Research Article

METTL14通过cGAS-STING途径调控TRAF6的m6A修饰抑制多巴胺能神经元线粒体功能障碍和铁凋亡

卷 24, 期 12, 2024

发表于: 20 October, 2023

页: [1518 - 1528] 页: 11

弟呕挨: 10.2174/0115665240263859231018110107

价格: $65

摘要

目的:多巴胺能(DA)神经元的退化已成为帕金森病(PD)的一个重要病理特征。为了丰富相关知识,我们旨在探讨METTL14-TRAF6-cGASSTING轴在DA神经元变性导致的线粒体功能障碍和铁下垂中的影响。 方法:采用1-甲基-4-苯基吡啶离子(MPP+)处理DA神经元MN9D,建立PD细胞模型。随后,采用细胞计数试剂盒、流式细胞仪、DCFH-DA荧光探针、二吡罗甲基二氟化硼染色分别测定细胞活力、铁浓度、ROS水平和脂质过氧化。同时监测线粒体超微结构、线粒体呼吸链复合物活性、丙二醛和谷胱甘肽水平。采用逆转录-定量聚合酶链反应和western blot检测相关基因的表达。我们还评估了cGAS泛素化和TRAF6信使RNA (mRNA) n6 -甲基腺苷(m6A)水平,以及METTL14、TRAF6和cGAS- sting通路之间的联系。 结果:MPP+处理后METTL14表达低,TRAF6表达高。在MPP+处理的MN9D细胞中,METTL14过表达减少了铁下垂、ROS生成、线粒体损伤和氧化应激(OS),并增强了线粒体膜电位。TRAF6过表达对MPP+处理的MN9D细胞线粒体功能障碍和铁下垂有促进作用,进一步过表达METTL14可逆转这一作用。在机制上,METTL14促进TRAF6 mRNA的m6A甲基化,从而下调TRAF6的表达,从而使cGAS-STING通路失活。 结论:METTL14通过TRAF6 m6A甲基化下调TRAF6表达,使cGAS-STING通路失活,从而缓解DA神经元线粒体功能障碍和铁下垂。

关键词: METTL14, TRAF6, cGAS-STING通路,帕金森病,铁下垂,线粒体功能障碍,多巴胺能神经元。

[1]
Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol 2021; 20(5): 385-97.
[http://dx.doi.org/10.1016/S1474-4422(21)00030-2] [PMID: 33894193]
[2]
Lotankar S, Prabhavalkar KS, Bhatt LK. Biomarkers for parkinson’s disease: Recent advancement. Neurosci Bull 2017; 33(5): 585-97.
[http://dx.doi.org/10.1007/s12264-017-0183-5] [PMID: 28936761]
[3]
Rajan S, Kaas B. Parkinson’s disease: Risk factor modification and prevention. Semin Neurol 2022; 42(5): 626-38.
[http://dx.doi.org/10.1055/s-0042-1758780] [PMID: 36427528]
[4]
Murata H, Barnhill LM, Bronstein JM. Air pollution and the risk of parkinson’s disease: A review. Mov Disord 2022; 37(5): 894-904.
[http://dx.doi.org/10.1002/mds.28922] [PMID: 35043999]
[5]
Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol 2020; 27(1): 27-42.
[http://dx.doi.org/10.1111/ene.14108] [PMID: 31631455]
[6]
Reich SG, Savitt JM. Parkinson’s disease. Med Clin North Am 2019; 103(2): 337-50.
[http://dx.doi.org/10.1016/j.mcna.2018.10.014] [PMID: 30704685]
[7]
Macdonald R, Barnes K, Hastings C, Mortiboys H. Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: Can mitochondria be targeted therapeutically? Biochem Soc Trans 2018; 46(4): 891-909.
[http://dx.doi.org/10.1042/BST20170501] [PMID: 30026371]
[8]
Burbulla LF, Song P, Mazzulli JR, et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 2017; 357(6357): 1255-61.
[http://dx.doi.org/10.1126/science.aam9080] [PMID: 28882997]
[9]
Zhao T, Wang J, Wu Y, et al. Increased m6A modification of RNA methylation related to the inhibition of demethylase FTO contributes to MEHP-induced Leydig cell injury. Environ Pollut 2021; 268((Pt A)): 115627.
[http://dx.doi.org/10.1016/j.envpol.2020.115627]
[10]
Berulava T, Buchholz E, Elerdashvili V, et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail 2020; 22(1): 54-66.
[http://dx.doi.org/10.1002/ejhf.1672] [PMID: 31849158]
[11]
Wang J, Wang K, Liu W, Cai Y, Jin H. m6A mRNA methylation regulates the development of gestational diabetes mellitus in Han Chinese women. Genomics 2021; 113(3): 1048-56.
[http://dx.doi.org/10.1016/j.ygeno.2021.02.016] [PMID: 33667648]
[12]
Zhang Y, Yang Y. Effects of m6A RNA methylation regulators on endometrial cancer. J Clin Lab Anal 2021; 35(9): e23942.
[http://dx.doi.org/10.1002/jcla.23942] [PMID: 34347888]
[13]
Zhang N, Ding C, Zuo Y, Peng Y, Zuo L. N6-methyladenosine and neurological diseases. Mol Neurobiol 2022; 59(3): 1925-37.
[http://dx.doi.org/10.1007/s12035-022-02739-0] [PMID: 35032318]
[14]
Meng L, Lin H, Huang X, Weng J, Peng F, Wu S. METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA. Cell Death Dis 2022; 13(1): 38.
[http://dx.doi.org/10.1038/s41419-021-04484-z] [PMID: 35013106]
[15]
Gao G, Duan Y, Chang F, Zhang T, Huang X, Yu C. METTL14 promotes apoptosis of spinal cord neurons by inducing EEF1A2 m6A methylation in spinal cord injury. Cell Death Discov 2022; 8(1): 15.
[http://dx.doi.org/10.1038/s41420-021-00808-2] [PMID: 35013140]
[16]
Teng Y, Liu Z, Chen X, et al. Conditional deficiency of m6A methyltransferase Mettl14 in substantia nigra alters dopaminergic neuron function. J Cell Mol Med 2021; 25(17): 8567-72.
[http://dx.doi.org/10.1111/jcmm.16740] [PMID: 34288397]
[17]
Ouyang H, Zhang J, Chi D, et al. The YTHDF1–TRAF6 pathway regulates the neuroinflammatory response and contributes to morphine tolerance and hyperalgesia in the periaqueductal gray. J Neuroinflammation 2022; 19(1): 310.
[http://dx.doi.org/10.1186/s12974-022-02672-y] [PMID: 36550542]
[18]
Lu Y, Jiang BC, Cao DL, et al. TRAF6 upregulation in spinal astrocytes maintains neuropathic pain by integrating TNF-α and IL-1β signaling. Pain 2014; 155(12): 2618-29.
[http://dx.doi.org/10.1016/j.pain.2014.09.027] [PMID: 25267210]
[19]
Zucchelli S, Codrich M, Marcuzzi F, et al. TRAF6 promotes atypical ubiquitination of mutant DJ-1 and alpha-synuclein and is localized to Lewy bodies in sporadic Parkinson’s disease brains. Hum Mol Genet 2010; 19(19): 3759-70.
[http://dx.doi.org/10.1093/hmg/ddq290] [PMID: 20634198]
[20]
Kwon J, Bakhoum SF. The cytosolic DNA-sensing cGAS–STING pathway in cancer. Cancer Discov 2020; 10(1): 26-39.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0761] [PMID: 31852718]
[21]
Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol 2021; 21(9): 548-69.
[http://dx.doi.org/10.1038/s41577-021-00524-z] [PMID: 33833439]
[22]
Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol 2016; 17(10): 1142-9.
[http://dx.doi.org/10.1038/ni.3558] [PMID: 27648547]
[23]
Szego EM, Malz L, Bernhardt N, Rösen-Wolff A, Falkenburger BH, Luksch H. Constitutively active STING causes neuroinflammation and degeneration of dopaminergic neurons in mice. eLife 2022; 11: e81943.
[http://dx.doi.org/10.7554/eLife.81943] [PMID: 36314770]
[24]
Chen X, Chen Y. Ubiquitination of cGAS by TRAF6 regulates anti-DNA viral innate immune responses. Biochem Biophys Res Commun 2019; 514(3): 659-64.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.022] [PMID: 31078259]
[25]
Ayuk SM, Abrahamse H, Houreld NN. The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro. J Photochem Photobiol B 2016; 161: 364-74.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.05.027]
[26]
Dai HY, Chang MX, Sun L. HOTAIRM1 knockdown reduces MPP + -induced oxidative stress injury of SH-SY5Y cells by activating the Nrf2/HO-1 pathway. Transl Neurosci 2023; 14(1): 20220296.
[http://dx.doi.org/10.1515/tnsci-2022-0296] [PMID: 37529170]
[27]
Liu J, Eckert MA, Harada BT, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol 2018; 20(9): 1074-83.
[http://dx.doi.org/10.1038/s41556-018-0174-4] [PMID: 30154548]
[28]
Weintraub D, Aarsland D, Biundo R, Dobkin R, Goldman J, Lewis S. Management of psychiatric and cognitive complications in Parkinson’s disease. BMJ 2022; 379: e068718.
[http://dx.doi.org/10.1136/bmj-2021-068718]
[29]
Mollenhauer B, von Arnim CAF. Toward preventing Parkinson’s disease. Science 2022; 377(6608): 818-9.
[http://dx.doi.org/10.1126/science.add7162] [PMID: 35981039]
[30]
Panicker N, Kam TI, Wang H, et al. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron 2022; 110(15): 2422-2437.e9.
[http://dx.doi.org/10.1016/j.neuron.2022.05.009] [PMID: 35654037]
[31]
Heidari A, Yazdanpanah N, Rezaei N. The role of Toll-like receptors and neuroinflammation in Parkinson’s disease. J Neuroinflammation 2022; 19(1): 135.
[http://dx.doi.org/10.1186/s12974-022-02496-w] [PMID: 35668422]
[32]
Liu M, Liu C, Xiao X, et al. Role of upregulation of the K ATP channel subunit SUR1 in dopaminergic neuron degeneration in Parkinson’s disease. Aging Cell 2022; 21(5): e13618.
[http://dx.doi.org/10.1111/acel.13618] [PMID: 35441806]
[33]
Sun Y, He L, Wang W, et al. Activation of Atg7-dependent autophagy by a novel inhibitor of the Keap1-Nrf2 protein-protein interaction from Penthorum chinense Pursh. attenuates 6-hydroxydopamine-induced ferroptosis in zebrafish and dopaminergic neurons. Food Funct 2022; 13(14): 7885-900.
[http://dx.doi.org/10.1039/D2FO00357K] [PMID: 35776077]
[34]
Huang L, Bian M, Zhang J, Jiang L. Iron metabolism and ferroptosis in peripheral nerve injury. Oxid Med Cell Longev 2022; 5918218.
[http://dx.doi.org/10.1155/2022/5918218]
[35]
Raza C, Anjum R, Shakeel NUA. Parkinson’s disease: Mechanisms, translational models and management strategies. Life Sci 2019; 226: 77-90.
[36]
Cogliati S, Lorenzi I, Rigoni G, Caicci F, Soriano ME. Regulation of mitochondrial electron transport chain assembly. J Mol Biol 2018; 430(24): 4849-73.
[http://dx.doi.org/10.1016/j.jmb.2018.09.016] [PMID: 30292820]
[37]
Mahalanobish S, Dutta S, Saha S, Sil PC. Melatonin induced suppression of ER stress and mitochondrial dysfunction inhibited NLRP3 inflammasome activation in COPD mice. Food Chem Toxicol 2020; 144: 11588.
[http://dx.doi.org/10.1016/j.fct.2020.111588]
[38]
Chen Q, Huang X, Li R. lncRNA MALAT1/miR-205-5p axis regulates MPP+-induced cell apoptosis in MN9D cells by directly targeting LRRK2. Am J Transl Res 2018; 10(2): 563-72.
[PMID: 29511451]
[39]
Fan HN, Chen ZY, Chen XY, et al. METTL14-mediated m6A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol Cancer 2022; 21(1): 51.
[http://dx.doi.org/10.1186/s12943-022-01521-z] [PMID: 35164771]
[40]
Chen X, Xu M, Xu X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer 2020; 19(1): 106.
[http://dx.doi.org/10.1186/s12943-020-01220-7] [PMID: 32552762]
[41]
Weng YL, Wang X, An R, et al. Epitranscriptomic m6A regulation of axon regeneration in the adult mammalian nervous system. Neuron 2018; 97(2): 313.e6-25.
[http://dx.doi.org/10.1016/j.neuron.2017.12.036] [PMID: 29346752]
[42]
Zhang K, Li P, Jia Y, Liu M, Jiang J. Non-coding RNA and n6-methyladenosine modification play crucial roles in neuropathic pain. Front Mol Neurosci 2022; 15: 1008018.
[http://dx.doi.org/10.3389/fnmol.2022.1002018]
[43]
Qi L, Hu H, Wang Y, et al. New insights into the central sympathetic hyperactivity post‐myocardial infarction: Roles of METTL3‐mediated m 6 A methylation. J Cell Mol Med 2022; 26(4): 1264-80.
[http://dx.doi.org/10.1111/jcmm.17183] [PMID: 35040253]
[44]
Chen X, Yu C, Guo M, et al. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death. ACS Chem Neurosci 2019; 10(5): 2355-63.
[http://dx.doi.org/10.1021/acschemneuro.8b00657] [PMID: 30835997]
[45]
Du J, Sarkar R, Li Y, et al. N6-adenomethylation of GsdmC is essential for Lgr5+ stem cell survival to maintain normal colonic epithelial morphogenesis. Dev Cell 2022; 57(16): 1976-1994.e8.
[http://dx.doi.org/10.1016/j.devcel.2022.07.006] [PMID: 35917813]
[46]
Fan Z, Yang G, Zhang W, et al. Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2‐dependent silencing of SLC7A11. J Cell Mol Med 2021; 25(21): 10197-212.
[http://dx.doi.org/10.1111/jcmm.16957] [PMID: 34609072]
[47]
Dou Y, Tian X, Zhang J, Wang Z, Chen G. Roles of TRAF6 in central nervous system. Curr Neuropharmacol 2018; 16(9): 1306-13.
[http://dx.doi.org/10.2174/1570159X16666180412094655] [PMID: 29651950]
[48]
Guo B, Zuo Z, Di X, et al. Salidroside attenuates HALI via IL-17A-mediated ferroptosis of alveolar epithelial cells by regulating Act1-TRAF6-p38 MAPK pathway. Cell Commun Signal 2022; 20(1): 183.
[http://dx.doi.org/10.1186/s12964-022-00994-1] [PMID: 36411467]
[49]
Arnoult D, Soares F, Tattoli I, Girardin SE. Mitochondria in innate immunity. EMBO Rep 2011; 12(9): 901-10.
[http://dx.doi.org/10.1038/embor.2011.157] [PMID: 21799518]
[50]
Ma C, Liu Y, Li S, et al. Microglial cGAS drives neuroinflammation in the MPTP mouse models of Parkinson’s disease. CNS Neurosci Ther 2023; 29(7): 2018-35.
[http://dx.doi.org/10.1111/cns.14157] [PMID: 36914567]
[51]
Hinkle JT, Patel J, Panicker N, et al. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proc Natl Acad Sci 2022; 119(15): e2118819119.
[http://dx.doi.org/10.1073/pnas.2118819119] [PMID: 35394877]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy