[3]
Tozzi, A.; Sciaccaluga, M.; Loffredo, V.; Brain, A.M. Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal circuit. Brain, 2021, 144(11), 3477-3491.
[4]
Marchetti, B.; Giachino, C.; Tirolo, C.; Cell, M.S.A. “Reframing” dopamine signaling at the intersection of glial networks in the aged Parkinsonian brain as innate Nrf2/Wnt driver: Therapeutical implications. Aging Cell, 2022, 21(4), e13575.
[5]
Wise, R.; Wagener, A.; Fietzek, U.; Disease, T.K. Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson’s disease and Neurodegeneration with Brain Iron Accumulation disorders. Neurobiol. Dis., 2022, 175, 105920.
[6]
Palasz, E.; Niewiadomski, W. Exercise-induced neuroprotection and recovery of motor function in animal models of Parkinson's Disease. Front. Neurol, 2019, 10, 10: 1143.
[7]
Guatteo, E.; Berretta, N.; Monda, V. Pathophysiological features of nigral dopaminergic neurons in animal models of Parkinson’s Disease. Int. J. Mol. Sci., 2022, 23(9), 4508.
[12]
Sivagurunathan, N.; Gnanasekaran, P. Mitochondrial toxicant-induced neuronal apoptosis in Parkinson’s Disease: What we know so far. Degener. Neurol. Neuromuscul. Dis., 2023, 13, 1-13.
[13]
Yang, W.; Hamilton, J.; Kopil, C.; Disease, J.B. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Parkinsons Dis., 2020, 6, 15.
[14]
Han, K.; Kim, B.; Lee, S. A nationwide cohort study on diabetes severity and risk of Parkinson disease. NPJ Parkinsons Dis., 2023, 9(11), 11.
[15]
Jia, J.; Jia, L.; Quan, M.; Fu, Y.; Zhao, T.; Li, Y.M. Dementia in China: Epidemiology, clinical management, and research advances. Lancet Neurol., 2019, 19(1), 81-92.
[16]
Suganya, A. Alzheimer’s And Parkinson’s disease classification using deep learning based on MRI: A review. Kohat, 2022, 14(1), 9-21.
[19]
Maruyama, W. Pathogenesis of idiopathic Parkinson’s disease. Nihon Ronen Igakkai Zasshi, 2001, 38(4), 494-497.
[22]
Chakraborty, A.; Mukherjee, A. Evaluation of non-motor symptoms in wilson disease using the Parkinson’s Disease nonmotor symptoms questionnaire: A pilot cross-sectional study and critical assessment. Ann. Indian Acad. Neurol., 2022, 25(6), 1062-1066.
[23]
Rawat, C. Parkinson’s disease-an introduction. In: Techniques for assessment of parkinsonism for diagnosis and rehabilitation; Springer, 2022; pp. 1-24.
[24]
Gallagher, D.; Brown, L. Parkinson’s Disease: An Interdisciplinary Guide to Management: Parkinson’s; Elsevier Health Sciences, 2021.
[26]
Zambrano, K.; Barba, D.A.; Castillo, K.; Caicedo, A.; Barba, D.; Noboa, L. Fighting Parkinson’s disease: The return of the mitochondria. Mitochondrion, 2022, 64, 34-44.
[31]
Nashine, S. Potential therapeutic candidates for age-related macular degeneration (AMD). Cells, 2021, 10(9), 2483.
[33]
Gomkale, R.; Linden, A. Mapping protein interactions in the active TOM-TIM23 supercomplex. Nat. Commun., 2021, 12, 5715.
[34]
Unni, S.; Thiyagarajan, S.; Reports, M.S.B.S. Tryptophan oxidation in the UQCRC1 subunit of mitochondrial complex III (Ubiquinol-Cytochrome C Reductase) in a mouse model of myodegeneration causes large structural changes in the complex: A molecular dynamics simulation study. Sci. Rep., 2019, 9, 10694.
[36]
Lin, Y.; Lim, S.; Chen, C.; Chi, H. Functional role of mitochondrial DNA in cancer progression. Int. J. Mol. Sci., 2022, 23(3), 1659.
[37]
Lechuga‐Vieco, A.; Justo‐Méndez, R.; Life, J.E.I. Not all mitochondrial DNAs are made equal and the nucleus knows it. IUBMB Life, 2021, 73(3), 511-529.
[41]
Jain, R.; Begum, N.; Tryphena, K. Inter and intracellular mitochondrial transfer: Future of mitochondrial transplant therapy in Parkinson’s disease. Biomed. Pharmacother., 2023, 159, 114268.
[42]
Chai, Q.; Lu, Z.; Liu, Z.; Zhong, Y.; Zhang, F.; Qiu, C.; Li, B.; Wang, J.; Zhang, L.; Pang, Y.; Liu, C.H. Lung gene expression signatures suggest pathogenic links and molecular markers for pulmonary tuberculosis, adenocarcinoma and sarcoidosis. Commun. Biol., 2020, 3(1), 604.
[44]
Detmer, S. Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol., 2007, 8, 870-879.
[47]
Curtis, W.; Seeds, W.; Mattson, M.; Cells, P.B. NADPH and mitochondrial quality control as targets for a circadian-based fasting and exercise therapy for the treatment of Parkinson’s Disease. Cells, 2022, 11(15), 2416.
[48]
Anik, M.; Mahmud, N.; Masud, A. Role of reactive oxygen species in aging and age-related diseases: A review. ACS Appl. Bio Mater., 2022, 5(9), 4028-4054.
[50]
Szabo, L.; Eckert, A. Insights into disease-associated tau impact on mitochondria. Int. J. Mol. Sci., 2020, 21(17), 6344.
[51]
Biomedicines, V.S. Mitochondria at work: New insights into regulation and dysregulation of cellular energy supply and metabolism. Biomedicines, 2020, 8(11), 526.
[52]
Koch, R.; Buchanan, K.; Casagrande, S. Integrating mitochondrial aerobic metabolism into ecology and evolution. Trends Ecol. Evol., 2021, 36(4), 321-332.
[54]
Ye, H.; Robak, L.; Yu, M.; Disease, M.C. genetics and pathogenesis of parkinson’s syndrome. Annu. Rev. Pathol., 2022, 18, 95-121.
[57]
Chia, S.; Tan, E. Historical perspective: Models of parkinson’s disease. Int. J. Mol. Sci., 2020, 21(7), 2464.
[63]
Williams, D.F. On the mechanisms of biocompatibility. Biomaterials, 2008, 29(20), 2941-2953.
[70]
Phane Hunot, S.; Dugas, N.; Faucheux, B.; Hartmann, A.; Tardieu, M.; Debré, P. FcεRII/CD23 is expressed in parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-α in glial cells. J. Neurosci., 1999, 19(9), 3440-3447.
[73]
Knott, C.; Stern, G.; Wilkin, G.P. Inflammatory regulators in parkinson’s disease: iNOS, Lipocortin-1, and Cyclooxygenases-1 and -2. Mol. Cell. Neurosci., 2000, 16(6), 724-739.
[78]
Cerruti, C.; Walther, D.; Kuhar, M. Dopamine transporter mRNA expression is intense in rat midbrain neurons and modest outside midbrain. Mol. Brain Res., 1993, 18(1–2), 181-186.
[80]
Nicklas, W.; Youngster, S.; Kindt, M., IV MPTP, MPP+ and mitochondrial function. Life Sci., 1987, 40(8), 721-729.
[85]
Shults, C.W. Coenzyme Q10 in Neurodegenerative Diseases. Curr. Med. Chem., 2003, 10, 1917-1921.
[86]
Koh, D.W.; Dawson, T.M.; Dawson, V.L. Mediation of cell death by poly(ADP-ribose) polymerase-1. Pharmacol. Res., 2005, 52, 5-14.
[88]
Ischiropoulos, H. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett., 1995, 364(3), 279-282.
[89]
Przedborski, S. The parkinsonian toxin MPTP: action and mechanism. Restor. Neurol. Neurosci., 2000, 16(2), 135-142.
[90]
Irena, G. Extrinsic connections of the neostriatum. Proceedings of a Workshop Sponsored by the European Brain and Behaviour Society, 17–19 April 1978Denmark1979.
[94]
Stenroos, E.; Athanassiadou, A. Mutation in the α-synuclein gene identified in families with Parkinson’s Disease. Science, 1997, 276(5321), 2045-2047.
[96]
Mezzaroba, L.; Alfieri, D.; Simão, A.; Neurotoxicology, E.R. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology, 2019, 74, 230-241.
[97]
Ajsuvakova, O.; Tinkov, A. Assessment of copper, iron, zinc and manganese status and speciation in patients with Parkinson’s disease: A pilot study. J. Trace Elem. Med. Biol., 2020, 59, 126423.
[98]
Kurt, A.J. The relevance of metals in the pathophysiology of neurodegeneration, pathological considerations. Int. Rev. Neurobiol., 2013, 110, 1-47.
[101]
Dumont, M. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic. Biol. Med., 2011, 51(5), 1014-1026.
[103]
Scarffe, L.; Stevens, D. Parkin and PINK1: Much more than mitophagy. Trends Neurosci., 2014, 37(6), 315-324.
[106]
Plun-Favreau, H.; Klupsch, K.; Moisoi, N. The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat. Cell Biol., 2007, 9, 1243-1252.
[107]
Strauss, K.; Martins, L. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum. Mol. Genet., 2005, 14(15), 2099-2111.
[111]
Zimprich, A.; Biskup, S.; Leitner, P.; Lichtner, P.; Neuron, M.F. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 2004, 44(4), 601-607.
[112]
Ross, O.; Soto-Ortolaza, A.; Neurology, M.H. Association of LRRK2 exonic variants with susceptibility to Parkinson’s disease: A case–control study. Lancet Neurol., 2011, 10, 898-P908.
[115]
Suleiman, J.; Hamwi, N. ATP13A2 novel mutations causing a rare form of juvenile-onset Parkinson disease. Brain Dev., 2018, 40(9), 824-826.
[119]
Sidransky, E.; Neurology, G.L.T.L. The link between the GBA gene and parkinsonism. Lancet Neurol., 2012, 11(11), 986-998.
[120]
Bonifati, V.; Rizzu, P.; Van Baren, M.J.; Schaap, O.; Breedveld, G.J.; Krieger, E. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 2003, 299(5604), 256-259.
[123]
Thomas, K.; McCoy, M. DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum. Mol. Genet., 2011, 20(1), 40-50.
[125]
Taipa, R.; Pereira, C.; Reis, I.; Alonso, I.; Brain, A.B.L. DJ-1 linked parkinsonism (PARK7) is associated with Lewy body pathology. Brain, 2016, 139(6), 1680-1687.