Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Insights on the Correlation between Mitochondrial Dysfunction and the Progression of Parkinson's Disease

Author(s): Prashant Chauhan, Pratibha Pandey*, Fahad Khan and Ramish Maqsood

Volume 24, Issue 9, 2024

Published on: 20 October, 2023

Page: [1007 - 1014] Pages: 8

DOI: 10.2174/0118715303249690231006114308

Price: $65

Abstract

The aetiology of a progressive neuronal Parkinson's disease has been discussed in several studies. However, due to the multiple risk factors involved in its development, such as environmental toxicity, parental inheritance, misfolding of protein, ageing, generation of reactive oxygen species, degradation of dopaminergic neurons, formation of neurotoxins, mitochondria dysfunction, and genetic mutations, its mechanism of involvement is still discernible. Therefore, this study aimed to review the processes or systems that are crucially implicated in the conversion of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) into its lethal form, which directly blockades the performance of mitochondria, leading to the formation of oxidative stress in the dopaminergic neurons of substantia nigra pars compacta (SNpc) and resulting in the progression of an incurable Parkinson’s disease. This review also comprises an overview of the mutated genes that are frequently associated with mitochondrial dysfunction and the progression of Parkinson’s disease. Altogether, this review would help future researchers to develop an efficient therapeutic approach for the management of Parkinson's disease via identifying potent prognostic and diagnostic biomarkers.

Keywords: Parkinson’s disease, mitochondrial dysfunction, biomarker, neurodegeneration, dopaminergic neurons, neurotoxins.

Next »
Graphical Abstract
[1]
Nguyen, M.; Wong, Y.C.; Ysselstein, D.; Severino, A.; Krainc, D. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci., 2019, 42(2), 140-149.
[http://dx.doi.org/10.1016/j.tins.2018.11.001] [PMID: 30509690]
[2]
Maruyama, W.; Strolin-Benedetti, M.; Naoi, M. N-methyl(R)] salsolinol and a neutral N-methyltransferase as pathogenic factors in Parkinson’s disease. Neurobiology, 2000, 8(1), 55-68.
[PMID: 11008878]
[3]
Tozzi, A.; Sciaccaluga, M.; Loffredo, V.; Brain, A.M. Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal circuit. Brain, 2021, 144(11), 3477-3491.
[4]
Marchetti, B.; Giachino, C.; Tirolo, C.; Cell, M.S.A. “Reframing” dopamine signaling at the intersection of glial networks in the aged Parkinsonian brain as innate Nrf2/Wnt driver: Therapeutical implications. Aging Cell, 2022, 21(4), e13575.
[5]
Wise, R.; Wagener, A.; Fietzek, U.; Disease, T.K. Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson’s disease and Neurodegeneration with Brain Iron Accumulation disorders. Neurobiol. Dis., 2022, 175, 105920.
[6]
Palasz, E.; Niewiadomski, W. Exercise-induced neuroprotection and recovery of motor function in animal models of Parkinson's Disease. Front. Neurol, 2019, 10, 10: 1143.
[7]
Guatteo, E.; Berretta, N.; Monda, V. Pathophysiological features of nigral dopaminergic neurons in animal models of Parkinson’s Disease. Int. J. Mol. Sci., 2022, 23(9), 4508.
[8]
Bose, A.; Beal, M.F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem., 2016, 139(S1), 216-231.
[http://dx.doi.org/10.1111/jnc.13731] [PMID: 27546335]
[9]
Bianchi, V.E.; Rizzi, L.; Somaa, F. The role of nutrition on Parkinson’s disease: A systematic review. Nutr. Neurosci., 2022, 26(7), 605-628.
[PMID: 35730414]
[10]
Kalita, S.; Bergman, H.; Dubey, K.D.; Shaik, S. How can static and oscillating electric fields serve in decomposing alzheimer’s and other senile plaques? J. Am. Chem. Soc., 2022, 145(6), 3543-3553.
[PMID: 36735972]
[11]
Cacabelos, R.; Naidoo, V.; Martínez-Iglesias, O.; Corzo, L.; Cacabelos, N.; Pego, R.; Carril, J.C. Pharmacogenomics of Alzheimer’s Disease: Novel strategies for drug utilization and development. Methods Mol. Biol., 2022, 2547, 275-387.
[http://dx.doi.org/10.1007/978-1-0716-2573-6_13] [PMID: 36068470]
[12]
Sivagurunathan, N.; Gnanasekaran, P. Mitochondrial toxicant-induced neuronal apoptosis in Parkinson’s Disease: What we know so far. Degener. Neurol. Neuromuscul. Dis., 2023, 13, 1-13.
[13]
Yang, W.; Hamilton, J.; Kopil, C.; Disease, J.B. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Parkinsons Dis., 2020, 6, 15.
[14]
Han, K.; Kim, B.; Lee, S. A nationwide cohort study on diabetes severity and risk of Parkinson disease. NPJ Parkinsons Dis., 2023, 9(11), 11.
[15]
Jia, J.; Jia, L.; Quan, M.; Fu, Y.; Zhao, T.; Li, Y.M. Dementia in China: Epidemiology, clinical management, and research advances. Lancet Neurol., 2019, 19(1), 81-92.
[16]
Suganya, A. Alzheimer’s And Parkinson’s disease classification using deep learning based on MRI: A review. Kohat, 2022, 14(1), 9-21.
[17]
Antony, P.M.A.; Diederich, N.J.; Krüger, R.; Balling, R. The hallmarks of Parkinson’s disease. FEBS J., 2013, 280(23), 5981-5993.
[http://dx.doi.org/10.1111/febs.12335] [PMID: 23663200]
[18]
Rocha, E.M.; Keeney, M.T.; Di Maio, R.; De Miranda, B.R.; Greenamyre, J.T. LRRK2 and idiopathic Parkinson’s disease. Trends Neurosci., 2022, 45(3), 224-236.
[http://dx.doi.org/10.1016/j.tins.2021.12.002] [PMID: 34991886]
[19]
Maruyama, W. Pathogenesis of idiopathic Parkinson’s disease. Nihon Ronen Igakkai Zasshi, 2001, 38(4), 494-497.
[20]
Achbani, A.; Ait Ougjij, A.; Ait Wahmane, S.; Sine, H.; Kharbach, A.; Bouchriti, Y.; Belmouden, A.; Nejmeddine, M. Risk factors of Parkinson’s Disease: A case-control study in moroccan patients. Arch. Neurosci., 2022, 9(3), e126351.
[http://dx.doi.org/10.5812/ans-126351]
[21]
Fang, J.Y. Parkinson disease. In: Primer on the Autonomic Nervous System; 4th ed., 2023; p. 549-552.
[http://dx.doi.org/10.1016/B978-0-323-85492-4.00061-2]
[22]
Chakraborty, A.; Mukherjee, A. Evaluation of non-motor symptoms in wilson disease using the Parkinson’s Disease nonmotor symptoms questionnaire: A pilot cross-sectional study and critical assessment. Ann. Indian Acad. Neurol., 2022, 25(6), 1062-1066.
[23]
Rawat, C. Parkinson’s disease-an introduction. In: Techniques for assessment of parkinsonism for diagnosis and rehabilitation; Springer, 2022; pp. 1-24.
[24]
Gallagher, D.; Brown, L. Parkinson’s Disease: An Interdisciplinary Guide to Management: Parkinson’s; Elsevier Health Sciences, 2021.
[25]
Abrishamdar, M.; Jalali, M.S.; Farbood, Y. Targeting mitochondria as a therapeutic approach for Parkinson’s Disease. Cell. Mol. Neurobiol., 2022, 43(4), 1499-1518.
[PMID: 35951210]
[26]
Zambrano, K.; Barba, D.A.; Castillo, K.; Caicedo, A.; Barba, D.; Noboa, L. Fighting Parkinson’s disease: The return of the mitochondria. Mitochondrion, 2022, 64, 34-44.
[27]
Compagnoni, G.; Di Fonzo, A.; Corti, S.; Comi, G.P.; Bresolin, N.; Masliah, E. The role of mitochondria in neurodegenerative diseases: The lesson from alzheimer’s disease and parkinson’s disease. Mol. Neurobiol., 2020, 57(7), 2959-2980.
[http://dx.doi.org/10.1007/s12035-020-01926-1] [PMID: 32445085]
[28]
Savitt, J.M.; Dawson, V.L.; Dawson, T.M. Diagnosis and treatment of Parkinson disease: Molecules to medicine. J. Clin. Invest., 2006, 116(7), 1744-1754.
[http://dx.doi.org/10.1172/JCI29178] [PMID: 16823471]
[29]
Olanow, C.W.; Stern, M.B.; Sethi, K. The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology, 2009, 72(S4), S1-S136.
[http://dx.doi.org/10.1212/WNL.0b013e3181a1d44c] [PMID: 19470958]
[30]
Herrmann, N.; Gauthier, S. Diagnosis and treatment of dementia: 6. Management of severe Alzheimer disease. CMAJ, 2008, 179(12), 1279-1287.
[http://dx.doi.org/10.1503/cmaj.070804] [PMID: 19047609]
[31]
Nashine, S. Potential therapeutic candidates for age-related macular degeneration (AMD). Cells, 2021, 10(9), 2483.
[32]
Zhao, Y.; Qiu, C.; Wang, W.; Peng, J.; Cheng, X.; Shangguan, Y.; Xu, M.; Li, J.; Qu, R.; Chen, X.; Jia, S.; Luo, D.; Liu, L.; Li, P.; Guo, F.; Vasilev, K.; Liu, L.; Hayball, J.; Dong, S.; Pan, X.; Li, Y.; Guo, L.; Cheng, L.; Li, W. Cortistatin protects against intervertebral disc degeneration through targeting mitochondrial ROS-dependent NLRP3 inflammasome activation. Theranostics, 2020, 10(15), 7015-7033.
[http://dx.doi.org/10.7150/thno.45359] [PMID: 32550919]
[33]
Gomkale, R.; Linden, A. Mapping protein interactions in the active TOM-TIM23 supercomplex. Nat. Commun., 2021, 12, 5715.
[34]
Unni, S.; Thiyagarajan, S.; Reports, M.S.B.S. Tryptophan oxidation in the UQCRC1 subunit of mitochondrial complex III (Ubiquinol-Cytochrome C Reductase) in a mouse model of myodegeneration causes large structural changes in the complex: A molecular dynamics simulation study. Sci. Rep., 2019, 9, 10694.
[35]
Eckl, E.M.; Ziegemann, O.; Krumwiede, L.; Fessler, E.; Jae, L.T. Sensing, signaling and surviving mitochondrial stress. Cell. Mol. Life Sci., 2021, 78(16), 5925-5951.
[http://dx.doi.org/10.1007/s00018-021-03887-7] [PMID: 34228161]
[36]
Lin, Y.; Lim, S.; Chen, C.; Chi, H. Functional role of mitochondrial DNA in cancer progression. Int. J. Mol. Sci., 2022, 23(3), 1659.
[37]
Lechuga‐Vieco, A.; Justo‐Méndez, R.; Life, J.E.I. Not all mitochondrial DNAs are made equal and the nucleus knows it. IUBMB Life, 2021, 73(3), 511-529.
[38]
Erekat, N.S. Programmed cell death in cerebellar Purkinje neurons. J. Integr. Neurosci., 2022, 21(1), 030.
[http://dx.doi.org/10.31083/j.jin2101030] [PMID: 35164466]
[39]
Chen, Z.; Rasheed, M.; Deng, Y. The epigenetic mechanisms involved in mitochondrial dysfunction: Implication for Parkinson’s disease. Brain Pathol., 2022, 32(3), e13012.
[http://dx.doi.org/10.1111/bpa.13012] [PMID: 34414627]
[40]
Resende, R.; Fernandes, T.; Pereira, A.C.; Marques, A.P.; Pereira, C.F. Endoplasmic reticulum-mitochondria contacts modulate reactive oxygen species-mediated signaling and oxidative stress in brain disorders: The key role of sigma-1 receptor. Antioxid. Redox Signal., 2022, 37(10-12), 758-780.
[http://dx.doi.org/10.1089/ars.2020.8231] [PMID: 35369731]
[41]
Jain, R.; Begum, N.; Tryphena, K. Inter and intracellular mitochondrial transfer: Future of mitochondrial transplant therapy in Parkinson’s disease. Biomed. Pharmacother., 2023, 159, 114268.
[42]
Chai, Q.; Lu, Z.; Liu, Z.; Zhong, Y.; Zhang, F.; Qiu, C.; Li, B.; Wang, J.; Zhang, L.; Pang, Y.; Liu, C.H. Lung gene expression signatures suggest pathogenic links and molecular markers for pulmonary tuberculosis, adenocarcinoma and sarcoidosis. Commun. Biol., 2020, 3(1), 604.
[43]
Long, H.Z.; Cheng, Y.; Zhou, Z.W.; Luo, H.Y.; Wen, D.D.; Gao, L.C. The key roles of organelles and ferroptosis in Alzheimerʼs disease. J. Neurosci. Res., 2022, 100(6), 1257-1280.
[http://dx.doi.org/10.1002/jnr.25033] [PMID: 35293012]
[44]
Detmer, S. Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol., 2007, 8, 870-879.
[45]
Nargund, A.M.; Fiorese, C.J.; Pellegrino, M.W.; Deng, P.; Haynes, C.M. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Mol. Cell, 2015, 58(1), 123-133.
[http://dx.doi.org/10.1016/j.molcel.2015.02.008] [PMID: 25773600]
[46]
Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol., 2011, 12(1), 9-14.
[http://dx.doi.org/10.1038/nrm3028] [PMID: 21179058]
[47]
Curtis, W.; Seeds, W.; Mattson, M.; Cells, P.B. NADPH and mitochondrial quality control as targets for a circadian-based fasting and exercise therapy for the treatment of Parkinson’s Disease. Cells, 2022, 11(15), 2416.
[48]
Anik, M.; Mahmud, N.; Masud, A. Role of reactive oxygen species in aging and age-related diseases: A review. ACS Appl. Bio Mater., 2022, 5(9), 4028-4054.
[49]
Moreira, P.I.; Carvalho, C.; Zhu, X.; Smith, M.A.; Perry, G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(1), 2-10.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.006] [PMID: 19853658]
[50]
Szabo, L.; Eckert, A. Insights into disease-associated tau impact on mitochondria. Int. J. Mol. Sci., 2020, 21(17), 6344.
[51]
Biomedicines, V.S. Mitochondria at work: New insights into regulation and dysregulation of cellular energy supply and metabolism. Biomedicines, 2020, 8(11), 526.
[52]
Koch, R.; Buchanan, K.; Casagrande, S. Integrating mitochondrial aerobic metabolism into ecology and evolution. Trends Ecol. Evol., 2021, 36(4), 321-332.
[53]
Schapira, A.H.; Jenner, P. Etiology and pathogenesis of Parkinson’s disease. Mov. Disord., 2011, 26(6), 1049-1055.
[http://dx.doi.org/10.1002/mds.23732] [PMID: 21626550]
[54]
Ye, H.; Robak, L.; Yu, M.; Disease, M.C. genetics and pathogenesis of parkinson’s syndrome. Annu. Rev. Pathol., 2022, 18, 95-121.
[55]
Vázquez-Vélez, G.E.; Zoghbi, H.Y. Parkinson’s disease genetics and pathophysiology. Annu. Rev. Neurosci., 2021, 44(1), 87-108.
[http://dx.doi.org/10.1146/annurev-neuro-100720-034518]
[56]
Cherian, A.; Divya, K.P. Genetics of Parkinson’s disease. Acta Neurol. Belg., 2020, 120(6), 1297-1305.
[http://dx.doi.org/10.1007/s13760-020-01473-5] [PMID: 32813147]
[57]
Chia, S.; Tan, E. Historical perspective: Models of parkinson’s disease. Int. J. Mol. Sci., 2020, 21(7), 2464.
[58]
Smeyne, R.J.; Jackson-Lewis, V. The MPTP model of Parkinson’s disease. Brain Res. Mol. Brain Res., 2005, 134(1), 57-66.
[http://dx.doi.org/10.1016/j.molbrainres.2004.09.017] [PMID: 15790530]
[59]
Kalaria, R.N.; Mitchell, M.J.; Harik, S.I. Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity. Proc. Natl. Acad. Sci., 1987, 84(10), 3521-3525.
[http://dx.doi.org/10.1073/pnas.84.10.3521] [PMID: 3495000]
[60]
Riachi, N.J.; Harik, S.I.; Kalaria, R.N.; Sayre, L.M. On the mechanisms underlying 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. II. Susceptibility among mammalian species correlates with the toxin’s metabolic patterns in brain microvessels and liver. J. Pharmacol. Exp. Ther., 1988, 244(2), 443-448.
[PMID: 3258032]
[61]
Buhlman, L.M. Mitochondrial mechanisms of degeneration and repair in parkinson’s disease; Springer, 2016, pp. 1-275.
[http://dx.doi.org/10.1007/978-3-319-42139-1]
[62]
Farina, M.; Avila, D.S.; da Rocha, J.B.T.; Aschner, M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem. Int., 2013, 62(5), 575-594.
[http://dx.doi.org/10.1016/j.neuint.2012.12.006] [PMID: 23266600]
[63]
Williams, D.F. On the mechanisms of biocompatibility. Biomaterials, 2008, 29(20), 2941-2953.
[64]
Naoi, M.; Maruyama, W. Cell death of dopamine neurons in aging and Parkinson’s disease. Mech. Ageing Dev., 1999, 111(2-3), 175-188.
[http://dx.doi.org/10.1016/S0047-6374(99)00064-0] [PMID: 10656535]
[65]
Riachi, N.J.; Dietrich, W.D.; Harik, S.I. Effects of internal carotid administration of MPTP on rat brain and blood-brain barrier. Brain Res., 1990, 533(1), 6-14.
[http://dx.doi.org/10.1016/0006-8993(90)91788-I] [PMID: 2085733]
[66]
Hazell, A.S.; Itzhak, Y.; Liu, H.; Norenberg, M.D. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) decreases glutamate uptake in cultured astrocytes. J. Neurochem., 1997, 68(5), 2216-2219.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68052216.x] [PMID: 9109551]
[67]
Schober, A. Classic toxin-induced animal models of Parkinson?s disease: 6-OHDA and MPTP. Cell Tissue Res., 2004, 318(1), 215-224.
[http://dx.doi.org/10.1007/s00441-004-0938-y] [PMID: 15503155]
[68]
Teismann, P.; Tieu, K.; Cohen, O.; Choi, D.K.; Wu, D.C.; Marks, D.; Vila, M.; Jackson-Lewis, V.; Przedborski, S. Pathogenic role of glial cells in Parkinson’s disease. Mov. Disord., 2003, 18(2), 121-129.
[http://dx.doi.org/10.1002/mds.10332] [PMID: 12539204]
[69]
Youdim, M.B.H.; Grünblatt, E.; Levites, Y.; Maor, G.; Mandel, S. Early and late molecular events in neurodegeneration and neuroprotection in Parkinson’s disease MPTP model as assessed by cDNA microarray; the role of iron. Neurotox. Res., 2002, 4(7-8), 679-689.
[http://dx.doi.org/10.1080/1029842021000045507] [PMID: 12709306]
[70]
Phane Hunot, S.; Dugas, N.; Faucheux, B.; Hartmann, A.; Tardieu, M.; Debré, P. FcεRII/CD23 is expressed in parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-α in glial cells. J. Neurosci., 1999, 19(9), 3440-3447.
[71]
Muramatsu, Y.; Kurosaki, R.; Watanabe, H.; Michimata, M.; Matsubara, M.; Imai, Y.; Araki, T. Cerebral alterations in a MPTP-mouse model of Parkinson?s disease? an immunocytochemical study. J. Neural Transm., 2003, 110(10), 1129-1144.
[http://dx.doi.org/10.1007/s00702-003-0021-y] [PMID: 14523625]
[72]
Przedborski, S.; Jackson-Lewis, V.; Yokoyama, R.; Shibata, T.; Dawson, V.L.; Dawson, T.M. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc. Natl. Acad. Sci., 1996, 93(10), 4565-4571.
[http://dx.doi.org/10.1073/pnas.93.10.4565] [PMID: 8643444]
[73]
Knott, C.; Stern, G.; Wilkin, G.P. Inflammatory regulators in parkinson’s disease: iNOS, Lipocortin-1, and Cyclooxygenases-1 and -2. Mol. Cell. Neurosci., 2000, 16(6), 724-739.
[74]
Liberatore, G.T.; Jackson-Lewis, V.; Vukosavic, S.; Mandir, A.S.; Vila, M.; McAuliffe, W.G.; Dawson, V.L.; Dawson, T.M.; Przedborski, S. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med., 1999, 5(12), 1403-1409.
[http://dx.doi.org/10.1038/70978] [PMID: 10581083]
[75]
Wu, D.C.; Teismann, P.; Tieu, K.; Vila, M.; Jackson-Lewis, V.; Ischiropoulos, H.; Przedborski, S. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc. Natl. Acad. Sci., 2003, 100(10), 6145-6150.
[http://dx.doi.org/10.1073/pnas.0937239100] [PMID: 12721370]
[76]
Inazu, M.; Takeda, H.; Matsumiya, T. Expression and functional characterization of the extraneuronal monoamine transporter in normal human astrocytes. J. Neurochem., 2003, 84(1), 43-52.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01566.x] [PMID: 12485400]
[77]
Russ, H.; Staudt, K.; Martel, F.; Gliese, M.; Schömig, E. The extraneuronal transporter for monoamine transmitters exists in cells derived from human central nervous system glia. Eur. J. Neurosci., 1996, 8(6), 1256-1264.
[http://dx.doi.org/10.1111/j.1460-9568.1996.tb01294.x] [PMID: 8752596]
[78]
Cerruti, C.; Walther, D.; Kuhar, M. Dopamine transporter mRNA expression is intense in rat midbrain neurons and modest outside midbrain. Mol. Brain Res., 1993, 18(1–2), 181-186.
[79]
Witte, J.S.; Elston, R.C.; Schork, N.J. Genetic dissection of complex traits. Nat. Genet., 1996, 12(4), 355-356.
[http://dx.doi.org/10.1038/ng0496-355] [PMID: 8630483]
[80]
Nicklas, W.; Youngster, S.; Kindt, M., IV MPTP, MPP+ and mitochondrial function. Life Sci., 1987, 40(8), 721-729.
[81]
Nicklas, W.J.; Vyas, I.; Heikkila, R.E. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci., 1985, 36(26), 2503-2508.
[http://dx.doi.org/10.1016/0024-3205(85)90146-8] [PMID: 2861548]
[82]
Desai, V.G.; Feuers, R.J.; Hart, R.W.; Ali, S.F. MPP+-induced neurotoxicity in mouse is age-dependent: Evidenced by the selective inhibition of complexes of electron transport. Brain Res., 1996, 715(1-2), 1-8.
[http://dx.doi.org/10.1016/0006-8993(95)01255-9] [PMID: 8739616]
[83]
Beal, M.F. Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann. N. Y. Acad. Sci., 2003, 991(1), 120-131.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb07470.x] [PMID: 12846981]
[84]
Müller, T.; Büttner, T.; Gholipour, A.F.; Kuhn, W. Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson’s disease. Neurosci. Lett., 2003, 341(3), 201-204.
[http://dx.doi.org/10.1016/S0304-3940(03)00185-X] [PMID: 12697283]
[85]
Shults, C.W. Coenzyme Q10 in Neurodegenerative Diseases. Curr. Med. Chem., 2003, 10, 1917-1921.
[86]
Koh, D.W.; Dawson, T.M.; Dawson, V.L. Mediation of cell death by poly(ADP-ribose) polymerase-1. Pharmacol. Res., 2005, 52, 5-14.
[87]
Przedborski, S.; Ischiropoulos, H. Reactive oxygen and nitrogen species: Weapons of neuronal destruction in models of Parkinson’s disease. Antioxid. Redox Signal., 2005, 7(5-6), 685-693.
[http://dx.doi.org/10.1089/ars.2005.7.685] [PMID: 15890013]
[88]
Ischiropoulos, H. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett., 1995, 364(3), 279-282.
[89]
Przedborski, S. The parkinsonian toxin MPTP: action and mechanism. Restor. Neurol. Neurosci., 2000, 16(2), 135-142.
[90]
Irena, G. Extrinsic connections of the neostriatum. Proceedings of a Workshop Sponsored by the European Brain and Behaviour Society, 17–19 April 1978Denmark1979.
[91]
Lee, Y.; Lee, J.; Lim, C. Anticancer activity of flavonoids accompanied by redox state modulation and the potential for a chemotherapeutic strategy. Food Sci. Biotechnol., 2021, 30(3), 321-340.
[http://dx.doi.org/10.1007/s10068-021-00899-8] [PMID: 33868744]
[92]
Slivka, A.; Cohen, G. Hydroxyl radical attack on dopamine. J. Biol. Chem., 1985, 260(29), 15466-15472.
[http://dx.doi.org/10.1016/S0021-9258(17)36277-4] [PMID: 2999117]
[93]
Schlüter, O.M.; Fornai, F.; Alessandrí, M.G.; Takamori, S.; Geppert, M.; Jahn, R.; Südhof, T.C. Role of α-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuroscience, 2003, 118(4), 985-1002.
[http://dx.doi.org/10.1016/S0306-4522(03)00036-8] [PMID: 12732244]
[94]
Stenroos, E.; Athanassiadou, A. Mutation in the α-synuclein gene identified in families with Parkinson’s Disease. Science, 1997, 276(5321), 2045-2047.
[95]
Conway, K.A.; Harper, J.D.; Lansbury, P.T. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nat. Med., 1998, 4(11), 1318-1320.
[http://dx.doi.org/10.1038/3311]
[96]
Mezzaroba, L.; Alfieri, D.; Simão, A.; Neurotoxicology, E.R. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology, 2019, 74, 230-241.
[97]
Ajsuvakova, O.; Tinkov, A. Assessment of copper, iron, zinc and manganese status and speciation in patients with Parkinson’s disease: A pilot study. J. Trace Elem. Med. Biol., 2020, 59, 126423.
[98]
Kurt, A.J. The relevance of metals in the pathophysiology of neurodegeneration, pathological considerations. Int. Rev. Neurobiol., 2013, 110, 1-47.
[99]
Koopman, W.J.H.; Nijtmans, L.G.J.; Dieteren, C.E.J.; Roestenberg, P.; Valsecchi, F.; Smeitink, J.A.M.; Willems, P.H.G.M. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid. Redox Signal., 2010, 12(12), 1431-1470.
[http://dx.doi.org/10.1089/ars.2009.2743] [PMID: 19803744]
[100]
Johnson, W.M.; Wilson-Delfosse, A.L.; Mieyal, J.J. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients, 2012, 4(10), 1399-1440.
[http://dx.doi.org/10.3390/nu4101399] [PMID: 23201762]
[101]
Dumont, M. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic. Biol. Med., 2011, 51(5), 1014-1026.
[102]
Yan, M.H.; Wang, X.; Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med., 2013, 62, 90-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.014] [PMID: 23200807]
[103]
Scarffe, L.; Stevens, D. Parkin and PINK1: Much more than mitophagy. Trends Neurosci., 2014, 37(6), 315-324.
[104]
Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J., 2002, 21(17), 4411-4419.
[http://dx.doi.org/10.1093/emboj/cdf445] [PMID: 12198143]
[105]
Pridgeon, J.W.; Olzmann, J.A.; Chin, L.S.; Li, L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol., 2007, 5(7), e172.
[http://dx.doi.org/10.1371/journal.pbio.0050172] [PMID: 17579517]
[106]
Plun-Favreau, H.; Klupsch, K.; Moisoi, N. The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat. Cell Biol., 2007, 9, 1243-1252.
[107]
Strauss, K.; Martins, L. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum. Mol. Genet., 2005, 14(15), 2099-2111.
[108]
Fitzgerald, J.C.; Zimprich, A.; Carvajal Berrio, D.A.; Schindler, K.M.; Maurer, B.; Schulte, C.; Bus, C.; Hauser, A.K.; Kübler, M.; Lewin, R.; Bobbili, D.R.; Schwarz, L.M.; Vartholomaiou, E.; Brockmann, K.; Wüst, R.; Madlung, J.; Nordheim, A.; Riess, O.; Martins, L.M.; Glaab, E.; May, P.; Schenke-Layland, K.; Picard, D.; Sharma, M.; Gasser, T.; Krüger, R. Metformin reverses TRAP1 mutation-associated alterations in mitochondrial function in Parkinson’s disease. Brain, 2017, 140(9), 2444-2459.
[http://dx.doi.org/10.1093/brain/awx202] [PMID: 29050400]
[109]
Funayama, M.; Hasegawa, K.; Kowa, H.; Saito, M.; Tsuji, S.; Obata, F. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann. Neurol., 2002, 51(3), 296-301.
[http://dx.doi.org/10.1002/ana.10113] [PMID: 11891824]
[110]
Wszolek, Z.K.; Pfeiffer, R.F.; Tsuboi, Y.; Uitti, R.J.; McComb, R.D.; Stoessl, A.J.; Strongosky, A.J.; Zimprich, A.; Müller-Myhsok, B.; Farrer, M.J.; Gasser, T.; Calne, D.B.; Dickson, D.W. Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology, 2004, 62(9), 1619-1622.
[http://dx.doi.org/10.1212/01.WNL.0000125015.06989.DB] [PMID: 15136696]
[111]
Zimprich, A.; Biskup, S.; Leitner, P.; Lichtner, P.; Neuron, M.F. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 2004, 44(4), 601-607.
[112]
Ross, O.; Soto-Ortolaza, A.; Neurology, M.H. Association of LRRK2 exonic variants with susceptibility to Parkinson’s disease: A case–control study. Lancet Neurol., 2011, 10, 898-P908.
[113]
Ibanez, L.; Dube, U.; Davis, A.A.; Fernandez, M.V.; Budde, J.; Cooper, B.; Diez-Fairen, M.; Ortega-Cubero, S.; Pastor, P.; Perlmutter, J.S.; Cruchaga, C.; Benitez, B.A. Pleiotropic effects of variants in dementia genes in Parkinson disease. Front. Neurosci., 2018, 12(APR), 230.
[http://dx.doi.org/10.3389/fnins.2018.00230] [PMID: 29692703]
[114]
Park, J.S.; Blair, N.F.; Sue, C.M. The role of ATP13A2 in Parkinson’s disease: Clinical phenotypes and molecular mechanisms. Mov. Disord., 2015, 30(6), 770-779.
[http://dx.doi.org/10.1002/mds.26243] [PMID: 25900096]
[115]
Suleiman, J.; Hamwi, N. ATP13A2 novel mutations causing a rare form of juvenile-onset Parkinson disease. Brain Dev., 2018, 40(9), 824-826.
[116]
Sato, S.; Koike, M.; Funayama, M.; Ezaki, J.; Fukuda, T.; Ueno, T.; Uchiyama, Y.; Hattori, N. Lysosomal storage of subunit c of mitochondrial atp synthase in brain-specific atp13a2-deficient mice. Am. J. Pathol., 2016, 186(12), 3074-3082.
[http://dx.doi.org/10.1016/j.ajpath.2016.08.006] [PMID: 27770614]
[117]
Kett, L.R.; Dauer, W.T. Endolysosomal dysfunction in Parkinson’s disease: Recent developments and future challenges. Mov. Disord., 2016, 31(10), 1433-1443.
[http://dx.doi.org/10.1002/mds.26797] [PMID: 27619535]
[118]
Goker-Alpan, O.; Lopez, G.; Vithayathil, J.; Davis, J.; Hallett, M.; Sidransky, E. The spectrum of parkinsonian manifestations associated with glucocerebrosidase mutations. Arch. Neurol., 2008, 65(10), 1353-1357.
[http://dx.doi.org/10.1001/archneur.65.10.1353] [PMID: 18852351]
[119]
Sidransky, E.; Neurology, G.L.T.L. The link between the GBA gene and parkinsonism. Lancet Neurol., 2012, 11(11), 986-998.
[120]
Bonifati, V.; Rizzu, P.; Van Baren, M.J.; Schaap, O.; Breedveld, G.J.; Krieger, E. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 2003, 299(5604), 256-259.
[121]
Ramsey, C.P.; Giasson, B.I. L10p and P158DEL DJ-1 mutations cause protein instability, aggregation, and dimerization impairments. J. Neurosci. Res., 2010, 88(14), 3111-3124.
[http://dx.doi.org/10.1002/jnr.22477] [PMID: 20806408]
[122]
Proudfoot, A.E.I. Chemokine receptors: Multifaceted therapeutic targets. Nat. Rev. Immunol., 2002, 2(2), 106-115.
[http://dx.doi.org/10.1038/nri722] [PMID: 11910892]
[123]
Thomas, K.; McCoy, M. DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum. Mol. Genet., 2011, 20(1), 40-50.
[124]
Kasten, M.; Hartmann, C.; Hampf, J.; Schaake, S.; Westenberger, A.; Vollstedt, E.J.; Balck, A.; Domingo, A.; Vulinovic, F.; Dulovic, M.; Zorn, I.; Madoev, H.; Zehnle, H.; Lembeck, C.M.; Schawe, L.; Reginold, J.; Huang, J.; König, I.R.; Bertram, L.; Marras, C.; Lohmann, K.; Lill, C.M.; Klein, C. Genotype-phenotype relations for the parkinson’s disease genes Parkin, PINK1, DJ1: MDSGene systematic review. Mov. Disord., 2018, 33(5), 730-741.
[http://dx.doi.org/10.1002/mds.27352] [PMID: 29644727]
[125]
Taipa, R.; Pereira, C.; Reis, I.; Alonso, I.; Brain, A.B.L. DJ-1 linked parkinsonism (PARK7) is associated with Lewy body pathology. Brain, 2016, 139(6), 1680-1687.
[126]
Andres-Mateos, E.; Perier, C.; Zhang, L.; Blanchard-Fillion, B.; Greco, T.M.; Thomas, B.; Ko, H.S.; Sasaki, M.; Ischiropoulos, H.; Przedborski, S.; Dawson, T.M.; Dawson, V.L. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14807-14812.
[http://dx.doi.org/10.1073/pnas.0703219104] [PMID: 17766438]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy