Generic placeholder image

Recent Advances in Inflammation & Allergy Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-2708
ISSN (Online): 2772-2716

Review Article

Decrypting the Pathological Pathways in IgA Nephropathy

Author(s): Rajiv Jash*, Kousik Maparu, Sanket Seksaria and Saptarshi Das

Volume 18, Issue 1, 2024

Published on: 20 October, 2023

Page: [43 - 56] Pages: 14

DOI: 10.2174/0127722708275167231011102924

Price: $65

Abstract

IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.

Keywords: IgAN, fibrosis, inflammation, ESRD, TGFβ, TBRI.

Graphical Abstract
[1]
McGrogan A, Franssen CFM, de Vries CS. The incidence of primary glomerulonephritis worldwide: A systematic review of the literature. Nephrol Dial Transplant 2011; 26(2): 414-30.
[http://dx.doi.org/10.1093/ndt/gfq665] [PMID: 21068142]
[2]
Schena FP, Nistor I. Epidemiology of IgA nephropathy: A global perspective. Semin Nephrol 2018; 38(5): 435-42.
[http://dx.doi.org/10.1016/j.semnephrol.2018.05.013] [PMID: 30177015]
[3]
Jarrick S, Lundberg S, Welander A, et al. Mortality in IgA nephropathy: A nationwide population-based cohort study. J Am Soc Nephrol 2019; 30(5): 866-76.
[http://dx.doi.org/10.1681/ASN.2018101017] [PMID: 30971457]
[4]
Sallustio F, Curci C, Di Leo V, Gallone A, Pesce F, Gesualdo L. A new vision of IgA nephropathy: The missing link. Int J Mol Sci 2019; 21(1): 189.
[http://dx.doi.org/10.3390/ijms21010189] [PMID: 31888082]
[5]
Kiryluk K, Li Y, Scolari F, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 2014; 46(11): 1187-96.
[http://dx.doi.org/10.1038/ng.3118] [PMID: 25305756]
[6]
D’Amico G. Natural history of idiopathic IgA nephropathy: Role of clinical and histological prognostic factors. Am J Kidney Dis 2000; 36(2): 227-37.
[http://dx.doi.org/10.1053/ajkd.2000.8966] [PMID: 10922300]
[7]
Barratt J, Feehally J. Treatment of IgA nephropathy. Kidney Int 2006; 69(11): 1934-8.
[http://dx.doi.org/10.1038/sj.ki.5000419] [PMID: 16641928]
[8]
Donadio JV, Bergstralh EJ, Grande JP, Rademcher DM. Proteinuria patterns and their association with subsequent end-stage renal disease in IgA nephropathy. Nephrol Dial Transplant 2002; 17(7): 1197-203.
[http://dx.doi.org/10.1093/ndt/17.7.1197] [PMID: 12105241]
[9]
Heineke MH, Ballering AV, Jamin A, Ben Mkaddem S, Monteiro RC, Van Egmond M. New insights in the pathogenesis of immunoglobulin A vasculitis (Henoch-Schönlein purpura). Autoimmun Rev 2017; 16(12): 1246-53.
[http://dx.doi.org/10.1016/j.autrev.2017.10.009] [PMID: 29037908]
[10]
Moura IC, Centelles MN, Arcos-Fajardo M, et al. Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med 2001; 194(4): 417-26.
[http://dx.doi.org/10.1084/jem.194.4.417] [PMID: 11514599]
[11]
Oortwijn BD, van der Boog PJM, Roos A, et al. A pathogenic role for secretory IgA in IgA nephropathy. Kidney Int 2006; 69(7): 1131-8.
[http://dx.doi.org/10.1038/sj.ki.5000074] [PMID: 16395264]
[12]
Perše M, Večerić-Haler Ž. The role of IgA in the pathogenesis of IgA nephropathy. Int J Mol Sci 2019; 20(24): 6199.
[http://dx.doi.org/10.3390/ijms20246199] [PMID: 31818032]
[13]
Kerr MA. The structure and function of human IgA. Biochem J 1990; 271(2): 285-96.
[http://dx.doi.org/10.1042/bj2710285] [PMID: 2241915]
[14]
Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest 1999; 104(1): 73-81.
[http://dx.doi.org/10.1172/JCI5535] [PMID: 10393701]
[15]
Suzuki H, Moldoveanu Z, Hall S, et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest 2008; 118(2): 629-39.
[http://dx.doi.org/10.1172/JCI33189] [PMID: 18172551]
[16]
Tumlin JA, Madaio MP, Hennigar R. Idiopathic IgA nephropathy: pathogenesis, histopathology, and therapeutic options. Clin J Am Soc Nephrol 2007; 2(5): 1054-61.
[http://dx.doi.org/10.2215/CJN.04351206] [PMID: 17702711]
[17]
Zheng N, Fan J, Wang B, et al. Expression profile of BAFF in peripheral blood from patients of IgA nephropathy: Correlation with clinical features and Streptococcus pyogenes infection. Mol Med Rep 2017; 15(4): 1925-35.
[http://dx.doi.org/10.3892/mmr.2017.6190] [PMID: 28260100]
[18]
Muto M, Manfroi B, Suzuki H, et al. Toll-like receptor 9 stimulation induces aberrant expression of a proliferation-inducing ligand by tonsillar germinal center B cells in IgA nephropathy. J Am Soc Nephrol 2017; 28(4): 1227-38.
[http://dx.doi.org/10.1681/ASN.2016050496] [PMID: 27920152]
[19]
Zhai YL, Zhu L, Shi SF, Liu LJ, Lv JC, Zhang H. Increased APRIL expression induces IgA1 aberrant glycosylation in IgA nephropathy. Medicine (Baltimore) 2016; 95(11): e3099.
[http://dx.doi.org/10.1097/MD.0000000000003099] [PMID: 26986150]
[20]
Takahara M, Nagato T, Nozaki Y, et al. A proliferation-inducing ligand (APRIL) induced hyper-production of IgA from tonsillar mononuclear cells in patients with IgA nephropathy. Cell Immunol 2019; 341: 103925.
[http://dx.doi.org/10.1016/j.cellimm.2019.103925] [PMID: 31088610]
[21]
Ye M, Peng Y, Liu C, et al. Vibration induces BAFF overexpression and aberrant O-glycosylation of IgA1 in cultured human tonsillar mononuclear cells in IgA nephropathy. BioMed Res Int 2016; 2016: 1-8.
[http://dx.doi.org/10.1155/2016/9125960] [PMID: 27672662]
[22]
McCarthy DD, Kujawa J, Wilson C, et al. Mice overexpressing BAFF develop a commensal flora–dependent, IgA-associated nephropathy. J Clin Invest 2011; 121(10): 3991-4002.
[http://dx.doi.org/10.1172/JCI45563] [PMID: 21881212]
[23]
Saha C, Das M, Patil V, et al. Monomeric immunoglobulin a from plasma inhibits human th17 responses in vitro independent of FcαRI and DC-SIGN. Front Immunol 2017; 8: 275.
[http://dx.doi.org/10.3389/fimmu.2017.00275] [PMID: 28352269]
[24]
Molyneux K, Wimbury D, Pawluczyk I, et al. β1,4- galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells. Kidney Int 2017; 92(6): 1458-68.
[http://dx.doi.org/10.1016/j.kint.2017.05.002] [PMID: 28750925]
[25]
Berthelot L, Papista C, Maciel TT, et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J Exp Med 2012; 209(4): 793-806.
[http://dx.doi.org/10.1084/jem.20112005] [PMID: 22451718]
[26]
Lechner SM, Papista C, Chemouny JM, Berthelot L, Monteiro RC. Role of IgA receptors in the pathogenesis of IgA nephropathy. J Nephrol 2016; 29(1): 5-11.
[http://dx.doi.org/10.1007/s40620-015-0246-5] [PMID: 26572664]
[27]
Moura IC, Arcos-Fajardo M, Gdoura A, et al. Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy. J Am Soc Nephrol 2005; 16(9): 2667-76.
[http://dx.doi.org/10.1681/ASN.2004111006] [PMID: 15987753]
[28]
Zou JN, Xiao J, Hu SS, et al. Toll-like receptor 4 signaling pathway in the protective effect of pioglitazone on experimental immunoglobulin a nephropathy. Chin Med J (Engl) 2017; 130(8): 906-13.
[http://dx.doi.org/10.4103/0366-6999.204101] [PMID: 28397719]
[29]
Chang S, Li XK. The role of immune modulation in pathogenesis of IgA nephropathy. Front Med 2020; 7: 92.
[http://dx.doi.org/10.3389/fmed.2020.00092] [PMID: 32266276]
[30]
Lai KN, Leung JCK, Chan LYY, et al. Activation of podocytes by mesangial-derived TNF-α: glomerulo-podocytic communication in IgA nephropathy. Am J Physiol Renal Physiol 2008; 294(4): F945-55.
[http://dx.doi.org/10.1152/ajprenal.00423.2007] [PMID: 18256312]
[31]
Chan LYY, Leung JCK, Tsang AWL, Tang SCW, Neng Lai K. Activation of tubular epithelial cells by mesangial-derived TNF-α: Glomerulotubular communication in IgA nephropathy. Kidney Int 2005; 67(2): 602-12.
[http://dx.doi.org/10.1111/j.1523-1755.2005.67116.x] [PMID: 15673307]
[32]
Yang S, Tamai R, Akashi S, et al. Synergistic effect of muramyldipeptide with lipopolysaccharide or lipoteichoic acid to induce inflammatory cytokines in human monocytic cells in culture. Infect Immun 2001; 69(4): 2045-53.
[http://dx.doi.org/10.1128/IAI.69.4.2045-2053.2001] [PMID: 11254557]
[33]
Banas MC, Banas B, Hudkins KL, et al. TLR4 links podocytes with the innate immune system to mediate glomerular injury. J Am Soc Nephrol 2008; 19(4): 704-13.
[http://dx.doi.org/10.1681/ASN.2007040395] [PMID: 18256364]
[34]
Coppo R, Camilla R, Amore A, et al. Toll-like receptor 4 expression is increased in circulating mononuclear cells of patients with immunoglobulin A nephropathy. Clin Exp Immunol 2009; 159(1): 73-81.
[http://dx.doi.org/10.1111/j.1365-2249.2009.04045.x] [PMID: 19891659]
[35]
Evans DJ, Williams DG, Peters DK, et al. Glomerular deposition of properdin in Henoch-Schönlein syndrome and idiopathic focal nephritis. BMJ 1973; 3(5875): 326-8.
[http://dx.doi.org/10.1136/bmj.3.5875.326] [PMID: 4579400]
[36]
Wyatt RJ. The complement system in IgA nephropathy and Henoch-Schönlein purpura: functional and genetic aspects. Contrib Nephrol 1993; 104: 82-91.
[http://dx.doi.org/10.1159/000422400] [PMID: 8325036]
[37]
McCoy RC, Abramowsky CR, Tisher CC. IgA nephropathy. Am J Pathol 1974; 76(1): 123-44.
[PMID: 4601708]
[38]
Miyazaki R, Kuroda M, Akiyama T, Otani I, Tofuku Y, Takeda R. Glomerular deposition and serum levels of complement control proteins in patients with IgA nephropathy. Clin Nephrol 1984; 21(6): 335-40.
[PMID: 6205804]
[39]
Rauterberg EW, Lieberknecht HM, Wingen AM, Ritz E. Complement membrane attack (MAC) in idiopathic IgA-glomerulonephritis. Kidney Int 1987; 31(3): 820-9.
[http://dx.doi.org/10.1038/ki.1987.72] [PMID: 3573542]
[40]
Tomino Y, Sakai H, Nomoto Y, Endoh M, Arimori S, Fujita T. Deposition of C4-binding protein and beta 1H globulin in kidneys of patients with IgA nephropathy. Tokai J Exp Clin Med 1981; 6(2): 217-22.
[PMID: 6458121]
[41]
Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 2001; 167(5): 2861-8.
[http://dx.doi.org/10.4049/jimmunol.167.5.2861] [PMID: 11509633]
[42]
Endo M, Ohi H, Ohsawa I, Fujita T, Matsushita M, Fujita T. Glomerular deposition of mannose-binding lectin (MBL) indicates a novel mechanism of complement activation in IgA nephropathy. Nephrol Dial Transplant 1998; 13(8): 1984-90.
[http://dx.doi.org/10.1093/ndt/13.8.1984] [PMID: 9719152]
[43]
Hisano S, Matsushita M, Fujita T, Endo Y, Takebayashi S. Mesangial IgA2 deposits and lectin pathway-mediated complement activation in IgA glomerulonephritis. Am J Kidney Dis 2001; 38(5): 1082-8.
[http://dx.doi.org/10.1053/ajkd.2001.28611] [PMID: 11684563]
[44]
Matsuda M, Shikata K, Wada J, et al. Deposition of mannan binding protein and mannan binding protein-mediated complement activation in the glomeruli of patients with IgA nephropathy. Nephron J 1998; 80(4): 408-13.
[http://dx.doi.org/10.1159/000045212] [PMID: 9832639]
[45]
Lee HJ, Choi SY, Jeong KH, et al. Association of C1q deposition with renal outcomes in IgA nephropathy. Clin Nephrol 2013; 80(8): 98-104.
[http://dx.doi.org/10.5414/CN107854] [PMID: 23587123]
[46]
Cosio FG, Shibata T, Rovin BH, Birmingham DJ. Effects of complement activation products on the synthesis of decay accelerating factor and membrane cofactor protein by human mesangial cells. Kidney Int 1994; 46(4): 986-92.
[http://dx.doi.org/10.1038/ki.1994.358] [PMID: 7532249]
[47]
Wan JX, Fukuda N, Endo M, et al. Complement 3 is involved in changing the phenotype of human glomerular mesangial cells. J Cell Physiol 2007; 213(2): 495-501.
[http://dx.doi.org/10.1002/jcp.21129] [PMID: 17520688]
[48]
Kim SJ, Koo HM, Lim BJ, et al. Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS One 2012; 7(7): e40495.
[http://dx.doi.org/10.1371/journal.pone.0040495] [PMID: 22792353]
[49]
Onda K, Ohsawa I, Ohi H, et al. Excretion of complement proteins and its activation marker C5b-9 in IgA nephropathy in relation to renal function. BMC Nephrol 2011; 12(1): 64.
[http://dx.doi.org/10.1186/1471-2369-12-64] [PMID: 22111871]
[50]
Nasri H, Sajjadieh S, Mardani S, et al. Correlation of immunostaining findings with demographic data and variables of Oxford classification in IgA nephropathy. J Nephropathol 2013; 2(3): 190-5.
[PMID: 24475448]
[51]
Espinosa M, Ortega R, Sánchez M, et al. Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol 2014; 9(5): 897-904.
[http://dx.doi.org/10.2215/CJN.09710913] [PMID: 24578331]
[52]
He L, Peng Y, Liu H, et al. Th1/Th2 polarization in tonsillar lymphocyte form patients with IgA nephropathy. Ren Fail 2014; 36(3): 407-12.
[http://dx.doi.org/10.3109/0886022X.2013.862809] [PMID: 24295274]
[53]
Chintalacharuvu SR, Yamashita M, Bagheri N, et al. T cell cytokine polarity as a determinant of immunoglobulin A (IgA) glycosylation and the severity of experimental IgA nephropathy. Clin Exp Immunol 2008; 153(3): 456-62.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03703.x] [PMID: 18637102]
[54]
Schena FP, Cerullo G, Torres DD, et al. Role of interferon-γ gene polymorphisms in susceptibility to IgA nephropathy: a family-based association study. Eur J Hum Genet 2006; 14(4): 488-96.
[http://dx.doi.org/10.1038/sj.ejhg.5201591] [PMID: 16493441]
[55]
Zhang L, Wang Y, Shi X, Zou H, Jiang Y. A higher frequency of CD4+CXCR5+ T follicular helper cells in patients with newly diagnosed IgA nephropathy. Immunol Lett 2014; 158(1-2): 101-8.
[http://dx.doi.org/10.1016/j.imlet.2013.12.004] [PMID: 24333338]
[56]
Lin FJ, Jiang GR, Shan JP, Zhu C, Zou J, Wu XR. Imbalance of regulatory T cells to Th17 cells in IgA nephropathy. Scand J Clin Lab Invest 2012; 72(3): 221-9.
[http://dx.doi.org/10.3109/00365513.2011.652158] [PMID: 22276947]
[57]
Lin JR, Wen J, Zhang H, et al. Interleukin-17 promotes the production of underglycosylated IgA1 in DAKIKI cells. Ren Fail 2018; 40(1): 60-7.
[http://dx.doi.org/10.1080/0886022X.2017.1419972] [PMID: 29299950]
[58]
Lu G, Zhang X, Shen L, et al. CCL20 secreted from IgA1-stimulated human mesangial cells recruits inflammatory Th17 cells in IgA nephropathy. PLoS One 2017; 12(5): e0178352.
[http://dx.doi.org/10.1371/journal.pone.0178352] [PMID: 28552941]
[59]
Huang H, Peng Y, Long XD, et al. Tonsillar CD4+CD25+ regulatory T cells from IgA nephropathy patients have decreased immunosuppressive activity in experimental IgA nephropathy rats. Am J Nephrol 2013; 37(5): 472-80.
[http://dx.doi.org/10.1159/000350533] [PMID: 23635548]
[60]
Otaka R, Takahara M, Ueda S, et al. Up-regulation of CX3CR1 on tonsillar CD8-positive cells in patients with IgA nephropathy. Hum Immunol 2017; 78(4): 375-83.
[http://dx.doi.org/10.1016/j.humimm.2017.02.004] [PMID: 28196748]
[61]
Xin G, Shi W, Xu LX, Su Y, Yan LJ, Li KS. Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features. J Nephrol 2013; 26(4): 683-90.
[http://dx.doi.org/10.5301/jn.5000218] [PMID: 23042433]
[62]
Suzuki Y, Suzuki H, Nakata J, et al. Pathological role of tonsillar B cells in IgA nephropathy. Clin Dev Immunol 2011; 2011: 1-8.
[http://dx.doi.org/10.1155/2011/639074] [PMID: 21785618]
[63]
Wu G, Peng YM, Liu H, et al. Expression of CD19(+)CD5(+)B cells and IgA1-positive cells in tonsillar tissues of IgA nephropathy patients. Ren Fail 2011; 33(2): 159-63.
[http://dx.doi.org/10.3109/0886022X.2011.552150] [PMID: 21332337]
[64]
He JW, Zhou XJ, Lv JC, Zhang H. Perspectives on how mucosal immune responses, infections and gut microbiome shape IgA nephropathy and future therapies. Theranostics 2020; 10(25): 11462-78.
[http://dx.doi.org/10.7150/thno.49778] [PMID: 33052226]
[65]
Wang YY, Zhang L, Zhao PW, et al. Functional implications of regulatory B cells in human IgA nephropathy. Scand J Immunol 2014; 79(1): 51-60.
[http://dx.doi.org/10.1111/sji.12128] [PMID: 24219615]
[66]
Schrezenmeier E, Jayne D, Dörner T, Targeting B. Targeting B cells and plasma cells in glomerular diseases: Translational perspectives. J Am Soc Nephrol 2018; 29(3): 741-58.
[http://dx.doi.org/10.1681/ASN.2017040367] [PMID: 29326157]
[67]
Segerer S, Schlöndorff D. Role of chemokines for the localization of leukocyte subsets in the kidney. Semin Nephrol 2007; 27(3): 260-74.
[http://dx.doi.org/10.1016/j.semnephrol.2007.02.003] [PMID: 17533005]
[68]
Gan PY, Steinmetz OM, Tan DSY, et al. Th17 cells promote autoimmune anti-myeloperoxidase glomerulonephritis. J Am Soc Nephrol 2010; 21(6): 925-31.
[http://dx.doi.org/10.1681/ASN.2009070763] [PMID: 20299361]
[69]
Furuichi K, Wada T, Iwata Y, et al. CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J Am Soc Nephrol 2003; 14(10): 2503-15.
[http://dx.doi.org/10.1097/01.ASN.0000089563.63641.A8] [PMID: 14514728]
[70]
Brühl H, Cihak J, Schneider MA, et al. Dual role of CCR2 during initiation and progression of collagen-induced arthritis: evidence for regulatory activity of CCR2+ T cells. J Immunol 2004; 172(2): 890-8.
[http://dx.doi.org/10.4049/jimmunol.172.2.890] [PMID: 14707060]
[71]
Rice JC, Spence JS, Yetman DL, Safirstein RL. Monocyte chemoattractant protein-1 expression correlates with monocyte infiltration in the post-ischemic kidney. Ren Fail 2002; 24(6): 703-23.
[http://dx.doi.org/10.1081/JDI-120015673] [PMID: 12472194]
[72]
Oh DJ, Dursun B, He Z, et al. Fractalkine receptor (CX3CR1) inhibition is protective against ischemic acute renal failure in mice. Am J Physiol Renal Physiol 2008; 294(1): F264-71.
[http://dx.doi.org/10.1152/ajprenal.00204.2007] [PMID: 18003857]
[73]
Furuichi K, Gao JL, Murphy PM. Chemokine receptor CX3CR1 regulates renal interstitial fibrosis after ischemia-reperfusion injury. Am J Pathol 2006; 169(2): 372-87.
[http://dx.doi.org/10.2353/ajpath.2006.060043] [PMID: 16877340]
[74]
Li L, Huang L, Sung SSJ, et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia–reperfusion injury. Kidney Int 2008; 74(12): 1526-37.
[http://dx.doi.org/10.1038/ki.2008.500] [PMID: 18843253]
[75]
Wada T, Tomosugi N, Naito T, et al. Prevention of proteinuria by the administration of anti-interleukin 8 antibody in experimental acute immune complex-induced glomerulonephritis. J Exp Med 1994; 180(3): 1135-40.
[http://dx.doi.org/10.1084/jem.180.3.1135] [PMID: 8064229]
[76]
Wada T, Yokoyama H, Matsushima K, Kobayashi K. Chemokines in renal diseases. Int Immunopharmacol 2001; 1(4): 637-45.
[http://dx.doi.org/10.1016/S1567-5769(01)00004-2] [PMID: 11357876]
[77]
Segerer S, Henger A, Schmid H, et al. Expression of the chemokine receptor CXCR1 in human glomerular diseases. Kidney Int 2006; 69(10): 1765-73.
[http://dx.doi.org/10.1038/sj.ki.5000337] [PMID: 16541017]
[78]
Chung ACK, Huang XR, Zhou L, Heuchel R, Lai KN, Lan HY. Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice. Nephrol Dial Transplant 2009; 24(5): 1443-54.
[http://dx.doi.org/10.1093/ndt/gfn699] [PMID: 19096081]
[79]
Schneider A, Panzer U, Zahner G, et al. Monocyte chemoattractant protein-1 mediates collagen deposition in experimental glomerulonephritis by transforming growth factor-β. Kidney Int 1999; 56(1): 135-44.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00543.x] [PMID: 10411686]
[80]
Moens L, Tangye SG. Cytokine-Mediated Regulation of Plasma Cell Generation: IL-21 Takes Center Stage. Front Immunol 2014; 5: 65.
[http://dx.doi.org/10.3389/fimmu.2014.00065] [PMID: 24600453]
[81]
Xu Z, Zan H, Pone EJ, Mai T, Casali P. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol 2012; 12(7): 517-31.
[http://dx.doi.org/10.1038/nri3216] [PMID: 22728528]
[82]
Wajant H, Henkler F, Scheurich P. The TNF-receptor-associated factor family. Cell Signal 2001; 13(6): 389-400.
[http://dx.doi.org/10.1016/S0898-6568(01)00160-7] [PMID: 11384837]
[83]
Patel SR, Dressler GR. BMP7 signaling in renal development and disease. Trends Mol Med 2005; 11(11): 512-8.
[http://dx.doi.org/10.1016/j.molmed.2005.09.007] [PMID: 16216558]
[84]
Ding Y, Choi ME. Regulation of autophagy by TGF-β: emerging role in kidney fibrosis. Semin Nephrol 2014; 34(1): 62-71.
[http://dx.doi.org/10.1016/j.semnephrol.2013.11.009] [PMID: 24485031]
[85]
Robertson IB, Rifkin DB. Unchaining the beast; insights from structural and evolutionary studies on TGFβ secretion, sequestration, and activation. Cytokine Growth Factor Rev 2013; 24(4): 355-72.
[http://dx.doi.org/10.1016/j.cytogfr.2013.06.003] [PMID: 23849989]
[86]
Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFβ activation. J Cell Sci 2003; 116(2): 217-24.
[http://dx.doi.org/10.1242/jcs.00229] [PMID: 12482908]
[87]
Shi M, Zhu J, Wang R, et al. Latent TGF-β structure and activation. Nature 2011; 474(7351): 343-9.
[http://dx.doi.org/10.1038/nature10152] [PMID: 21677751]
[88]
Sureshbabu A, Tonner E, Allan GJ, Flint DJ. Relative Roles of TGF- β and IGFBP-5 in Idiopathic Pulmonary Fibrosis. Pulm Med 2011; 2011: 1-6.
[http://dx.doi.org/10.1155/2011/517687] [PMID: 21637366]
[89]
Ito Y, Goldschmeding R, Kasuga H, et al. Expression patterns of connective tissue growth factor and of TGF-β isoforms during glomerular injury recapitulate glomerulogenesis. Am J Physiol Renal Physiol 2010; 299(3): F545-58.
[http://dx.doi.org/10.1152/ajprenal.00120.2009] [PMID: 20576680]
[90]
Wang B, Koh P, Winbanks C, et al. miR-200a Prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes 2011; 60(1): 280-7.
[http://dx.doi.org/10.2337/db10-0892] [PMID: 20952520]
[91]
Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol 2012; 13(10): 616-30.
[http://dx.doi.org/10.1038/nrm3434] [PMID: 22992590]
[92]
Ebisawa T, Fukuchi M, Murakami G, et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 2001; 276(16): 12477-80.
[http://dx.doi.org/10.1074/jbc.C100008200] [PMID: 11278251]
[93]
Dong X, Zhao B, Iacob RE, et al. Force interacts with macromolecular structure in activation of TGF-β. Nature 2017; 542(7639): 55-9.
[http://dx.doi.org/10.1038/nature21035] [PMID: 28117447]
[94]
Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003; 425(6958): 577-84.
[http://dx.doi.org/10.1038/nature02006] [PMID: 14534577]
[95]
Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem 2000; 275(5): 3577-82.
[http://dx.doi.org/10.1074/jbc.275.5.3577] [PMID: 10652353]
[96]
Tsou PS, Haak AJ, Khanna D, Neubig RR. Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: focus on Rho GTPase-regulated gene transcription. Am J Physiol Cell Physiol 2014; 307(1): C2-C13.
[http://dx.doi.org/10.1152/ajpcell.00060.2014] [PMID: 24740541]
[97]
Choi ME, Ding Y, Kim SI. TGF-β signaling via TAK1 pathway: role in kidney fibrosis. Semin Nephrol 2012; 32(3): 244-52.
[http://dx.doi.org/10.1016/j.semnephrol.2012.04.003] [PMID: 22835455]
[98]
Kim SI, Kwak JH, Na HJ, Kim JK, Ding Y, Choi ME. Transforming growth factor-beta (TGF-beta1) activates TAK1 via TAB1-mediated autophosphorylation, independent of TGF-beta receptor kinase activity in mesangial cells. J Biol Chem 2009; 284(33): 22285-96.
[http://dx.doi.org/10.1074/jbc.M109.007146] [PMID: 19556242]
[99]
Kim SI, Kwak JH, Zachariah M, He Y, Wang L, Choi ME. TGF-β-activated kinase 1 and TAK1-binding protein 1 cooperate to mediate TGF-β 1 -induced MKK3-p38 MAPK activation and stimulation of type I collagen. Am J Physiol Renal Physiol 2007; 292(5): F1471-8.
[http://dx.doi.org/10.1152/ajprenal.00485.2006] [PMID: 17299140]
[100]
Edlund S, Landström M, Heldin CH, Aspenström P. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 2002; 13(3): 902-14.
[http://dx.doi.org/10.1091/mbc.01-08-0398] [PMID: 11907271]
[101]
Li Y, Tan X, Dai C, Stolz DB, Wang D, Liu Y. Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J Am Soc Nephrol 2009; 20(9): 1907-18.
[http://dx.doi.org/10.1681/ASN.2008090930] [PMID: 19541809]
[102]
Mucsi I, Skorecki KL, Goldberg HJ. Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor-beta1 on gene expression. J Biol Chem 1996; 271(28): 16567-72.
[http://dx.doi.org/10.1074/jbc.271.28.16567] [PMID: 8663331]
[103]
Wilkes MC, Mitchell H, Penheiter SG, et al. Transforming growth factor-beta activation of phosphatidylinositol 3-kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-activated kinase-2. Cancer Res 2005; 65(22): 10431-40.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1522] [PMID: 16288034]
[104]
Wang YY, Jiang H, Pan J, et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. J Am Soc Nephrol 2017; 28(7): 2053-67.
[http://dx.doi.org/10.1681/ASN.2016050573] [PMID: 28209809]
[105]
Terada Y, Hanada S, Nakao A, Kuwahara M, Sasaki S, Marumo F. Gene transfer of Smad7 using electroporation of adenovirus prevents renal fibrosis in post-obstructed kidney. Kidney Int 2002; 61(1) (Suppl.): S94-8.
[http://dx.doi.org/10.1046/j.1523-1755.2002.0610s1094.x] [PMID: 11841620]
[106]
Ka SM, Huang XR, Lan HY, et al. Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice. J Am Soc Nephrol 2007; 18(6): 1777-88.
[http://dx.doi.org/10.1681/ASN.2006080901] [PMID: 17475816]
[107]
Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 2001; 276(20): 17058-62.
[http://dx.doi.org/10.1074/jbc.M100754200] [PMID: 11279127]
[108]
Zhou L, Fu P, Huang XR, et al. Mechanism of chronic aristolochic acid nephropathy: role of Smad3. Am J Physiol Renal Physiol 2010; 298(4): F1006-17.
[http://dx.doi.org/10.1152/ajprenal.00675.2009] [PMID: 20089673]
[109]
Jin Z, Gu C, Tian F, Jia Z, Yang J. NDRG2 knockdown promotes fibrosis in renal tubular epithelial cells through TGF-β1/Smad3 pathway. Cell Tissue Res 2017; 369(3): 603-10.
[http://dx.doi.org/10.1007/s00441-017-2643-7] [PMID: 28646304]
[110]
Ju W, Ogawa A, Heyer J, et al. Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol Cell Biol 2006; 26(2): 654-67.
[http://dx.doi.org/10.1128/MCB.26.2.654-667.2006] [PMID: 16382155]
[111]
Meng XM, Huang XR, Chung ACK, et al. Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis. J Am Soc Nephrol 2010; 21(9): 1477-87.
[http://dx.doi.org/10.1681/ASN.2009121244] [PMID: 20595680]
[112]
Yang F, Huang XR, Chung ACK, Hou CC, Lai KN, Lan HY. Essential role for Smad3 in angiotensin II-induced tubular epithelialmesenchymal transition. J Pathol 2010; 221(4): n/a.
[http://dx.doi.org/10.1002/path.2721] [PMID: 20593491]
[113]
Yang F, Chung ACK, Huang XR, Lan HY. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension 2009; 54(4): 877-84.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.136531] [PMID: 19667256]
[114]
Liu Z, Huang XR, Chen HY, Fung E, Liu J, Lan HY. Deletion of angiotensin-converting enzyme-2 promotes hypertensive nephropathy by targeting smad7 for ubiquitin degradation. Hypertension 2017; 70(4): 822-30.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09600] [PMID: 28808068]
[115]
Jin Y, Ratnam K, Chuang PY, et al. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat Med 2012; 18(4): 580-8.
[http://dx.doi.org/10.1038/nm.2685] [PMID: 22406746]
[116]
Wang L, Liu N, Xiong C, et al. Inhibition of EGF receptor blocks the development and progression of peritoneal fibrosis. J Am Soc Nephrol 2016; 27(9): 2631-44.
[http://dx.doi.org/10.1681/ASN.2015030299] [PMID: 26677863]
[117]
Chung ACK, Zhang H, Kong YZ, et al. Advanced glycation end products induce tubular CTGF via TGF-beta-independent Smad3 signaling. J Am Soc Nephrol 2010; 21(2): 249-60.
[http://dx.doi.org/10.1681/ASN.2009010018] [PMID: 19959709]
[118]
Lan HY. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci 2011; 7(7): 1056-67.
[http://dx.doi.org/10.7150/ijbs.7.1056] [PMID: 21927575]
[119]
Ito I, Hanyu A, Wayama M, et al. Estrogen inhibits transforming growth factor beta signaling by promoting Smad2/3 degradation. J Biol Chem 2010; 285(19): 14747-55.
[http://dx.doi.org/10.1074/jbc.M109.093039] [PMID: 20207742]
[120]
Lagna G, Hata A, Hemmati-Brivanlou A, Massagué J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature 1996; 383(6603): 832-6.
[http://dx.doi.org/10.1038/383832a0] [PMID: 8893010]
[121]
Zhao J, Miyamoto S, You YH, Sharma K. AMP-activated protein kinase (AMPK) activation inhibits nuclear translocation of Smad4 in mesangial cells and diabetic kidneys. Am J Physiol Renal Physiol 2015; 308(10): F1167-77.
[http://dx.doi.org/10.1152/ajprenal.00234.2014] [PMID: 25428125]
[122]
Yang X, Li C, Herrera PL, Deng CX. Generation of Smad4/Dpc4 conditional knockout mice. Genesis 2002; 32(2): 80-1.
[http://dx.doi.org/10.1002/gene.10029] [PMID: 11857783]
[123]
Meng XM, Huang XR, Xiao J, et al. Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int 2012; 81(3): 266-79.
[http://dx.doi.org/10.1038/ki.2011.327] [PMID: 22048127]
[124]
Qu X, Jiang M, Sun YBY, et al. The Smad3/Smad4/CDK9 complex promotes renal fibrosis in mice with unilateral ureteral obstruction. Kidney Int 2015; 88(6): 1323-35.
[http://dx.doi.org/10.1038/ki.2015.235] [PMID: 26221756]
[125]
Li Y, Shen Y, Li M, et al. Inhibitory effects of peroxisome proliferator-activated receptor γ agonists on collagen IV production in podocytes. Mol Cell Biochem 2015; 405(1-2): 233-41.
[http://dx.doi.org/10.1007/s11010-015-2414-2] [PMID: 25920446]
[126]
Heldin CH, Moustakas A. Role of Smads in TGFβ signaling. Cell Tissue Res 2012; 347(1): 21-36.
[http://dx.doi.org/10.1007/s00441-011-1190-x] [PMID: 21643690]
[127]
Li A, Zhang X, Shu M, et al. Arctigenin suppresses renal interstitial fibrosis in a rat model of obstructive nephropathy. Phytomedicine 2017; 30: 28-41.
[http://dx.doi.org/10.1016/j.phymed.2017.03.003] [PMID: 28545667]
[128]
Fukasawa H, Yamamoto T, Togawa A, et al. Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proc Natl Acad Sci USA 2004; 101(23): 8687-92.
[http://dx.doi.org/10.1073/pnas.0400035101] [PMID: 15173588]
[129]
Inoue Y, Imamura T. Regulation of TGF-β family signaling by E3 ubiquitin ligases. Cancer Sci 2008; 99(11): 2107-12.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00925.x] [PMID: 18808420]
[130]
Tan R, He W, Lin X, Kiss LP, Liu Y. Smad ubiquitination regulatory factor-2 in the fibrotic kidney: regulation, target specificity, and functional implication. Am J Physiol Renal Physiol 2008; 294(5): F1076-83.
[http://dx.doi.org/10.1152/ajprenal.00323.2007] [PMID: 18353873]
[131]
Ng YY, Hou C-C, Wang W, Huang XR, Lan HY. Blockade of NFκB activation and renal inflammation by ultrasound-mediated gene transfer of Smad7 in rat remnant kidney. Kidney Int 2005; 67: S83-91.
[http://dx.doi.org/10.1111/j.1523-1755.2005.09421.x]
[132]
Wang W, Huang XR, Li AG, et al. Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol 2005; 16(5): 1371-83.
[http://dx.doi.org/10.1681/ASN.2004121070] [PMID: 15788474]
[133]
Lan HY. Smad7 as a therapeutic agent for chronic kidney diseases. Front Biosci 2008; Volume(13): 4984-92.
[http://dx.doi.org/10.2741/3057] [PMID: 18508563]
[134]
Border WA, Noble NA. Evidence that TGF-β should be a therapeutic target in diabetic nephropathy. Kidney Int 1998; 54(4): 1390-1.
[http://dx.doi.org/10.1046/j.1523-1755.1998.00127.x] [PMID: 9773681]
[135]
Meng X, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 2016; 12(6): 325-38.
[http://dx.doi.org/10.1038/nrneph.2016.48] [PMID: 27108839]
[136]
Lan HY, Chung ACK. Transforming growth factor-β and Smads. Contrib Nephrol 2011; 170: 75-82.
[http://dx.doi.org/10.1159/000324949] [PMID: 21659760]
[137]
Zhang Z, Li Z, Cao K, et al. Adjunctive therapy with statins reduces residual albuminuria/proteinuria and provides further renoprotection by downregulating the angiotensin II–AT1 pathway in hypertensive nephropathy. J Hypertens 2017; 35(7): 1442-56.
[http://dx.doi.org/10.1097/HJH.0000000000001325] [PMID: 28244896]
[138]
Mulder KM, Morris SL. Activation of p21ras by transforming growth factor beta in epithelial cells. J Biol Chem 1992; 267(8): 5029-31.
[http://dx.doi.org/10.1016/S0021-9258(18)42722-6] [PMID: 1544886]
[139]
Hartsough MT, Mulder KM. Transforming growth factor beta activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem 1995; 270(13): 7117-24.
[http://dx.doi.org/10.1074/jbc.270.13.7117] [PMID: 7706248]
[140]
Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994; 8(2): 133-46.
[http://dx.doi.org/10.1101/gad.8.2.133] [PMID: 8299934]
[141]
Thiery JP. Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 2003; 15(6): 740-6.
[http://dx.doi.org/10.1016/j.ceb.2003.10.006] [PMID: 14644200]
[142]
Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006; 172(7): 973-81.
[http://dx.doi.org/10.1083/jcb.200601018] [PMID: 16567498]
[143]
Zavadil J, Bitzer M, Liang D, et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. Proc Natl Acad Sci USA 2001; 98(12): 6686-91.
[http://dx.doi.org/10.1073/pnas.111614398] [PMID: 11390996]
[144]
Davies M, Robinson M, Smith E, Huntley S, Prime S, Paterson I. Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-β1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem 2005; 95(5): 918-31.
[http://dx.doi.org/10.1002/jcb.20458] [PMID: 15861394]
[145]
Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol 2007; 19(2): 142-9.
[http://dx.doi.org/10.1016/j.ceb.2007.02.001] [PMID: 17303404]
[146]
Engel ME, McDonnell MA, Law BK, Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem 1999; 274(52): 37413-20.
[http://dx.doi.org/10.1074/jbc.274.52.37413] [PMID: 10601313]
[147]
Yamaguchi K, Shirakabe K, Shibuya H, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 1995; 270(5244): 2008-11.
[http://dx.doi.org/10.1126/science.270.5244.2008] [PMID: 8533096]
[148]
Li JH, Huang XR, Zhu HJ, et al. Advanced glycation end products activate Smad signaling via TGF‐β‐dependent and independent mechanisms: implications for diabetic renal and vascular disease. FASEB J 2004; 18(1): 176-8.
[http://dx.doi.org/10.1096/fj.02-1117fje] [PMID: 12709399]
[149]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[150]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[151]
Serino G, Sallustio F, Cox SN, Pesce F, Schena FP. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J Am Soc Nephrol 2012; 23(5): 814-24.
[http://dx.doi.org/10.1681/ASN.2011060567] [PMID: 22362909]
[152]
Serino G, Sallustio F, Curci C, et al. Role of let-7b in the regulation of N -acetylgalactosaminyltransferase 2 in IgA nephropathy. Nephrol Dial Transplant 2015; 30(7): 1132-9.
[http://dx.doi.org/10.1093/ndt/gfv032] [PMID: 25744272]
[153]
Xu B, Meng S, Shi S, et al. MicroRNA-21-5p participates in IgA nephropathy by driving T helper cell polarization. J Nephrol 2020; 33(3): 551-60.
[http://dx.doi.org/10.1007/s40620-019-00682-3] [PMID: 31863364]
[154]
Hu S, Bao H, Xu X, et al. Increased miR‐374b promotes cell proliferation and the production of aberrant glycosylated IgA1 in B cells of IgA nephropathy. FEBS Lett 2015; 589(24PartB): 4019-25.
[http://dx.doi.org/10.1016/j.febslet.2015.10.033] [PMID: 26545495]
[155]
Yang L, Zhang X, Peng W, Wei M, Qin W. MicroRNA-155-induced T lymphocyte subgroup drifting in IgA nephropathy. Int Urol Nephrol 2017; 49(2): 353-61.
[http://dx.doi.org/10.1007/s11255-016-1444-3] [PMID: 27796698]
[156]
Qin W, Chung ACK, Huang XR, et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol 2011; 22(8): 1462-74.
[http://dx.doi.org/10.1681/ASN.2010121308] [PMID: 21784902]
[157]
Fan Q, Lu R, Zhu M, et al. Serum miR-192 is related to tubulointerstitial lesion and short-term disease progression in IgA nephropathy. Nephron J 2019; 142(3): 195-207.
[http://dx.doi.org/10.1159/000497488] [PMID: 30808829]
[158]
Wang G, Kwan BCH, Lai FMM, Chow KM, Kam-Tao Li P, Szeto CC. Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Dis Markers 2010; 28(2): 79-86.
[http://dx.doi.org/10.1155/2010/396328] [PMID: 20364043]
[159]
Yu L, McPhee CK, Zheng L, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010; 465(7300): 942-6.
[http://dx.doi.org/10.1038/nature09076] [PMID: 20526321]
[160]
Matsuda J, Namba T, Takabatake Y, et al. Antioxidant role of autophagy in maintaining the integrity of glomerular capillaries. Autophagy 2018; 14(1): 53-65.
[http://dx.doi.org/10.1080/15548627.2017.1391428] [PMID: 29130363]
[161]
Ding Y, Kim JK, Kim SI, et al. TGF-β1 protects against mesangial cell apoptosis via induction of autophagy. J Biol Chem 2010; 285(48): 37909-19.
[http://dx.doi.org/10.1074/jbc.M109.093724] [PMID: 20876581]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy