitro physicochemical characterization, antimicrobial activity and safety studies. Pharmaceutics, 2019, 11(10), 502.
[http://dx.doi.org/10.3390/pharmaceutics11100502] [PMID: 31581469]
[87]
Cunha, L.; Rodrigues, S.; Rosa da Costa, A.M.; Faleiro, L.; Buttini, F.; Grenha, A. Inhalable chitosan microparticles for simultaneous delivery of isoniazid and rifabutin in lung tuberculosis treatment. Drug Dev. Ind. Pharm., 2019, 45(8), 1313-1320.
[http://dx.doi.org/10.1080/03639045.2019.1608231] [PMID: 30990096]
[88]
Yunus Basha, R. T S, S.K.; Doble, M. Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydr. Polym., 2019, 218, 53-62.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.056] [PMID: 31221343]
[89]
Li, W.; Chen, S.; Zhang, L.; Zhang, Y.; Yang, X.; Xie, B.; Guo, J.; He, Y.; Wang, C. Inhalable functional mixed-polymer microspheres to enhance doxorubicin release behavior for lung cancer treatment. Colloids Surf. B Biointerfaces, 2020, 196, 111350.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111350] [PMID: 32911292]
[90]
Ray, E.; Vaghasiya, K.; Sharma, A.; Shukla, R.; Khan, R.; Kumar, A.; Verma, R.K. Autophagy-inducing inhalable co-crystal formulation of niclosamide-nicotinamide for lung cancer therapy. AAPS PharmSciTech, 2020, 21(7), 260.
[http://dx.doi.org/10.1208/s12249-020-01803-z] [PMID: 32944787]
[91]
Abdelaziz, H.M.; Elzoghby, A.O.; Helmy, M.W.; Samaha, M.W.; Fang, J.Y.; Freag, M.S. Liquid crystalline assembly for potential combinatorial chemo–herbal drug delivery to lung cancer cells. Int. J. Nanomedicine, 2019, 14, 499-517.
[http://dx.doi.org/10.2147/IJN.S188335] [PMID: 30666110]
[92]
Parvathaneni, V.; Kulkarni, N.S.; Shukla, S.K.; Farrales, P.T.; Kunda, N.K.; Muth, A.; Gupta, V. Systematic development and optimization of inhalable pirfenidone liposomes for non-small cell lung cancer treatment. Pharmaceutics, 2020, 12(3), 206.
[http://dx.doi.org/10.3390/pharmaceutics12030206] [PMID: 32121070]
[93]
Parvathaneni, V.; Elbatanony, R.S.; Goyal, M.; Chavan, T.; Vega, N.; Kolluru, S.; Muth, A.; Gupta, V.; Kunda, N.K. Repurposing bedaquiline for effective non-small cell lung cancer (NSCLC) therapy as inhalable cyclodextrin-based molecular inclusion complexes. Int. J. Mol. Sci., 2021, 22(9), 4783.
[http://dx.doi.org/10.3390/ijms22094783] [PMID: 33946414]
[94]
Parvathaneni, V.; Kulkarni, N.S.; Chauhan, G.; Shukla, S.K.; Elbatanony, R.; Patel, B.; Kunda, N.K.; Muth, A.; Gupta, V. Development of pharmaceutically scalable inhaled anti-cancer nanotherapy – Repurposing amodiaquine for non-small cell lung cancer (NSCLC). Mater. Sci. Eng. C, 2020, 115, 111139.
[http://dx.doi.org/10.1016/j.msec.2020.111139] [PMID: 32600728]
[95]
Elbatanony, R.S.; Parvathaneni, V.; Kulkarni, N.S.; Shukla, S.K.; Chauhan, G.; Kunda, N.K.; Gupta, V. Afatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small cell lung cancer (NSCLC)—development and in-vitro efficacy. Drug Deliv. Transl. Res., 2021, 11(3), 927-943.
[http://dx.doi.org/10.1007/s13346-020-00802-8] [PMID: 32557351]
[96]
Patil, S.M.; Sawant, S.S.; Kunda, N.K. Inhalable bedaquiline-loaded cubosomes for the treatment of non-small cell lung cancer (NSCLC). Int. J. Pharm., 2021, 607, 121046.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121046] [PMID: 34450225]
[97]
Satari, N.; Taymouri, S.; Varshosaz, J.; Rostami, M.; Mirian, M. Preparation and evaluation of inhalable dry powder containing glucosamine-conjugated gefitinib SLNs for lung cancer therapy. Drug Dev. Ind. Pharm., 2020, 46(8), 1265-1277.
[http://dx.doi.org/10.1080/03639045.2020.1788063] [PMID: 32594775]
[98]
Vaidya, B.; Kulkarni, N.S.; Shukla, S.K.; Parvathaneni, V.; Chauhan, G.; Damon, J.K.; Sarode, A.; Garcia, J.V.; Kunda, N.; Mitragotri, S.; Gupta, V. Development of inhalable quinacrine loaded bovine serum albumin modified cationic nanoparticles: Repurposing quinacrine for lung cancer therapeutics. Int. J. Pharm., 2020, 577, 118995.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118995] [PMID: 31935471]
[99]
Shukla, S.K.; Kulkarni, N.S.; Farrales, P.; Kanabar, D.D.; Parvathaneni, V.; Kunda, N.K.; Muth, A.; Gupta, V. Sorafenib loaded inhalable polymeric nanocarriers against non-small cell lung cancer. Pharm. Res., 2020, 37(3), 67.
[http://dx.doi.org/10.1007/s11095-020-02790-3] [PMID: 32166411]
[100]
Wang, X.; Parvathaneni, V.; Shukla, S.K.; Kulkarni, N.S.; Muth, A.; Kunda, N.K.; Gupta, V. Inhalable resveratrol-cyclodextrin complex loaded biodegradable nanoparticles for enhanced efficacy against non-small cell lung cancer. Int. J. Biol. Macromol., 2020, 164, 638-650.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.124] [PMID: 32693132]
[101]
Abdelrady, H.; Hathout, R.M.; Osman, R.; Saleem, I.; Mortada, N.D. Exploiting gelatin nanocarriers in the pulmonary delivery of methotrexate for lung cancer therapy. Eur. J. Pharm. Sci., 2019, 133, 115-126.
[http://dx.doi.org/10.1016/j.ejps.2019.03.016] [PMID: 30905615]
[102]
Torrico Guzmán, E.A.; Sun, Q.; Meenach, S.A. Development and evaluation of paclitaxel-loaded aerosol nanocomposite microparticles and their efficacy against air-grown lung cancer tumor spheroids. ACS Biomater. Sci. Eng., 2019, 5(12), 6570-6580.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00947] [PMID: 32133390]
[103]
Yang, Y.; Huang, Z.; Li, J.; Mo, Z.; Huang, Y.; Ma, C.; Wang, W.; Pan, X.; Wu, C. PLGA porous microspheres dry powders for codelivery of afatinib‐loaded solid lipid nanoparticles and paclitaxel: Novel therapy for EGFR tyrosine kinase inhibitors resistant nonsmall cell lung cancer. Adv. Healthc. Mater., 2019, 8(23), 1900965.
[http://dx.doi.org/10.1002/adhm.201900965] [PMID: 31664795]
[104]
Otu, A.; Kosmidis, C.; Mathioudakis, A.G.; Ibe, C.; Denning, D.W. The clinical spectrum of aspergillosis in chronic obstructive pulmonary disease. Infection, 2023, 51(4), 813-829.
[http://dx.doi.org/10.1007/s15010-022-01960-2] [PMID: 36662439]
[105]
Domej, W.; Oetll, K.; Renner, W. Oxidative stress and free radicals in COPD – implications and relevance for treatment. Int. J. Chron. Obstruct. Pulmon. Dis., 2014, 9, 1207-1224.
[http://dx.doi.org/10.2147/COPD.S51226] [PMID: 25378921]
[106]
Rogers, D.F. Mucoactive agents for airway mucus hypersecretory diseases. Respir. Care, 2007, 52(9), 1176-1193.
[PMID: 17716385]
[107]
Rogers, D. Airway mucus hypersecretion in asthma: An undervalued pathology? Curr. Opin. Pharmacol., 2004, 4(3), 241-250.
[http://dx.doi.org/10.1016/j.coph.2004.01.011] [PMID: 15140415]
[108]
Silva, G.E.; Sherrill, D.L.; Guerra, S.; Barbee, R.A. Asthma as a risk factor for COPD in a longitudinal study. Chest, 2004, 126(1), 59-65.
[http://dx.doi.org/10.1378/chest.126.1.59] [PMID: 15249443]
[109]
Barnes, P.J. Inflammatory endotypes in COPD. Allergy, 2019, 74(7), 1249-1256.
[http://dx.doi.org/10.1111/all.13760] [PMID: 30834543]
[110]
Laumbach, R.J.; Kipen, H.M. Respiratory health effects of air pollution: Update on biomass smoke and traffic pollution. J. Allergy Clin. Immunol., 2012, 129(1), 3-11.
[http://dx.doi.org/10.1016/j.jaci.2011.11.021] [PMID: 22196520]
[111]
Wadhwa, R.; Aggarwal, T.; Thapliyal, N.; Chellappan, D.K.; Gupta, G.; Gulati, M. Nanoparticle-based drug delivery for chronic obstructive pulmonary disorder and asthma: Progress and challenges.Nanotechnology in Modern Animal Biotechnology: Concepts and Applications; Elsevier: Philadelphia, USA, 2019, p. 99.
[112]
Newman, S.P. Delivering drugs to the lungs: The history of repurposing in the treatment of respiratory diseases. Adv. Drug Deliv. Rev., 2018, 133, 5-18.
[http://dx.doi.org/10.1016/j.addr.2018.04.010] [PMID: 29653129]
[113]
Roesch, E.A.; Nichols, D.P.; Chmiel, J.F. Inflammation in cystic fibrosis: An update. Pediatr. Pulmonol., 2018, 53(S3), S30-S50.
[http://dx.doi.org/10.1002/ppul.24129] [PMID: 29999593]
[114]
Wilson, M.; Wynn, T. Pulmonary fibrosis: Pathogenesis, etiology and regulation. Mucosal Immunol., 2009, 2(2), 103-121.
[http://dx.doi.org/10.1038/mi.2008.85]
[115]
Pompilio, A.; Scocchi, M.; Pomponio, S.; Guida, F.; Di Primio, A.; Fiscarelli, E.; Gennaro, R.; Di Bonaventura, G. Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides, 2011, 32(9), 1807-1814.
[http://dx.doi.org/10.1016/j.peptides.2011.08.002] [PMID: 21849157]
[116]
Shahabi, R.; Dehghani, M.; Javad Moosavi, S.A.; Shahabi, B.; Poordakan, O.; Sadeghi, M.; Aryan, L.; Ghasempoor, A.; Aghanasiri, F.; Mohseni, M.; Mehravi, B. The effect of nanoparticles on pulmonary fibrosis: A systematic review and Meta-analysis of preclinical studies. Arch. Environ. Occup. Health, 2022, 77(8), 684-694.
[http://dx.doi.org/10.1080/19338244.2021.2001637] [PMID: 35244528]
[117]
Seo, J.; Lee, C.; Hwang, H.S.; Kim, B.; Thao, L.Q.; Lee, E.S.; Oh, K.T.; Lim, J.L.; Choi, H.G.; Youn, Y.S. Therapeutic advantage of inhaled tacrolimus-bound albumin nanoparticles in a bleomycin-induced pulmonary fibrosis mouse model. Pulm. Pharmacol. Ther., 2016, 36, 53-61.
[http://dx.doi.org/10.1016/j.pupt.2016.01.001] [PMID: 26768967]
[118]
McCauley, L.; Dean, N. Pneumonia and empyema: Causal, casual or unknown. J. Thorac. Dis., 2015, 7(6), 992-998.
[PMID: 26150912]
[119]
Musher, D.M.; Abers, M.S.; Bartlett, J.G. Evolving understanding of the causes of pneumonia in adults, with special attention to the role of pneumococcus. Clin. Infect. Dis., 2017, 65(10), 1736-1744.
[http://dx.doi.org/10.1093/cid/cix549] [PMID: 29028977]
[120]
White, R.J.; Blainey, A.D.; Harrison, K.J.; Clarke, S.K. Causes of pneumonia presenting to a district general hospital. Thorax, 1981, 36(8), 566-570.
[http://dx.doi.org/10.1136/thx.36.8.566] [PMID: 7314031]
[121]
Bianchera, A.; Buttini, F.; Bettini, R. Micro/nanosystems and biomaterials for controlled delivery of antimicrobial and anti-biofilm agents. Expert Opin. Ther. Pat., 2020, 30(12), 983-1000.
[http://dx.doi.org/10.1080/13543776.2020.1839415] [PMID: 33078643]
[122]
Tang, J.; Ouyang, Q.; Li, Y.; Zhang, P.; Jin, W.; Qu, S.; Yang, F.; He, Z.; Qin, M. Nanomaterials for Delivering Antibiotics in the Therapy of Pneumonia. Int. J. Mol. Sci., 2022, 23(24), 15738.
[http://dx.doi.org/10.3390/ijms232415738] [PMID: 36555379]
[123]
Keshavarz, A.; Kadry, H.; Alobaida, A.; Ahsan, F. Newer approaches and novel drugs for inhalational therapy for pulmonary arterial hypertension. Expert Opin. Drug Deliv., 2020, 17(4), 439-461.
[http://dx.doi.org/10.1080/17425247.2020.1729119] [PMID: 32070157]
[124]
Tabima, D.M.; Frizzell, S.; Gladwin, M.T. Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic. Biol. Med., 2012, 52(9), 1970-1986.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.041] [PMID: 22401856]
[125]
Hoeper, M.M.; McLaughlin, V.V.; Dalaan, A.M.A.; Satoh, T.; Galiè, N. Treatment of pulmonary hypertension. Lancet Respir. Med., 2016, 4(4), 323-336.
[http://dx.doi.org/10.1016/S2213-2600(15)00542-1] [PMID: 26975811]
[126]
Lazo, R.E.L.; Mengarda, M.; Almeida, S.L.; Caldonazo, A.; Espinoza, J.T.; Murakami, F.S. Advanced formulations and nanotechnology-based approaches for pulmonary delivery of sildenafil: A scoping review. J. Control. Release, 2022, 350, 308-323.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.021] [PMID: 35995298]
[127]
Getahun, H.; Matteelli, A.; Chaisson, R.E.; Raviglione, M. Latent Mycobacterium tuberculosis infection. N. Engl. J. Med., 2015, 372(22), 2127-2135.
[http://dx.doi.org/10.1056/NEJMra1405427] [PMID: 26017823]
[128]
Natarajan, A.; Beena, P.M.; Devnikar, A.V.; Mali, S. A systemic review on tuberculosis. Indian J. Tuberc., 2020, 67(3), 295-311.
[http://dx.doi.org/10.1016/j.ijtb.2020.02.005] [PMID: 32825856]
[129]
Chaudhary, K.R.; Puri, V.; Singh, A.; Singh, C. A review on recent advances in nanomedicines for the treatment of pulmonary tuberculosis. J. Drug Deliv. Sci. Technol., 2022, 69, 103069.
[http://dx.doi.org/10.1016/j.jddst.2021.103069]
[130]
Chae, J.; Choi, Y.; Tanaka, M.; Choi, J. Inhalable nanoparticles delivery targeting alveolar macrophages for the treatment of pulmonary tuberculosis. J. Biosci. Bioeng., 2021, 132(6), 543-551.
[http://dx.doi.org/10.1016/j.jbiosc.2021.08.009] [PMID: 34538591]
[131]
Misra, A.; Hickey, A.J.; Rossi, C.; Borchard, G.; Terada, H.; Makino, K.; Fourie, P.B.; Colombo, P. Inhaled drug therapy for treatment of tuberculosis. Tuberculosis (Edinb.), 2011, 91(1), 71-81.
[http://dx.doi.org/10.1016/j.tube.2010.08.009] [PMID: 20875771]
[132]
Minna, J.D.; Roth, J.A.; Gazdar, A.F. Focus on lung cancer. Cancer Cell, 2002, 1(1), 49-52.
[http://dx.doi.org/10.1016/S1535-6108(02)00027-2] [PMID: 12086887]
[133]
Schabath, M.B.; Cote, M.L. Cancer progress and priorities: Lung cancer. Cancer Epidemiol. Biomarkers Prev., 2019, 28(10), 1563-1579.
[http://dx.doi.org/10.1158/1055-9965.EPI-19-0221] [PMID: 31575553]
[134]
Alberg, A.J.; Samet, J.M. Epidemiology of lung cancer. Chest, 2003, 123(1)(Suppl.), 21S-49S.
[http://dx.doi.org/10.1378/chest.123.1_suppl.21S] [PMID: 12527563]
[135]
Ahmad, J.; Akhter, S.; Rizwanullah, M.; Amin, S.; Rahman, M.; Ahmad, M.Z.; Rizvi, M.A.; Kamal, M.A.; Ahmad, F.J. Nanotechnology-based inhalation treatments for lung cancer: State of the art. Nanotechnol. Sci. Appl., 2015, 8, 55-66.
[PMID: 26640374]
[136]
Lee, W-H.; Loo, C-Y.; Traini, D.; Young, P.M. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges Asian J pharmaceut. Sci., 2015, 10(6), 481-489.
[137]
Kuzmov, A.; Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control. Release, 2015, 219, 500-518.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.024] [PMID: 26297206]
[138]
Braakhuis, H.M.; Park, M.V.D.Z.; Gosens, I.; De Jong, W.H.; Cassee, F.R. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part. Fibre Toxicol., 2014, 11(1), 18.
[http://dx.doi.org/10.1186/1743-8977-11-18] [PMID: 24725891]
[139]
Morimoto, Y.; Horie, M.; Kobayashi, N.; Shinohara, N.; Shimada, M. Inhalation toxicity assessment of carbon-based nanoparticles. Acc. Chem. Res., 2013, 46(3), 770-781.
[http://dx.doi.org/10.1021/ar200311b] [PMID: 22574947]
[140]
Losacco, C.; Perillo, A. Particulate matter air pollution and respiratory impact on humans and animals. Environ. Sci. Pollut. Res. Int., 2018, 25(34), 33901-33910.
[http://dx.doi.org/10.1007/s11356-018-3344-9] [PMID: 30284710]
[141]
Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; Peters, A.; Siscovick, D.; Smith, S.C., Jr; Whitsel, L.; Kaufman, J.D. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 2010, 121(21), 2331-2378.
[http://dx.doi.org/10.1161/CIR.0b013e3181dbece1] [PMID: 20458016]
[142]
Pope, C.A., III; Thun, M.J.; Namboodiri, M.M.; Dockery, D.W.; Evans, J.S.; Speizer, F.E.; Heath, C.W. Jr Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am. J. Respir. Crit. Care Med., 1995, 151(3_pt_1), 669-674.
[http://dx.doi.org/10.1164/ajrccm/151.3_Pt_1.669] [PMID: 7881654]
[143]
Dockery, D.W.; Pope, C.A., III Acute respiratory effects of particulate air pollution. Annu. Rev. Public Health, 1994, 15(1), 107-132.
[http://dx.doi.org/10.1146/annurev.pu.15.050194.000543] [PMID: 8054077]
[144]
Wu, J.Z.; Ge, D.D.; Zhou, L.F.; Hou, L.Y.; Zhou, Y.; Li, Q.Y. Effects of particulate matter on allergic respiratory diseases. Chronic Dis. Transl. Med., 2018, 4(2), 95-102.
[http://dx.doi.org/10.1016/j.cdtm.2018.04.001] [PMID: 29988900]
[145]
Geiser, M.; Kreyling, W.G. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol., 2010, 7(1), 2.
[http://dx.doi.org/10.1186/1743-8977-7-2] [PMID: 20205860]
[146]
Yang, W.; Peters, J.I.; Williams, R.O. III Inhaled nanoparticles—A current review. Int. J. Pharm., 2008, 356(1-2), 239-247.
[http://dx.doi.org/10.1016/j.ijpharm.2008.02.011] [PMID: 18358652]
[147]
Bachler, G.; Losert, S.; Umehara, Y.; von Goetz, N.; Rodriguez-Lorenzo, L.; Petri-Fink, A.; Rothen-Rutishauser, B.; Hungerbuehler, K. Translocation of gold nanoparticles across the lung epithelial tissue barrier: Combining in vitro and in silico methods to substitute in vivo experiments. Part. Fibre Toxicol., 2015, 12(1), 18.
[http://dx.doi.org/10.1186/s12989-015-0090-8] [PMID: 26116549]
[148]
Choi, H.S.; Ashitate, Y.; Lee, J.H.; Kim, S.H.; Matsui, A.; Insin, N.; Bawendi, M.G.; Semmler-Behnke, M.; Frangioni, J.V.; Tsuda, A. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat. Biotechnol., 2010, 28(12), 1300-1303.
[http://dx.doi.org/10.1038/nbt.1696] [PMID: 21057497]
[149]
Duffin, R.; Tran, L.; Brown, D.; Stone, V.; Donaldson, K. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: Highlighting the role of particle surface area and surface reactivity. Inhal. Toxicol., 2007, 19(10), 849-856.
[http://dx.doi.org/10.1080/08958370701479323] [PMID: 17687716]
[150]
Bakand, S.; Hayes, A. Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int. J. Mol. Sci., 2016, 17(6), 929.
[http://dx.doi.org/10.3390/ijms17060929] [PMID: 27314324]
[151]
Mhlfeld, C.; Gehr, P.; Rothen-Rutishauser, B. Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med. Wkly., 2008, 138(27-28), 387-391.
[http://dx.doi.org/10.4414/smw.2008.12153] [PMID: 18642134]
[152]
Rothen-Rutishauser, B.; Mühlfeld, C.; Blank, F.; Musso, C.; Gehr, P. Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part. Fibre Toxicol., 2007, 4(1), 9.
[http://dx.doi.org/10.1186/1743-8977-4-9] [PMID: 17894871]
[153]
Heusinkveld, H.J.; Wahle, T.; Campbell, A.; Westerink, R.H.S.; Tran, L.; Johnston, H.; Stone, V.; Cassee, F.R.; Schins, R.P.F. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology, 2016, 56, 94-106.
[http://dx.doi.org/10.1016/j.neuro.2016.07.007] [PMID: 27448464]
[154]
Song, Y.; Li, X.; Du, X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur. Respir. J., 2009, 34(3), 559-567.
[http://dx.doi.org/10.1183/09031936.00178308] [PMID: 19696157]
[155]
Sayes, C.M.; Reed, K.L.; Warheit, D.B. Assessing toxicity of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci., 2007, 97(1), 163-180.
[http://dx.doi.org/10.1093/toxsci/kfm018] [PMID: 17301066]
[156]
Zazouli, M.A.; Dehbandi, R.; Mohammadyan, M.; Aarabi, M.; Dominguez, A.O.; Kelly, F.J.; Khodabakhshloo, N.; Rahman, M.M.; Naidu, R. Physico-chemical properties and reactive oxygen species generation by respirable coal dust: Implication for human health risk assessment. J. Hazard. Mater., 2021, 405, 124185.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124185] [PMID: 33189473]
[157]
Squadrito, G.L.; Cueto, R.; Dellinger, B.; Pryor, W.A. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic. Biol. Med., 2001, 31(9), 1132-1138.
[http://dx.doi.org/10.1016/S0891-5849(01)00703-1] [PMID: 11677046]
[158]
Gerloff, K.; Albrecht, C.; Boots, A.W.; Förster, I.; Schins, R.P.F. Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology, 2009, 3(4), 355-364.
[http://dx.doi.org/10.3109/17435390903276933]
[159]
Hougaard, K.S.; Campagnolo, L.; Chavatte-Palmer, P.; Tarrade, A.; Rousseau-Ralliard, D.; Valentino, S.; Park, M.V.D.Z.; de Jong, W.H.; Wolterink, G.; Piersma, A.H.; Ross, B.L.; Hutchison, G.R.; Hansen, J.S.; Vogel, U.; Jackson, P.; Slama, R.; Pietroiusti, A.; Cassee, F.R. A perspective on the developmental toxicity of inhaled nanoparticles. Reprod. Toxicol., 2015, 56, 118-140.
[http://dx.doi.org/10.1016/j.reprotox.2015.05.015] [PMID: 26050605]
[160]
Suliman, Y.A.O.; Ali, D.; Alarifi, S.; Harrath, A.H.; Mansour, L.; Alwasel, S.H. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells. Environ. Toxicol., 2015, 30(2), 149-160.
[http://dx.doi.org/10.1002/tox.21880] [PMID: 23804405]
[161]
Sasai, F.; Rogers, K.L.; Orlicky, D.J.; Stem, A.; Schaeffer, J.; Garcia, G.; Fox, J.; Ray, M.S.; Butler-Dawson, J.; Gonzalez-Quiroz, M.; Leiva, R.; Taduri, G.; Anutrakululchai, S.; Venugopal, V.; Madero, M.; Glaser, J.; Wijkstrom, J.; Wernerson, A.; Brown, J.M.; Johnson, R.J.; Roncal-Jimenez, C.A. Inhaled silica nanoparticles cause chronic kidney disease in rats. Am. J. Physiol. Renal Physiol., 2022, 323(1), F48-F58.
[http://dx.doi.org/10.1152/ajprenal.00021.2022] [PMID: 35635324]
[162]
Li, X.; Li, Y.; Lv, S.; Xu, H.; Ma, R.; Sun, Z.; Li, Y.; Guo, C. Long-term respiratory exposure to amorphous silica nanoparticles promoted systemic inflammation and progression of fibrosis in a susceptible mouse model. Chemosphere, 2022, 300, 134633.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134633] [PMID: 35439488]
[163]
Du, Z.; Chen, S.; Cui, G.; Yang, Y.; Zhang, E.; Wang, Q.; Lavin, M.F.; Yeo, A.J.; Bo, C.; Zhang, Y.; Li, C.; Liu, X.; Yang, X.; Peng, C.; Shao, H. Silica nanoparticles induce cardiomyocyte apoptosis via the mitochondrial pathway in rats following intratracheal instillation. Int. J. Mol. Med., 2019, 43(3), 1229-1240.
[PMID: 30628656]
[164]
Nemmar, A.; Al-Salam, S.; Beegam, S.; Zaaba, N.; Elzaki, O.; Yasin, J.; Ali, B.H. Assessment of the Hepatotoxicity of Intratracheally Instilled Silver Nanoparticles in Hypertensive Mice. Hamdan Medical Journal, 2023, 16(1), 39.
[http://dx.doi.org/10.4103/hmj.hmj_80_22]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy