Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Topical Anti-ulcerogenic Effect of the Beta-adrenergic Blockers on Diabetic Foot Ulcers: Recent Advances and Future Prospectives

Author(s): Prateek Singh, Shweta Sharma*, Pramod Kumar Sharma and Aftab Alam

Volume 20, Issue 8, 2024

Published on: 20 October, 2023

Article ID: e201023222413 Pages: 15

DOI: 10.2174/0115733998249061231009093006

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Patients with diabetes suffer from major complications like Diabetic Retinopathy, Diabetic Coronary Artery Disease, and Diabetic Foot ulcers (DFUs). Diabetes complications are a group of ailments whose recovery time is especially delayed, irrespective of the underlying reason. The longer duration of wound healing enhances the probability of problems like sepsis and amputation. The delayed healing makes it more critical for research focus. By understanding the molecular pathogenesis of diabetic wounds, it is quite easy to target the molecules involved in the healing of wounds. Recent research on beta-adrenergic blocking drugs has revealed that these classes of drugs possess therapeutic potential in the healing of DFUs. However, because the order of events in defective healing is adequately defined, it is possible to recognize moieties that are currently in the market that are recognized to aim at one or several identified molecular processes.

Objective: The aim of this study was to explore some molecules with different therapeutic categories that have demonstrated favorable effects in improving diabetic wound healing, also called the repurposing of drugs.

Method: Various databases like PubMed/Medline, Google Scholar and Web of Science (WoS) of all English language articles were searched, and relevant information was collected regarding the role of beta-adrenergic blockers in diabetic wounds or diabetic foot ulcers (DFUs) using the relevant keywords for the literature review.

Result: The potential beta-blocking agents and their mechanism of action in diabetic foot ulcers were studied, and it was found that these drugs have a profound effect on diabetic foot ulcer healing as per reported literatures.

Conclusion: There is a need to move forward from preclinical studies to clinical studies to analyze clinical findings to determine the effectiveness and safety of some beta-antagonists in diabetic foot ulcer treatment.

Keywords: Diabetic complications, beta-adrenergic, diabetic foot ulcers (DFUs), beta-adrenergic blockers, drug repurposing, molecular pathogenesis.

[1]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care 2014; 37(1): S81-90.
[2]
Jiménez PG, Martín-Carmona J, Hernández EL. Diabetes mellitus. Medicine 2020; 13: 883-90.
[3]
Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic complications of diabetes mellitus: A mini-review. Curr Diabetes Rev 2016; 13(1): 3-10.
[http://dx.doi.org/10.2174/1573399812666151016101622] [PMID: 26472574]
[4]
Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med 2017; 376(24): 2367-75.
[http://dx.doi.org/10.1056/NEJMra1615439] [PMID: 28614678]
[5]
Skrepnek GH, Mills JL Sr, Lavery LA, Armstrong DG. Health care service and outcomes among an estimated 6.7 million ambulatory care diabetic foot cases in the US. Diabetes Care 2017; 40(7): 936-42.
[http://dx.doi.org/10.2337/dc16-2189] [PMID: 28495903]
[6]
Raghav A, Khan ZA, Labala RK, Ahmad J, Noor S, Mishra BK. Financial burden of diabetic foot ulcers to world: A progressive topic to discuss always. Ther Adv Endocrinol Metab 2018; 9(1): 29-31.
[http://dx.doi.org/10.1177/2042018817744513] [PMID: 29344337]
[7]
Meijer JW, Trip J, Jaegers SM, et al. Quality of life in patients with diabetic foot ulcers. Disabil Rehabil 2001; 23(8): 336-40.
[http://dx.doi.org/10.1080/09638280010005585] [PMID: 11374523]
[8]
Santema TB, Poyck PP, Ubbink DT. Skin grafting and tissue replacement for treating foot ulcers in people with diabetes. Cochrane Database Syst Rev 2016; 2(2): CD011255.
[http://dx.doi.org/10.1002/14651858.CD011255.pub2]
[9]
International W. International Best Practices Guidelines: Wound management in diabetic foot ulcers. 2013. Available from: https://www.woundsinternational.com/resources/details/bestpractice-guidelines-wound (Accessed Jan 2023).
[10]
American Diabetes Association. 2023. Available from: https://professional.diabetes.org/content/fast-facts-data-and-statistics-about-diabetes (Accessed Jan 2023).
[11]
Cavanagh P, Attinger C, Abbas Z, Bal A, Rojas N, Xu ZR. Cost of treating diabetic foot ulcers in five different countries. Diabetes Metab Res Rev 2012; 28(1): 107-11.
[http://dx.doi.org/10.1002/dmrr.2245] [PMID: 22271734]
[12]
Centers for Disease Control and Prevention. National Diabetes Statistics Report 2020. Available from: https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf (Accessed Jan 2023).
[13]
Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020; 323(20): 2052-9.
[http://dx.doi.org/10.1001/jama.2020.6775] [PMID: 32320003]
[14]
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J thromb hemost 2020; 18(4): 844-7.
[http://dx.doi.org/10.1111/jth.14768]
[15]
Group TR. Dexamethasone in hospitalized patients with COVID-19-preliminary report. N Engl J Med 2020; 384(8): 693-704.
[16]
Castelnuovo AD, Costanzo S, Antinori A, et al. Use of hydroxychloroquine in hospitalised COVID-19 patients is associated with reduced mortality: Findings from the observational multicentre Italian CORIST study. Eur J Intern Med 2020; 82: 38-47.
[http://dx.doi.org/10.1016/j.ejim.2020.08.019] [PMID: 32859477]
[17]
Tomazini BM, Maia IS, Cavalcanti AB, et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: The CoDEX randomized clinical trial. JAMA 2020; 324(13): 1307-16.
[http://dx.doi.org/10.1001/jama.2020.17021] [PMID: 32876695]
[18]
Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci 2018; 1411(1): 153-65.
[http://dx.doi.org/10.1111/nyas.13569] [PMID: 29377202]
[19]
Margolis DJ, Allen-Taylor L, Hoffstad O, Berlin JA. Diabetic neuropathic foot ulcers: The association of wound size, wound duration, and wound grade on healing. Diabetes Care 2002; 25(10): 1835-9.
[http://dx.doi.org/10.2337/diacare.25.10.1835] [PMID: 12351487]
[20]
Margolis DJ, Gelfand JM, Hoffstad O, Berlin JA. Surrogate end points for the treatment of diabetic neuropathic foot ulcers. Diabetes Care 2003; 26(6): 1696-700.
[http://dx.doi.org/10.2337/diacare.26.6.1696] [PMID: 12766096]
[21]
Schallreuter KU. Epidermal adrenergic signal transduction as part of the neuronal network in the human epidermis. J Investig Dermatol Symp Proc 1997; 2: 37-40.
[http://dx.doi.org/10.1038/jidsymp.1997.9]
[22]
Steinkraus V, Steinfath M, Körner C, Mensing H. Binding of beta-adrenergic receptors in human skin. J Invest Dermatol 1992; 98(4): 475-80.
[http://dx.doi.org/10.1111/1523-1747.ep12499860] [PMID: 1312566]
[23]
Steinkraus V, Mak JCW, Pichlmeier U, Mensing H, Ring J, Barnes PJ. Autoradiographic mapping of beta-adrenoceptors in human skin. Arch Dermatol Res 1996; 288(9): 549-53.
[http://dx.doi.org/10.1007/BF02505253] [PMID: 8874751]
[24]
Chen J, Hoffman BB, Rivkah Isseroff R. β-adrenergic receptor activation inhibits keratinocyte migration via a cyclic adenosine monophosphate-independent mechanism. J Invest Dermatol 2002; 119(6): 1261-8.
[http://dx.doi.org/10.1046/j.1523-1747.2002.19611.x] [PMID: 12485426]
[25]
Boulton AJM, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. Lancet 2005; 366(9498): 1719-24.
[http://dx.doi.org/10.1016/S0140-6736(05)67698-2] [PMID: 16291066]
[26]
Schreml S, Berneburg M. The global burden of diabetic wounds. Br J Dermatol 2017; 176(4): 845-6.
[http://dx.doi.org/10.1111/bjd.15254] [PMID: 28418142]
[27]
Singh R, Kishore L, Kaur N. Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol Res 2014; 80: 21-35.
[http://dx.doi.org/10.1016/j.phrs.2013.12.005] [PMID: 24373831]
[28]
Cruciani M, Lipsky BA, Mengoli C, de Lalla F. Granulocyte‐colony stimulating factors as adjunctive therapy for diabetic foot infections. Cochrane Database Syst Rev 2013; 17(8): CD00681.
[http://dx.doi.org/10.1002/14651858.CD006810.pub3]
[29]
del Castillo Tirado RA, López JA, del Castillo Tirado FJ. Clinical practice guide for the diabetic foot. Arch Med 2014; 10(2): 1.
[30]
Guzman-Gardearzabal E, Leyva-Bohorquez G, Salas-Colín S, Paz-Janeiro JL, Alvarado-Ruiz R, García-Salazar R. Treatment of chronic ulcers in the lower extremities with topical becaplermin gel. 01%: A multicenter open-label study. Adv Ther 2000; 17(4): 184-9.
[http://dx.doi.org/10.1007/BF02850294] [PMID: 11185057]
[31]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019; 157: 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[32]
Petrova N, Edmonds M. Emerging drugs for diabetic foot ulcers. Expert Opin Emerg Drugs 2006; 11(4): 709-24.
[http://dx.doi.org/10.1517/14728214.11.4.709] [PMID: 17064227]
[33]
Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA 2005; 293(2): 217-28.
[http://dx.doi.org/10.1001/jama.293.2.217] [PMID: 15644549]
[34]
Hanefeld M, Duetting E, Bramlage P. Cardiac implications of hypoglycaemia in patients with diabetes: A systematic review. Cardiovasc Diabetol 2013; 12(1): 135.
[http://dx.doi.org/10.1186/1475-2840-12-135] [PMID: 24053606]
[35]
Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis. JAMA 2002; 287(19): 2570-81.
[http://dx.doi.org/10.1001/jama.287.19.2570] [PMID: 12020339]
[36]
Koïtka A, Abraham P, Bouhanick B, Sigaudo-Roussel D, Demiot C, Saumet JL. Impaired pressure-induced vasodilation at the foot in young adults with type 1 diabetes. Diabetes 2004; 53(3): 721-5.
[http://dx.doi.org/10.2337/diabetes.53.3.721] [PMID: 14988257]
[37]
Santoro M, Gaudino G. Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res 2005; 304(1): 274-86.
[http://dx.doi.org/10.1016/j.yexcr.2004.10.033] [PMID: 15707592]
[38]
Erem C, Hacıhasanoğlu A, Çelik Ş, et al. Coagulation and fibrinolysis parameters in type 2 diabetic patients with and without diabetic vascular complications. Med Princ Pract 2005; 14(1): 22-30.
[http://dx.doi.org/10.1159/000081919] [PMID: 15608477]
[39]
Chhabra S, Chhabra N, Kaur A, Gupta N. Wound healing concepts in clinical practice of OMFS. J Maxillofac Oral Surg 2017; 16(4): 403-23.
[http://dx.doi.org/10.1007/s12663-016-0880-z] [PMID: 29038623]
[40]
Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83(3): 835-70.
[http://dx.doi.org/10.1152/physrev.2003.83.3.835] [PMID: 12843410]
[41]
Xiao J, Li J, Cai L, Chakrabarti S, Li X. Cytokines and diabetes research. J Diabetes Res 2014; 2014: 1-2.
[http://dx.doi.org/10.1155/2014/920613] [PMID: 24551859]
[42]
Pradhan L, Nabzdyk C, Andersen ND, LoGerfo FW, Veves A. Inflammation and neuropeptides: The connection in diabetic wound healing. Expert Rev Mol Med 2009; 11: e2.
[http://dx.doi.org/10.1017/S1462399409000945] [PMID: 19138453]
[43]
Falanga V. The chronic wound: Impaired healing and solutions in the context of wound bed preparation. Blood Cells Mol Dis 2004; 32(1): 88-94.
[http://dx.doi.org/10.1016/j.bcmd.2003.09.020] [PMID: 14757419]
[44]
Liu L, Marti GP, Wei X, et al. Age-dependent impairment of HIF-1α expression in diabetic mice: Correction with electroporation-facilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells. J Cell Physiol 2008; 217(2): 319-27.
[http://dx.doi.org/10.1002/jcp.21503] [PMID: 18506785]
[45]
Okonkwo U, DiPietro L. Diabetes and wound angiogenesis. Int J Mol Sci 2017; 18(7): 1419.
[http://dx.doi.org/10.3390/ijms18071419] [PMID: 28671607]
[46]
Hirschi KK, D’Amore PA. Pericytes in the microvasculature. Cardiovasc Res 1996; 32(4): 687-98.
[http://dx.doi.org/10.1016/S0008-6363(96)00063-6] [PMID: 8915187]
[47]
Haukipuro K, Melkkocand J, Risteli L, Kairaluoma M, Risteli J. Synthesis of type I collagen in healing wounds in humans. Ann Surg 1991; 213(1): 75-80.
[http://dx.doi.org/10.1097/00000658-199101000-00013] [PMID: 1985542]
[48]
Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 2008; 453(7193): 314-21.
[http://dx.doi.org/10.1038/nature07039] [PMID: 18480812]
[49]
Han G, Ceilley R. Chronic wound healing: A review of current management and treatments. Adv Ther 2017; 34(3): 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[50]
Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med 2014; 6(265): 265sr6.
[http://dx.doi.org/10.1126/scitranslmed.3009337] [PMID: 25473038]
[51]
Wetzler C, Kämpfer H, Stallmeyer B, Pfeilschifter J, Frank S. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: Prolonged persistence of neutrophils and macrophages during the late phase of repair. J Invest Dermatol 2000; 115(2): 245-53.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00029.x] [PMID: 10951242]
[52]
Brown DL, Kane CD, Chernausek SD, Greenhalgh DG. Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice. Am J Pathol 1997; 151(3): 715-24.
[PMID: 9284820]
[53]
Roberts AB. Transforming growth factor-β Activity and efficacy in animal models of wound healing. Wound Repair Regen 1995; 3(4): 408-18.
[http://dx.doi.org/10.1046/j.1524-475X.1995.30405.x] [PMID: 17147652]
[54]
Semenza GL. HIF-1: Mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000; 88(4): 1474-80.
[http://dx.doi.org/10.1152/jappl.2000.88.4.1474] [PMID: 10749844]
[55]
Khanna S, Biswas S, Shang Y, et al. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One 2010; 5(3): e9539.
[http://dx.doi.org/10.1371/journal.pone.0009539] [PMID: 20209061]
[56]
Seitz O, Schürmann C, Hermes N, et al. Wound healing in mice with high-fat diet-or ob gene-induced diabetes-obesity syndromes: A comparative study. Exp Diabetes Res 2010; 2010: 476969.
[57]
Galiano RD, Tepper OM, Pelo CR, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 2004; 164(6): 1935-47.
[http://dx.doi.org/10.1016/S0002-9440(10)63754-6] [PMID: 15161630]
[58]
Drela E, Stankowska K, Kulwas A. Rość D. Endothelial progenitor cells in diabetic foot syndrome. Adv Clin Exp Med 2012; 21(2): 249-54.
[PMID: 23214290]
[59]
Sangiorgi S, Manelli A, Reguzzoni M, Ronga M, Protasoni M, Dell’Orbo C. The cutaneous microvascular architecture of human diabetic toe studied by corrosion casting and scanning electron microscopy analysis. Anat Rec 2010; 293(10): 1639-45.
[http://dx.doi.org/10.1002/ar.21168] [PMID: 20687174]
[60]
Beer HD, Longaker MT, Werner S. Reduced expression of PDGF and PDGF receptors during impaired wound healing. J Invest Dermatol 1997; 109(2): 132-8.
[http://dx.doi.org/10.1111/1523-1747.ep12319188] [PMID: 9242497]
[61]
Balaji S, Han N, Moles C, et al. Angiopoietin-1 improves endothelial progenitor cell–dependent neovascularization in diabetic wounds. Surgery 2015; 158(3): 846-56.
[http://dx.doi.org/10.1016/j.surg.2015.06.034] [PMID: 26266763]
[62]
Lobmann R, Zemlin C, Motzkau M, Reschke K, Lehnert H. Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing. J Diab Compl 2006; 20(5): 329-35.
[http://dx.doi.org/10.1016/j.jdiacomp.2005.08.007] [PMID: 16949521]
[63]
Liu Y, Min D, Bolton T, et al. Increased matrix metalloproteinase-9 predicts poor wound healing in diabetic foot ulcers. Diabetes Care 2009; 32(1): 117-9.
[http://dx.doi.org/10.2337/dc08-0763] [PMID: 18835949]
[64]
Semba RD, Huang H, Lutty GA, Van Eyk JE, Hart GW. The role of O -GlcNAc signaling in the pathogenesis of diabetic retinopathy. Proteomics Clin Appl 2014; 8(3-4): 218-31.
[http://dx.doi.org/10.1002/prca.201300076] [PMID: 24550151]
[65]
Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. diabetes 2005; 54(6): 1615-25.
[66]
Baudoin LÃ, Issad T. O-GlcNAcylation and inflammation: A vast territory to explore. Front Endocrinol 2015; 5: 235.
[http://dx.doi.org/10.3389/fendo.2014.00235] [PMID: 25620956]
[67]
Edwards JL, Vincent AM, Cheng HT, Feldman EL. Diabetic neuropathy: Mechanisms to management. Pharmacol Ther 2008; 120(1): 1-34.
[http://dx.doi.org/10.1016/j.pharmthera.2008.05.005] [PMID: 18616962]
[68]
Kaneto H, Xu G, Song KH, et al. Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress. J Biol Chem 2001; 276(33): 31099-104.
[http://dx.doi.org/10.1074/jbc.M104115200] [PMID: 11390407]
[69]
Ramana KV, Friedrich B, Tammali R, West MB, Bhatnagar A, Srivastava SK. Requirement of aldose reductase for the hyperglycemic activation of protein kinase C and formation of diacylglycerol in vascular smooth muscle cells. Diabetes 2005; 54(3): 818-29.
[http://dx.doi.org/10.2337/diabetes.54.3.818] [PMID: 15734861]
[70]
Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes 1998; 47(6): 859-66.
[http://dx.doi.org/10.2337/diabetes.47.6.859] [PMID: 9604860]
[71]
Rask-Madsen C, King GL. Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell Metab 2013; 17(1): 20-33.
[http://dx.doi.org/10.1016/j.cmet.2012.11.012] [PMID: 23312281]
[72]
Idris I, Donnelly R. Protein kinase C β inhibition: A novel therapeutic strategy for diabetic microangiopathy. Diab Vasc Dis Res 2006; 3(3): 172-8.
[http://dx.doi.org/10.3132/dvdr.2006.026] [PMID: 17160912]
[73]
Naruse K, Rask-Madsen C, Takahara N, et al. Activation of vascular protein kinase C-β inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes 2006; 55(3): 691-8.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-0771] [PMID: 16505232]
[74]
Wagner L, Laczy B, Tamaskó M, et al. Cigarette smoke-induced alterations in endothelial nitric oxide synthase phosphorylation: Role of protein kinase C. Endothelium 2007; 14(4-5): 245-55.
[http://dx.doi.org/10.1080/10623320701606707] [PMID: 17922342]
[75]
Arikawa E, Ma RCW, Isshiki K, et al. Effects of insulin replacements, inhibitors of angiotensin, and PKCbeta’s actions to normalize cardiac gene expression and fuel metabolism in diabetic rats. Diabetes 2007; 56(5): 1410-20.
[http://dx.doi.org/10.2337/db06-0655] [PMID: 17363743]
[76]
Dasevcimen N, King G. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 2007; 55(6): 498-510.
[http://dx.doi.org/10.1016/j.phrs.2007.04.016] [PMID: 17574431]
[77]
Ramasamy R, Yan SF, Schmidt AM. Arguing for the motion: Yes, RAGE is a receptor for advanced glycation endproducts. Mol Nutr Food Res 2007; 51(9): 1111-5.
[http://dx.doi.org/10.1002/mnfr.200700008] [PMID: 17854009]
[78]
Yao D, Taguchi T, Matsumura T, et al. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 2007; 282(42): 31038-45.
[http://dx.doi.org/10.1074/jbc.M704703200] [PMID: 17670746]
[79]
Ramasamy R, Vannucci SJ, Yan SSD, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 2005; 15(7): 16R-28R.
[http://dx.doi.org/10.1093/glycob/cwi053] [PMID: 15764591]
[80]
Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation 2006; 114(6): 597-605.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.621854] [PMID: 16894049]
[81]
Vincent AM, Perrone L, Sullivan KA, et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 2007; 148(2): 548-58.
[http://dx.doi.org/10.1210/en.2006-0073] [PMID: 17095586]
[82]
Halliwell B, Gutteridge JM. Reactive species can be poisonousFree Radicals in Biology and Medicine. (4th ed.). New York: Oxford University Press 2007; pp. 440-87.
[83]
Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J 2012; 12(1): 5-18.
[http://dx.doi.org/10.12816/0003082] [PMID: 22375253]
[84]
Ryu S, Ornoy A, Samuni A, Zangen S, Kohen R. Oxidative stress in cohen diabetic rat model by high-sucrose, low-copper diet: Inducing pancreatic damage and diabetes. Metabolism 2008; 57(9): 1253-61.
[http://dx.doi.org/10.1016/j.metabol.2008.04.021] [PMID: 18702952]
[85]
Unger J. Reducing oxidative stress in patients with type 2 diabetes mellitus: A primary care call to action. Insulin 2008; 3(3): 176-84.
[http://dx.doi.org/10.1016/S1557-0843(08)80037-1]
[86]
Kanwar M, Chan PS, Kern TS, Kowluru RA. Oxidative damage in the retinal mitochondria of diabetic mice: Possible protection by superoxide dismutase. Invest Ophthalmol Vis Sci 2007; 48(8): 3805-11.
[http://dx.doi.org/10.1167/iovs.06-1280] [PMID: 17652755]
[87]
Kowluru RA, Abbas SN. Diabetes-induced mitochondrial dysfunction in the retina. Invest Ophthalmol Vis Sci 2003; 44(12): 5327-34.
[http://dx.doi.org/10.1167/iovs.03-0353] [PMID: 14638734]
[88]
Geloneze B, Lamounier RN, Coelho OR. Postprandial hyperglycemia: treating its atherogenic potential. Arq Bras Cardiol 2006; 87(5): 660-70.
[http://dx.doi.org/10.1590/S0066-782X2006001800018] [PMID: 17221045]
[89]
Kaneto H, Matsuoka T. Involvement of oxidative stress in suppression of insulin biosynthesis under diabetic conditions. Int J Mol Sci 2012; 13(12): 13680-90.
[http://dx.doi.org/10.3390/ijms131013680] [PMID: 23202973]
[90]
Horlocker TT, Wedel DJ. Regional anesthesia in the immunocompromised patient. Reg Anesth Pain Med 2006; 31(4): 334-45.
[http://dx.doi.org/10.1097/00115550-200607000-00008] [PMID: 16857553]
[91]
Geerlings SE, Hoepelman AIM. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol 1999; 26(3-4): 259-65.
[http://dx.doi.org/10.1111/j.1574-695X.1999.tb01397.x] [PMID: 10575137]
[92]
Muller LMAJ, Gorter KJ, Hak E, et al. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin Infect Dis 2005; 41(3): 281-8.
[http://dx.doi.org/10.1086/431587] [PMID: 16007521]
[93]
Van Belle TL, Coppieters KT, Von Herrath MG. Type 1 diabetes: Etiology, immunology, and therapeutic strategies. Physiol Rev 2011; 91(1): 79-118.
[http://dx.doi.org/10.1152/physrev.00003.2010] [PMID: 21248163]
[94]
Pasquali L, Giannoukakis N, Trucco M. Induction of immune tolerance to facilitate β cell regeneration in type 1 diabetes. Adv Drug Deliv Rev 2008; 60(2): 106-13.
[http://dx.doi.org/10.1016/j.addr.2007.08.032] [PMID: 18053613]
[95]
Fernández-Real JM, Pickup JC. Innate immunity, insulin resistance and type 2 diabetes. Trends Endocrinol Metab 2008; 19(1): 10-6.
[http://dx.doi.org/10.1016/j.tem.2007.10.004] [PMID: 18082417]
[96]
Kappala SS, Espino J, Pariente JA, et al. FMLP-, thapsigargin-, and H2O2-evoked changes in intracellular free calcium concentration in lymphocytes and neutrophils of type 2 diabetic patients. Mol Cell Biochem 2014; 387(1-2): 251-60.
[http://dx.doi.org/10.1007/s11010-013-1890-5] [PMID: 24234422]
[97]
Ayuk SM, Abrahamse H, Houreld NN. The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation. J Diabetes Res 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/2897656] [PMID: 27314046]
[98]
Christman AL, Selvin E, Margolis DJ, Lazarus GS, Garza LA. Hemoglobin A1c predicts healing rate in diabetic wounds. J Invest Dermatol 2011; 131(10): 2121-7.
[http://dx.doi.org/10.1038/jid.2011.176] [PMID: 21697890]
[99]
Marhoffer W, Stein M, Maeser E, Federlin K. Impairment of polymorphonuclear leukocyte function and metabolic control of diabetes. Diabetes Care 1992; 15(2): 256-60.
[http://dx.doi.org/10.2337/diacare.15.2.256] [PMID: 1547682]
[100]
Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: Molecules, functions and pathophysiological aspects. Lab Invest 2000; 80(5): 617-53.
[http://dx.doi.org/10.1038/labinvest.3780067] [PMID: 10830774]
[101]
Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: Effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012; 2012: 918267.
[http://dx.doi.org/10.1155/2012/918267]
[102]
Richard JL, Lavigne JP, Sotto A. Diabetes and foot infection: More than double trouble. Diabetes Metab Res Rev 2012; 28(1): 46-53.
[http://dx.doi.org/10.1002/dmrr.2234] [PMID: 22271723]
[103]
Schramm JC, Dinh T, Veves A. Microvascular changes in the diabetic foot. Int J Low Extrem Wounds 2006; 5(3): 149-59.
[http://dx.doi.org/10.1177/1534734606292281] [PMID: 16928671]
[104]
Uccioli L, Mancini L, Giordano A, et al. Lower limb arterio-venous shunts, autonomic neuropathy and diabetic foot. Diabetes Res Clin Pract 1992; 16(2): 123-30.
[http://dx.doi.org/10.1016/0168-8227(92)90083-4] [PMID: 1600850]
[105]
Boulton AJM, Scarpello JHB, Ward JD. Venous oxygenation in the diabetic neuropathic foot: Evidence of arteriovenous shunting? Diabetologia 1982; 22(1): 6-8.
[http://dx.doi.org/10.1007/BF00253861] [PMID: 7060849]
[106]
Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 2009; 156(5): 713-27.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00086.x] [PMID: 19210748]
[107]
Kizub IV, Klymenko KI, Soloviev AI. Protein kinase C in enhanced vascular tone in diabetes mellitus. Int J Cardiol 2014; 174(2): 230-42.
[http://dx.doi.org/10.1016/j.ijcard.2014.04.117] [PMID: 24794552]
[108]
Khamaisi M, Katagiri S, Keenan H, et al. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts. J Clin Invest 2016; 126(3): 837-53.
[http://dx.doi.org/10.1172/JCI82788] [PMID: 26808499]
[109]
Vincent AM, Callaghan BC, Smith AL, Feldman EL. Diabetic neuropathy: Cellular mechanisms as therapeutic targets. Nat Rev Neurol 2011; 7(10): 573-83.
[http://dx.doi.org/10.1038/nrneurol.2011.137] [PMID: 21912405]
[110]
Monteiro-Soares M, Boyko EJ, Ribeiro J, Ribeiro I, Dinis-Ribeiro M. Predictive factors for diabetic foot ulceration: A systematic review. Diabetes Metab Res Rev 2012; 28(7): 574-600.
[http://dx.doi.org/10.1002/dmrr.2319] [PMID: 22730196]
[111]
Van Dam PS, Cotter MA, Bravenboer B, Cameron NE. Pathogenesis of diabetic neuropathy: Focus on neurovascular mechanisms. Eur J Pharmacol 2013; 719(1-3): 180-6.
[http://dx.doi.org/10.1016/j.ejphar.2013.07.017] [PMID: 23872412]
[112]
Berger AC, Olson S, Johnson SG, Beachy SH. Drug repurposing and repositioning: Workshop summary. National Academies Press 2014.
[113]
Chong CR, Sullivan DJ Jr. New uses for old drugs. Nature 2007; 448(7154): 645-6.
[http://dx.doi.org/10.1038/448645a] [PMID: 17687303]
[114]
Ashcroft GS, Dodsworth J, Boxtel EV, et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-β1 levels. Nat Med 1997; 3(11): 1209-15.
[http://dx.doi.org/10.1038/nm1197-1209] [PMID: 9359694]
[115]
Zhuge Y, Regueiro MM, Tian R, et al. The effect of estrogen on diabetic wound healing is mediated through increasing the function of various bone marrow-derived progenitor cells. J Vasc Surg 2018; 68(6): 127S-35S.
[http://dx.doi.org/10.1016/j.jvs.2018.04.069] [PMID: 30064832]
[116]
Zheng Z, Liu Y, Yang Y, Tang J, Cheng B. Topical 1% propranolol cream promotes cutaneous wound healing in spontaneously diabetic mice. Wound Repair Regen 2017; 25(3): 389-97.
[http://dx.doi.org/10.1111/wrr.12546] [PMID: 28494521]
[117]
Kumar A, Joshi A, Starling SK. β-Blockers: A systematic review. J Chem Pharm Res 2011; 3(1): 32-47.
[118]
National Library of Medicines. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532906/ (Accessed on January 13, 2023).
[119]
Westfall TC, Westfall DP. Adrenergic agonists and antagonistsGoodman and Gilman’s The Pharmacological Basis of Therapeutics 11th. New York: McGraw-Hill 2006; pp. 237-315.
[120]
Prabha N, Chhabra N, Arora R. Beta-blockers in dermatology. Indian J Dermatol Venereol Leprol 2017; 83(3): 399-407.
[http://dx.doi.org/10.4103/ijdvl.IJDVL_220_16] [PMID: 28366914]
[121]
Gorre F, Vandekerckhove H. Beta-blockers: Focus on mechanism of action Which beta-blocker, when and why? Acta Cardiol 2010; 65(5): 565-70.
[http://dx.doi.org/10.1080/AC.65.5.2056244] [PMID: 21125979]
[122]
Rehsia NS, Dhalla NS. Mechanisms of the beneficial effects of beta-adrenoceptor antagonists in congestive heart failure. Exp Clin Cardiol 2010; 15(4): e86-95.
[PMID: 21264074]
[123]
Machackova J, Sanganalmath SK, Elimban V, Dhalla NS. β-adrenergic blockade attenuates cardiac dysfunction and myofibrillar remodelling in congestive heart failure. J Cell Mol Med 2011; 15(3): 545-54.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01015.x] [PMID: 20082655]
[124]
Cruickshank JM. The modern role of beta-blockers in cardiovascular medicine. PMPH-USA 2010.
[125]
Helfand M, Peterson K, Christensen V, Dana T, Thakurta S. Drug Class review: beta adrenergic blockers: final report update 4. 2010. Available from: https://europepmc.org/article/med/21089245 (cited: 31st Jan 2023).
[126]
US General accounting office. Prescription drugs: Implications of drug labeling and off label use 1996.
[127]
den Boer JA. Social phobia: Epidemiology, recognition, and treatment. BMJ 1997; 315(7111): 796-800.
[http://dx.doi.org/10.1136/bmj.315.7111.796] [PMID: 9345175]
[128]
Laverdure B, Boulenger JP. Beta-blocking drugs and anxiety. A proven therapeutic value. Encephale 1991; 17(5): 481-92.
[PMID: 1686251]
[129]
Lonergan M, Olivera-Figueroa L, Pitman R, Brunet A. Propranolol’s effects on the consolidation and reconsolidation of long-term emotional memory in healthy participants: A meta-analysis. J Psychiatry Neurosci 2013; 38(4): 222-31.
[http://dx.doi.org/10.1503/jpn.120111] [PMID: 23182304]
[130]
Srinivasan AV. Propranolol: A 50-year historical perspective. Ann Indian Acad Neurol 2019; 22(1): 21-6.
[http://dx.doi.org/10.4103/aian.AIAN_201_18] [PMID: 30692755]
[131]
Romana-Souza B, Nascimento AP, Monte-Alto-Costa A. Propranolol improves cutaneous wound healing in streptozotocin-induced diabetic rats. Eur J Pharmacol 2009; 611(1-3): 77-84.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.053] [PMID: 19344703]
[132]
Fredriksson R, Schiöth HB. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 2005; 67(5): 1414-25.
[http://dx.doi.org/10.1124/mol.104.009001] [PMID: 15687224]
[133]
Steinkraus V, Körner C, Steinfath M, Mensing H. High density of beta 2-adrenoceptors in a human keratinocyte cell line with complete epidermal differentiation capacity (HaCaT). Arch Dermatol Res 1991; 283(5): 328-32.
[http://dx.doi.org/10.1007/BF00376622] [PMID: 1656896]
[134]
Schallreuter KU, Wood JM, Lemke R, et al. Production of catecholamines in the human epidermis. Biochem Biophys Res Commun 1992; 189(1): 72-8.
[http://dx.doi.org/10.1016/0006-291X(92)91527-W] [PMID: 1360208]
[135]
Pullar CE, Chen J, Isseroff RR. PP2A activation by β2-adrenergic receptor agonists: Novel regulatory mechanism of keratinocyte migration. J Biol Chem 2003; 278(25): 22555-62.
[http://dx.doi.org/10.1074/jbc.M300205200] [PMID: 12697752]
[136]
de Coupade C, Gear RW, Dazin PF, Sroussi HY, Green PG, Levine JD. β2-Adrenergic receptor regulation of human neutrophil function is sexually dimorphic. Br J Pharmacol 2004; 143(8): 1033-41.
[http://dx.doi.org/10.1038/sj.bjp.0705972] [PMID: 15477226]
[137]
Verhoeckx KCM, Doornbos RP, Witkamp RF, van der Greef J, Rodenburg RJT. Beta-adrenergic receptor agonists induce the release of granulocyte chemotactic protein-2, oncostatin M, and vascular endothelial growth factor from macrophages. Int Immunopharmacol 2006; 6(1): 1-7.
[http://dx.doi.org/10.1016/j.intimp.2005.05.013] [PMID: 16332507]
[138]
Flierl MA, Rittirsch D, Huber-Lang M, Sarma JV, Ward PA. Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening pandora’s box? Mol Med 2008; 14(3-4): 195-204.
[http://dx.doi.org/10.2119/2007-00105.Flierl] [PMID: 18079995]
[139]
Sadowska AM, Manuel-y-Keenoy B, De Backer WA. Inhibition of in vitro neutrophil migration through a bilayer of endothelial and epithelial cells using beta2-agonists: Concomitant effects on IL-8 and elastase secretion and impact of glucocorticosteroids. Pulm Pharmacol Ther 2005; 18(5): 354-62.
[http://dx.doi.org/10.1016/j.pupt.2005.01.006] [PMID: 15939314]
[140]
Silvestri M, Oddera S, Lantero S, Rossi GA. β2-agonist-induced inhibition of neutrophil chemotaxis is not associated with modification of LFA-1 and Mac-1 expression or with impairment of polymorphonuclear leukocyte antibacterial activity. Respir Med 1999; 93(6): 416-23.
[http://dx.doi.org/10.1053/rmed.1999.0584] [PMID: 10464825]
[141]
Maris NA, van der Sluijs KF, Florquin S, et al. Salmeterol, a β 2 -receptor agonist, attenuates lipopolysaccharide-induced lung inflammation in mice. Am J Physiol Lung Cell Mol Physiol 2004; 286(6): L1122-8.
[http://dx.doi.org/10.1152/ajplung.00125.2003] [PMID: 14729506]
[142]
Bowden JJ, Sulakvelidze I, McDonald DM. Inhibition of neutrophil and eosinophil adhesion to venules of rat trachea by beta 2-adrenergic agonist formoterol. J Appl Physiol 1994; 77(1): 397-405.
[http://dx.doi.org/10.1152/jappl.1994.77.1.397] [PMID: 7525529]
[143]
Perkins GD, McAuley DF, Richter A, Thickett DR, Gao F. Bench-to-bedside review: β2-Agonists and the acute respiratory distress syndrome. Crit Care 2003; 8(1): 1-8.
[PMID: 14975035]
[144]
Sivamani RK, Pullar CE, Manabat-Hidalgo CG, et al. Stress-mediated increases in systemic and local epinephrine impair skin wound healing: Potential new indication for beta blockers. PLoS Med 2009; 6(1): e1000012.
[http://dx.doi.org/10.1371/journal.pmed.1000012] [PMID: 19143471]
[145]
Pullar CE, Le Provost GS, O’Leary AP, Evans SE, Baier BS, Rivkah Isseroff R. β2AR antagonists and β2AR gene deletion both promote skin wound repair processes. J Invest Dermatol 2012; 132(8): 2076-84.
[http://dx.doi.org/10.1038/jid.2012.108] [PMID: 22495178]
[146]
Sivamani RK, Shi B, Griffiths E, et al. Acute wounding alters the beta2-adrenergic signaling and catecholamine synthetic pathways in keratinocytes. J Invest Dermatol 2014; 134(8): 2258-66.
[http://dx.doi.org/10.1038/jid.2014.137] [PMID: 24614156]
[147]
Gulcan E, Kuçuk A, Çayci K, et al. Topical effects of nebivolol on wounds in diabetic rats. Eur J Pharm Sci 2012; 47(2): 451-5.
[http://dx.doi.org/10.1016/j.ejps.2012.06.017] [PMID: 22820030]
[148]
Kim MH, Gorouhi F, Ramirez S, et al. Catecholamine stress alters neutrophil trafficking and impairs wound healing by β2-adrenergic receptor-mediated upregulation of IL-6. J Invest Dermatol 2014; 134(3): 809-17.
[http://dx.doi.org/10.1038/jid.2013.415] [PMID: 24121404]
[149]
Pullar C, Manabathidalgo C, Bolaji R, Isseroff R. β-Adrenergic receptor modulation of wound repair. Pharmacol Res 2008; 58(2): 158-64.
[http://dx.doi.org/10.1016/j.phrs.2008.07.012] [PMID: 18790719]
[150]
Pullar CE, Rizzo A, Isseroff RR. β-Adrenergic receptor antagonists accelerate skin wound healing: Evidence for a catecholamine synthesis network in the epidermis. J Biol Chem 2006; 281(30): 21225-35.
[http://dx.doi.org/10.1074/jbc.M601007200] [PMID: 16714291]
[151]
Raja R, Sivamani K, Garcia MS, Isseroff RR. Wound re-epithelialization: Modulating kerationcyte migration in wound healing. Front Biosci 2007; 12(8-12): 2849-68.
[http://dx.doi.org/10.2741/2277] [PMID: 17485264]
[152]
Ghoghawala SY, Mannis MJ, Pullar CE, Rosenblatt MI, Isseroff RR. β2-adrenergic receptor signaling mediates corneal epithelial wound repair. Invest Ophthalmol Vis Sci 2008; 49(5): 1857-63.
[http://dx.doi.org/10.1167/iovs.07-0925] [PMID: 18436820]
[153]
Padgett DA, Marucha PT, Sheridan JF. Restraint stress slows cutaneous wound healing in mice. Brain Behav Immun 1998; 12(1): 64-73.
[http://dx.doi.org/10.1006/brbi.1997.0512] [PMID: 9570862]
[154]
Kiecolt-Glaser JK, Marucha PT, Mercado AM, Malarkey WB, Glaser R. Slowing of wound healing by psychological stress. Lancet 1995; 346(8984): 1194-6.
[http://dx.doi.org/10.1016/S0140-6736(95)92899-5] [PMID: 7475659]
[155]
Dasu MR, Ramirez SR, La TD, et al. Crosstalk between adrenergic and toll-like receptors in human mesenchymal stem cells and keratinocytes: A recipe for impaired wound healing. Stem Cells Transl Med 2014; 3(6): 745-59.
[http://dx.doi.org/10.5966/sctm.2013-0200] [PMID: 24760207]
[156]
Kaur R, Tchanque-Fossuo C, West K, et al. Beta-adrenergic antagonist for the healing of chronic diabetic foot ulcers: Study protocol for a prospective, randomized, double-blinded, controlled and parallel-group study. Trials 2020; 21(1): 496.
[http://dx.doi.org/10.1186/s13063-020-04413-z] [PMID: 32513257]
[157]
O’Leary AP, Fox JM, Pullar CE. Beta‐adrenoceptor activation reduces both dermal microvascular endothelial cell migration via a cAMP‐dependent mechanism and wound angiogenesis. J Cell Physiol 2015; 230(2): 356-65.
[http://dx.doi.org/10.1002/jcp.24716] [PMID: 24986762]
[158]
Zhao M, Bai H, Wang E, Forrester JV, McCaig CD. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J Cell Sci 2004; 117(3): 397-405.
[http://dx.doi.org/10.1242/jcs.00868] [PMID: 14679307]
[159]
Howell RE, Albelda SM, Daise ML, Levine EM. Characterization of beta-adrenergic receptors in cultured human and bovine endothelial cells. J Appl Physiol 1988; 65(3): 1251-7.
[http://dx.doi.org/10.1152/jappl.1988.65.3.1251] [PMID: 2846493]
[160]
Steinberg SF, Jaffe EA, Bilezikian JP. Endothelial cells contain beta adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 1984; 325(4): 310-3.
[http://dx.doi.org/10.1007/BF00504374] [PMID: 6145103]
[161]
Baluk P, McDonald DM. The beta 2-adrenergic receptor agonist formoterol reduces microvascular leakage by inhibiting endothelial gap formation. Am J Physiol 1994; 266(4 Pt 1): L461-8.
[PMID: 7513964]
[162]
Zink S, Rösen P, Lemoine H. Micro- and macrovascular endothelial cells in beta-adrenergic regulation of transendothelial permeability. Am J Physiol Cell Physiol 1995; 269(5): C1209-18.
[http://dx.doi.org/10.1152/ajpcell.1995.269.5.C1209] [PMID: 7491911]
[163]
Chalothorn D, Zhang H, Clayton JA, Thomas SA, Faber JE. Catecholamines augment collateral vessel growth and angiogenesis in hindlimb ischemia. Am J Physiol Heart Circ Physiol 2005; 289(2): H947-59.
[http://dx.doi.org/10.1152/ajpheart.00952.2004] [PMID: 15833801]
[164]
Iaccarino G, Ciccarelli M, Sorriento D, et al. Ischemic neoangiogenesis enhanced by β2-adrenergic receptor overexpression: A novel role for the endothelial adrenergic system. Circ Res 2005; 97(11): 1182-9.
[http://dx.doi.org/10.1161/01.RES.0000191541.06788.bb] [PMID: 16239589]
[165]
Martin P. Wound healing--aiming for perfect skin regeneration. Science 1997; 276(5309): 75-81.
[http://dx.doi.org/10.1126/science.276.5309.75] [PMID: 9082989]
[166]
Berrettini WH, Bardakjian J, Cappellari CB, et al. Skin fibroblast beta-adrenergic receptor function in manie-depressive illness. Biol Psychiatry 1987; 22(12): 1439-43.
[http://dx.doi.org/10.1016/0006-3223(87)90101-6] [PMID: 2823918]
[167]
Kotanko P, Höglinger O, Skrabal F. Beta 2-adrenoceptor density in fibroblast culture correlates with human NaCl sensitivity. Am J Physiol Cell Physiol 1992; 263(3): C623-7.
[http://dx.doi.org/10.1152/ajpcell.1992.263.3.C623] [PMID: 1329521]
[168]
Sterin-Borda L, Furlan C, Orman B, Borda E. Differential regulation on human skin fibroblast by α1 adrenergic receptor subtypes. Biochem Pharmacol 2007; 74(9): 1401-12.
[http://dx.doi.org/10.1016/j.bcp.2007.06.041] [PMID: 17714696]
[169]
Furlán C, Sterin-Borda L, Borda E. Activation of β3 adrenergic receptor decreases DNA synthesis in human skin fibroblasts via cyclic GMP/nitric oxide pathway. Cell Physiol Biochem 2005; 16(4-6): 175-82.
[http://dx.doi.org/10.1159/000089843] [PMID: 16301818]
[170]
Pullar CE, Isseroff RR. The β2-adrenergic receptor activates pro-migratory and pro-proliferative pathways in dermal fibroblasts via divergent mechanisms. J Cell Sci 2006; 119(3): 592-602.
[http://dx.doi.org/10.1242/jcs.02772] [PMID: 16443756]
[171]
Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 2003; 13(5): 264-9.
[http://dx.doi.org/10.1016/S0962-8924(03)00057-6] [PMID: 12742170]
[172]
Yan L, Dong Y, Qing T, et al. Metoprolol rescues endothelial progenitor cell dysfunction in diabetes. PeerJ 2020; 8: e9306.
[http://dx.doi.org/10.7717/peerj.9306] [PMID: 32704438]
[173]
Kulkarni SA, Deshpande SK, Rastogi A. Novel topical esmolol hydrochloride improves wound healing in diabetes by inhibiting aldose reductase, generation of advanced glycation end products, and facilitating the migration of fibroblasts. Front Endocrinol 2022; 13: 926129.
[http://dx.doi.org/10.3389/fendo.2022.926129] [PMID: 36082077]
[174]
Walicka M, Raczyńska M, Marcinkowska K, et al. Amputations of lower limb in subjects with diabetes mellitus: Reasons and 30-day mortality. J Diabetes Res 2021; 2021: 1-8.
[http://dx.doi.org/10.1155/2021/8866126] [PMID: 34350296]
[175]
Karri VVSR, Kuppusamy G, Talluri SV, Yamjala K, Mannemala SS, Malayandi R. Current and emerging therapies in the management of diabetic foot ulcers. Curr Med Res Opin 2016; 32(3): 519-42.
[http://dx.doi.org/10.1185/03007995.2015.1128888] [PMID: 26643047]
[176]
Deshpande SK, Kulkarni SA, Gollapudy RR. Pharmaceutical composition for treatment of diabetic complications. WO2008093356, 2008.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy