Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

SGLT-2 Inhibitors: The Next-generation Treatment for Type 2 Diabetes Mellitus

Author(s): Nikola Lukic, Mirjana T. Macvanin, Zoran Gluvic, Manfredi Rizzo, Djordje Radak, Jasjit S. Suri and Esma R. Isenovic*

Volume 31, Issue 30, 2024

Published on: 19 October, 2023

Page: [4781 - 4806] Pages: 26

DOI: 10.2174/0109298673251493231011192520

Price: $65

Abstract

Type 2 diabetes mellitus (T2DM) has become a worldwide concern in recent years, primarily in highly developed Western societies. T2DM causes systemic complications, such as atherosclerotic heart disease, ischemic stroke, peripheral artery disease, kidney failure, and diabetes-related maculopathy and retinopathy. The growing number of T2DM patients and the treatment of long-term T2DM-related complications pressurize and exhaust public healthcare systems. As a result, strategies for combating T2DM and developing novel drugs are critical global public health requirements. Aside from preventive measures, which are still the most effective way to prevent T2DM, novel and highly effective therapies are emerging. In the spotlight of next-generation T2DM treatment, sodium-glucose co-transporter 2 (SGLT-2) inhibitors are promoted as the most efficient perspective therapy. SGLT-2 inhibitors (SGLT2i) include phlorizin derivatives, such as canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin. SGLT-2, along with SGLT-1, is a member of the SGLT family of proteins that play a role in glucose absorption via active transport mediated by Na+/K+ ATPase. SGLT-2 is only found in the kidney, specifically the proximal tubule, and is responsible for more than 90% glucose absorption. Inhibition of SGLT-2 reduces glucose absorption, and consequently increases urinary glucose excretion, decreasing blood glucose levels. Thus, the inhibition of SGLT-2 activity ultimately alleviates T2DM-related symptoms and prevents or delays systemic T2DM-associated chronic complications. This review aimed to provide a more detailed understanding of the effects of SGLT2i responsible for the acute improvement in blood glucose regulation, a prerequisite for T2DM-associated cardiovascular complications control.

Keywords: Type 2 diabetes mellitus, T2DM, sodium-glucose transporter proteins, SGLT-2 inhibitors, cardiovascular complications, diabetes.

[1]
Liu, J.; Ren, Z.H.; Qiang, H.; Wu, J.; Shen, M.; Zhang, L.; Lyu, J. Trends in the incidence of diabetes mellitus: Results from the Global Burden of Disease Study 2017 and implications for diabetes mellitus prevention. BMC Public Health, 2020, 20(1), 1415.
[http://dx.doi.org/10.1186/s12889-020-09502-x] [PMID: 32943028]
[2]
Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of type 2 diabetes – Global burden of disease and forecasted trends. J. Epidemiol. Glob. Health, 2019, 10(1), 107-111.
[http://dx.doi.org/10.2991/jegh.k.191028.001] [PMID: 32175717]
[3]
Baxter, A.J.; Coyne, T.; McClintock, C. Dietary patterns and metabolic syndrome-a review of epidemiologic evidence. Asia Pac. J. Clin. Nutr., 2006, 15(2), 134-142.
[PMID: 16672196]
[4]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[5]
Dieleman, J.L.; Baral, R.; Birger, M.; Bui, A.L.; Bulchis, A.; Chapin, A.; Hamavid, H.; Horst, C.; Johnson, E.K.; Joseph, J.; Lavado, R.; Lomsadze, L.; Reynolds, A.; Squires, E.; Campbell, M.; DeCenso, B.; Dicker, D.; Flaxman, A.D.; Gabert, R.; Highfill, T.; Naghavi, M.; Nightingale, N.; Templin, T.; Tobias, M.I.; Vos, T.; Murray, C.J.L. US spending on personal health care and public health, 1996-2013. JAMA, 2016, 316(24), 2627-2646.
[http://dx.doi.org/10.1001/jama.2016.16885] [PMID: 28027366]
[6]
Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci., 2020, 21, 17.
[7]
Cryer, P.E. Hypoglycemia, functional brain failure, and brain death. J. Clin. Invest., 2007, 117(4), 868-870.
[http://dx.doi.org/10.1172/JCI31669] [PMID: 17404614]
[8]
Cui, Y.; Wang, Y.; Liu, M.; Qiu, L.; Xing, P.; Wang, X.; Ying, G.; Li, B. Determination of glucose deficiency-induced cell death by mitochondrial ATP generation-driven proton homeostasis. J. Mol. Cell Biol., 2017, 9(5), 395-408.
[http://dx.doi.org/10.1093/jmcb/mjx011] [PMID: 28369514]
[9]
Kawahito, S.; Kitahata, H.; Oshita, S. Problems associated with glucose toxicity: Role of hyperglycemia-induced oxidative stress. World J. Gastroenterol., 2009, 15(33), 4137-4142.
[http://dx.doi.org/10.3748/wjg.15.4137] [PMID: 19725147]
[10]
Macdonald, I.A. A review of recent evidence relating to sugars, insulin resistance and diabetes. Eur. J. Nutr., 2016, 55(S2), 17-23.
[http://dx.doi.org/10.1007/s00394-016-1340-8] [PMID: 27882410]
[11]
Gromova, L.V.; Fetissov, S.O. Mechanisms of glucose absorption in the small intestine in health and metabolic diseases and their role in appetite regulation. Nutrients, 2021, 13(7), 2474.
[12]
Adeva-Andany, M.M.; Pérez-Felpete, N.; Fernández-Fernández, C.; Donapetry-García, C.; Pazos-García, C. Liver glucose metabolism in humans. Biosci. Rep., 2016, 36(6), e00416.
[http://dx.doi.org/10.1042/BSR20160385] [PMID: 27707936]
[13]
Sambuceti, G.; Cossu, V.; Bauckneht, M.; Morbelli, S.; Orengo, A.; Carta, S.; Ravera, S.; Bruno, S.; Marini, C. 18F-fluoro-2-deoxy-d-glucose (FDG) uptake. What are we looking at? Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(5), 1278-1286.
[http://dx.doi.org/10.1007/s00259-021-05368-2] [PMID: 33864142]
[14]
Wood, I.S.; Trayhurn, P. Glucose transporters (GLUT and SGLT): Expanded families of sugar transport proteins. Br. J. Nutr., 2003, 89(1), 3-9.
[http://dx.doi.org/10.1079/BJN2002763] [PMID: 12568659]
[15]
Navale, A.M.; Paranjape, A.N. Glucose transporters: Physiological and pathological roles. Biophys. Rev., 2016, 8(1), 5-9.
[http://dx.doi.org/10.1007/s12551-015-0186-2] [PMID: 28510148]
[16]
Chadt, A.; Al-Hasani, H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch., 2020, 472(9), 1273-1298.
[http://dx.doi.org/10.1007/s00424-020-02417-x] [PMID: 32591906]
[17]
Wright, E.M. Renal Na+-glucose cotransporters. Am. J. Physiol. Renal Physiol., 2001, 280(1), F10-F18.
[http://dx.doi.org/10.1152/ajprenal.2001.280.1.F10] [PMID: 11133510]
[18]
Joost, H.G.; Thorens, B. The extended GLUT-family of sugar/polyol transport facilitators: Nomenclature, sequence characteristics, and potential function of its novel members. Mol. Membr. Biol., 2001, 18(4), 247-256.
[http://dx.doi.org/10.1080/09687680110090456] [PMID: 11780753]
[19]
Pizzagalli, M.D.; Bensimon, A.; Superti-Furga, G. A guide to plasma membrane solute carrier proteins. FEBS J., 2021, 288(9), 2784-2835.
[http://dx.doi.org/10.1111/febs.15531]
[20]
Scheepers, A.; Joost, H.G.; Schürmann, A. The glucose transporter families SGLT and GLUT: Molecular basis of normal and aberrant function. JPEN J. Parenter. Enteral Nutr., 2004, 28(5), 364-371.
[http://dx.doi.org/10.1177/0148607104028005364] [PMID: 15449578]
[21]
Schmidt, A.M. Diabetes mellitus and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol., 2019, 39(4), 558-568.
[http://dx.doi.org/10.1161/ATVBAHA.119.310961] [PMID: 30786741]
[22]
Zaric, B.; Obradovic, M.; Trpkovic, A.; Banach, M.; Mikhailidis, D.P.; Isenovic, E.R. Endothelial dysfunction in dyslipidaemia: Molecular mechanisms and clinical implications. Curr. Med. Chem., 2020, 27(7), 1021-1040.
[http://dx.doi.org/10.2174/0929867326666190903112146] [PMID: 31480995]
[23]
Stanimirovic, J.; Radovanovic, J. Role of C-reactive protein in diabetic inflammation. Mediators Inflamm., 2022, 2022, 3706508.
[24]
Blendea, M.C.; McFarlane, S.I.; Isenovic, E.R.; Gick, G.; Sowers, J.R. Heart disease in diabetic patients. Curr. Diab. Rep., 2003, 3(3), 223-229.
[http://dx.doi.org/10.1007/s11892-003-0068-z] [PMID: 12762970]
[25]
Suzuki, K.; Nakagawa, K.; Miyazawa, T. Augmentation of blood lipid glycation and lipid oxidation in diabetic patients. Clin. Chem. Lab. Med., 2014, 52(1), 47-52.
[http://dx.doi.org/10.1515/cclm-2012-0886] [PMID: 23454716]
[26]
Gluvic, Z.; Zaric, B.; Resanovic, I.; Obradovic, M.; Mitrovic, A.; Radak, D.; Isenovic, E. Link between metabolic syndrome and insulin resistance. Curr. Vasc. Pharmacol., 2016, 15(1), 30-39.
[http://dx.doi.org/10.2174/1570161114666161007164510] [PMID: 27748199]
[27]
Zaric, B.L.; Radovanovic, J.N.; Gluvic, Z.; Stewart, A.J.; Essack, M.; Motwalli, O.; Gojobori, T.; Isenovic, E.R. Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes. Front. Immunol., 2020, 11, 551758.
[http://dx.doi.org/10.3389/fimmu.2020.551758] [PMID: 33117340]
[28]
Yamagishi, S.; Matsui, T. Role of hyperglycemia-induced advanced glycation end product (AGE) accumulation in atherosclerosis. Ann. Vasc. Dis., 2018, 11(3), 253-258.
[http://dx.doi.org/10.3400/avd.ra.18-00070] [PMID: 30402172]
[29]
Sudar-Milovanovic, E.; Gluvic, Z.; Obradovic, M.; Zaric, B.; Isenovic, E.R. Tryptophan metabolism in atherosclerosis and diabetes. Curr. Med. Chem., 2022, 29(1), 99-113.
[http://dx.doi.org/10.2174/0929867328666210714153649] [PMID: 34269660]
[30]
López-Díez, R.; Egaña-Gorroño, L.; Senatus, L.; Shekhtman, A.; Ramasamy, R.; Schmidt, A.M. Diabetes and cardiovascular complications: The epidemics continue. Curr. Cardiol. Rep., 2021, 23(7), 74.
[http://dx.doi.org/10.1007/s11886-021-01504-4] [PMID: 34081211]
[31]
Veljkovic, N.; Zaric, B.; Djuric, I.; Obradovic, M. Genetic markers for coronary artery disease. Medicina, 2018, 54(3), 36.
[32]
Macvanin, M.T.; Rizzo, M. Role of chemerin in cardiovascular diseases. Biomedicines, 2022, 10(11), 2970.
[http://dx.doi.org/10.3390/biomedicines10112970]
[33]
Macvanin, M.; Obradovic, M.; Zafirovic, S.; Stanimirovic, J.; Isenovic, E.R. The role of miRNAs in metabolic diseases. Curr. Med. Chem., 2022, 30(17), 1922-1944.
[PMID: 35927902]
[34]
Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W.J. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol., 2019, 26(2_suppl), 25-32.
[http://dx.doi.org/10.1177/2047487319878371] [PMID: 31722562]
[35]
Miller, R.G.; Costacou, T. Risk factor modeling for cardiovascular disease in type 1 diabetes in the pittsburgh epidemiology of diabetes complications (edc) study: A comparison with the diabetes control and complications trial/epidemiology of diabetes interventions and complications study (DCCT/EDIC). Diabetes, 2019, 68(2), 409-419.
[36]
Paneni, F.; Beckman, J.A.; Creager, M.A.; Cosentino, F. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Eur. Heart J., 2013, 34(31), 2436-2443.
[http://dx.doi.org/10.1093/eurheartj/eht149] [PMID: 23641007]
[37]
Rawshani, A.; Rawshani, A.; Franzén, S.; Sattar, N.; Eliasson, B.; Svensson, A.M.; Zethelius, B.; Miftaraj, M.; McGuire, D.K.; Rosengren, A.; Gudbjörnsdottir, S. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med., 2018, 379(7), 633-644.
[http://dx.doi.org/10.1056/NEJMoa1800256] [PMID: 30110583]
[38]
Caussy, C.; Aubin, A.; Loomba, R. The relationship between type 2 diabetes, NAFLD, and cardiovascular risk. Curr. Diab. Rep., 2021, 21(5), 15.
[http://dx.doi.org/10.1007/s11892-021-01383-7] [PMID: 33742318]
[39]
Xu, Q.; Wei, Y.; Fan, S.; Wang, L.; Zhou, X. Repetitive hyperbaric oxygen treatment increases insulin sensitivity in diabetes patients with acute intracerebral hemorrhage. Neuropsychiatr. Dis. Treat., 2017, 13, 421-426.
[http://dx.doi.org/10.2147/NDT.S126288] [PMID: 28228657]
[40]
Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abdollahpour, I.; Abdulkader, R.S.; Abebe, H.T.; Abebe, M.; Abebe, Z.; Abejie, A.N.; Abera, S.F.; Abil, O.Z.; Abraha, H.N.; Abrham, A.R.; Abu-Raddad, L.J.; Accrombessi, M.M.K.; Acharya, D.; Adamu, A.A.; Adebayo, O.M.; Adedoyin, R.A.; Adekanmbi, V.; Adetokunboh, O.O.; Adhena, B.M.; Adib, M.G.; Admasie, A.; Afshin, A.; Agarwal, G.; Agesa, K.M.; Agrawal, A.; Agrawal, S.; Ahmadi, A.; Ahmadi, M.; Ahmed, M.B.; Ahmed, S.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akbari, M.E.; Akinyemi, R.O.; Akseer, N.; Al-Aly, Z.; Al-Eyadhy, A.; Al-Raddadi, R.M.; Alahdab, F.; Alam, K.; Alam, T.; Alebel, A.; Alene, K.A.; Alijanzadeh, M.; Alizadeh-Navaei, R.; Aljunid, S.M.; Alkerwi, A.; Alla, F.; Allebeck, P.; Alonso, J.; Altirkawi, K.; Alvis-Guzman, N.; Amare, A.T.; Aminde, L.N.; Amini, E.; Ammar, W.; Amoako, Y.A.; Anber, N.H.; Andrei, C.L.; Androudi, S.; Animut, M.D.; Anjomshoa, M.; Ansari, H.; Ansha, M.G.; Antonio, C.A.T.; Anwari, P.; Aremu, O.; Ärnlöv, J.; Arora, A.; Arora, M.; Artaman, A.; Aryal, K.K.; Asayesh, H.; Asfaw, E.T.; Ataro, Z.; Atique, S.; Atre, S.R.; Ausloos, M.; Avokpaho, E.F.G.A.; Awasthi, A.; Quintanilla, B.P.A.; Ayele, Y.; Ayer, R.; Azzopardi, P.S.; Babazadeh, A.; Bacha, U.; Badali, H.; Badawi, A.; Bali, A.G.; Ballesteros, K.E.; Banach, M.; Banerjee, K.; Bannick, M.S.; Banoub, J.A.M.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Barquera, S.; Barrero, L.H.; Bassat, Q.; Basu, S.; Baune, B.T.; Baynes, H.W.; Bazargan-Hejazi, S.; Bedi, N.; Beghi, E.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Bekele, B.B.; Belachew, A.B.; Belay, E.; Belay, Y.A.; Bell, M.L.; Bello, A.K.; Bennett, D.A.; Bensenor, I.M.; Berman, A.E.; Bernabe, E.; Bernstein, R.S.; Bertolacci, G.J.; Beuran, M.; Beyranvand, T.; Bhalla, A.; Bhattarai, S.; Bhaumik, S.; Bhutta, Z.A.; Biadgo, B.; Biehl, M.H.; Bijani, A.; Bikbov, B.; Bilano, V.; Bililign, N.; Bin Sayeed, M.S.; Bisanzio, D.; Biswas, T.; Blacker, B.F.; Basara, B.B.; Borschmann, R.; Bosetti, C.; Bozorgmehr, K.; Brady, O.J.; Brant, L.C.; Brayne, C.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Briant, P.S.; Britton, G.; Brugha, T.; Busse, R.; Butt, Z.A.; Callender, C.S.K.H.; Campos-Nonato, I.R.; Campuzano Rincon, J.C.; Cano, J.; Car, M.; Cárdenas, R.; Carreras, G.; Carrero, J.J.; Carter, A.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castillo Rivas, J.; Castle, C.D.; Castro, C.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chang, J-C.; Charlson, F.J.; Chaturvedi, P.; Chiang, P.P-C.; Chimed-Ochir, O.; Chisumpa, V.H.; Chitheer, A.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Chung, S-C.; Cicuttini, F.M.; Ciobanu, L.G.; Cirillo, M.; Cohen, A.J.; Cooper, L.T.; Cortesi, P.A.; Cortinovis, M.; Cousin, E.; Cowie, B.C.; Criqui, M.H.; Cromwell, E.A.; Crowe, C.S.; Crump, J.A.; Cunningham, M.; Daba, A.K.; Dadi, A.F.; Dandona, L.; Dandona, R.; Dang, A.K.; Dargan, P.I.; Daryani, A.; Das, S.K.; Gupta, R.D.; Neves, J.D.; Dasa, T.T.; Dash, A.P.; Davis, A.C.; Davis Weaver, N.; Davitoiu, D.V.; Davletov, K.; De La Hoz, F.P.; De Neve, J-W.; Degefa, M.G.; Degenhardt, L.; Degfie, T.T.; Deiparine, S.; Demoz, G.T.; Demtsu, B.B.; Denova-Gutiérrez, E.; Deribe, K.; Dervenis, N.; Des Jarlais, D.C.; Dessie, G.A.; Dey, S.; Dharmaratne, S.D.; Dicker, D.; Dinberu, M.T.; Ding, E.L.; Dirac, M.A.; Djalalinia, S.; Dokova, K.; Doku, D.T.; Donnelly, C.A.; Dorsey, E.R.; Doshi, P.P.; Douwes-Schultz, D.; Doyle, K.E.; Driscoll, T.R.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Duncan, B.B.; Duraes, A.R.; Ebrahimi, H.; Ebrahimpour, S.; Edessa, D.; Edvardsson, D.; Eggen, A.E.; El Bcheraoui, C.; El Sayed Zaki, M.; El-Khatib, Z.; Elkout, H.; Ellingsen, C.L.; Endres, M.; Endries, A.Y.; Er, B.; Erskine, H.E.; Eshrati, B.; Eskandarieh, S.; Esmaeili, R.; Esteghamati, A.; Fakhar, M.; Fakhim, H.; Faramarzi, M.; Fareed, M.; Farhadi, F.; Farinha, C.S.E.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Farzaei, M.H.; Feigin, V.L.; Feigl, A.B.; Fentahun, N.; Fereshtehnejad, S-M.; Fernandes, E.; Fernandes, J.C.; Ferrari, A.J.; Feyissa, G.T.; Filip, I.; Finegold, S.; Fischer, F.; Fitzmaurice, C.; Foigt, N.A.; Foreman, K.J.; Fornari, C.; Frank, T.D.; Fukumoto, T.; Fuller, J.E.; Fullman, N.; Fürst, T.; Furtado, J.M.; Futran, N.D.; Gallus, S.; Garcia-Basteiro, A.L.; Garcia-Gordillo, M.A.; Gardner, W.M.; Gebre, A.K.; Gebrehiwot, T.T.; Gebremedhin, A.T.; Gebremichael, B.; Gebremichael, T.G.; Gelano, T.F.; Geleijnse, J.M.; Genova-Maleras, R.; Geramo, Y.C.D.; Gething, P.W.; Gezae, K.E.; Ghadami, M.R.; Ghadimi, R.; Ghasemi Falavarjani, K.; Ghasemi-Kasman, M.; Ghimire, M.; Gibney, K.B.; Gill, P.S.; Gill, T.K.; Gillum, R.F.; Ginawi, I.A.; Giroud, M.; Giussani, G.; Goenka, S.; Goldberg, E.M.; Goli, S.; Gómez-Dantés, H.; Gona, P.N.; Gopalani, S.V.; Gorman, T.M.; Goto, A.; Goulart, A.C.; Gnedovskaya, E.V.; Grada, A.; Grosso, G.; Gugnani, H.C.; Guimaraes, A.L.S.; Guo, Y.; Gupta, P.C.; Gupta, R.; Gupta, R.; Gupta, T.; Gutiérrez, R.A.; Gyawali, B.; Haagsma, J.A.; Hafezi-Nejad, N.; Hagos, T.B.; Hailegiyorgis, T.T.; Hailu, G.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Handal, A.J.; Hankey, G.J.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Hasan, M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hay, R.J.; Hay, S.I.; He, Y.; Hedayatizadeh-Omran, A.; Hegazy, M.I.; Heibati, B.; Heidari, M.; Hendrie, D.; Henok, A.; Henry, N.J.; Herteliu, C.; Heydarpour, F.; Heydarpour, P.; Heydarpour, S.; Hibstu, D.T.; Hoek, H.W.; Hole, M.K.; Homaie Rad, E.; Hoogar, P.; Hosgood, H.D.; Hosseini, S.M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Hotez, P.J.; Hoy, D.G.; Hsiao, T.; Hu, G.; Huang, J.J.; Husseini, A.; Hussen, M.M.; Hutfless, S.; Idrisov, B.; Ilesanmi, O.S.; Iqbal, U.; Irvani, S.S.N.; Irvine, C.M.S.; Islam, N.; Islam, S.M.S.; Islami, F.; Jacobsen, K.H.; Jahangiry, L.; Jahanmehr, N.; Jain, S.K.; Jakovljevic, M.; Jalu, M.T.; James, S.L.; Javanbakht, M.; Jayatilleke, A.U.; Jeemon, P.; Jenkins, K.J.; Jha, R.P.; Jha, V.; Johnson, C.O.; Johnson, S.C.; Jonas, J.B.; Joshi, A.; Jozwiak, J.J.; Jungari, S.B.; Jürisson, M.; Kabir, Z.; Kadel, R.; Kahsay, A.; Kalani, R.; Karami, M.; Karami Matin, B.; Karch, A.; Karema, C.; Karimi-Sari, H.; Kasaeian, A.; Kassa, D.H.; Kassa, G.M.; Kassa, T.D.; Kassebaum, N.J.; Katikireddi, S.V.; Kaul, A.; Kazemi, Z.; Karyani, A.K.; Kazi, D.S.; Kefale, A.T.; Keiyoro, P.N.; Kemp, G.R.; Kengne, A.P.; Keren, A.; Kesavachandran, C.N.; Khader, Y.S.; Khafaei, B.; Khafaie, M.A.; Khajavi, A.; Khalid, N.; Khalil, I.A.; Khan, E.A.; Khan, M.S.; Khan, M.A.; Khang, Y-H.; Khater, M.M.; Khoja, A.T.; Khosravi, A.; Khosravi, M.H.; Khubchandani, J.; Kiadaliri, A.A.; Kibret, G.D.; Kidanemariam, Z.T.; Kiirithio, D.N.; Kim, D.; Kim, Y-E.; Kim, Y.J.; Kimokoti, R.W.; Kinfu, Y.; Kisa, A.; Kissimova-Skarbek, K.; Kivimäki, M.; Knudsen, A.K.S.; Kocarnik, J.M.; Kochhar, S.; Kokubo, Y.; Kolola, T.; Kopec, J.A.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.A.; Krishan, K.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, G.A.; Kumar, M.; Kumar, P.; Kutz, M.J.; Kuzin, I.; Kyu, H.H.; Lad, D.P.; Lad, S.D.; Lafranconi, A.; Lal, D.K.; Lalloo, R.; Lallukka, T.; Lam, J.O.; Lami, F.H.; Lansingh, V.C.; Lansky, S.; Larson, H.J.; Latifi, A.; Lau, K.M-M.; Lazarus, J.V.; Lebedev, G.; Lee, P.H.; Leigh, J.; Leili, M.; Leshargie, C.T.; Li, S.; Li, Y.; Liang, J.; Lim, L-L.; Lim, S.S.; Limenih, M.A.; Linn, S.; Liu, S.; Liu, Y.; Lodha, R.; Lonsdale, C.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lozano, R.; Lunevicius, R.; Ma, S.; Macarayan, E.R.K.; Mackay, M.T.; MacLachlan, J.H.; Maddison, E.R.; Madotto, F.; Magdy Abd El Razek, H.; Magdy Abd El Razek, M.; Maghavani, D.P.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Manda, A-L.; Mandarano-Filho, L.G.; Manguerra, H.; Mansournia, M.A.; Mapoma, C.C.; Marami, D.; Maravilla, J.C.; Marcenes, W.; Marczak, L.; Marks, A.; Marks, G.B.; Martinez, G.; Martins-Melo, F.R.; Martopullo, I.; März, W.; Marzan, M.B.; Masci, J.R.; Massenburg, B.B.; Mathur, M.R.; Mathur, P.; Matzopoulos, R.; Maulik, P.K.; Mazidi, M.; McAlinden, C.; McGrath, J.J.; McKee, M.; McMahon, B.J.; Mehata, S.; Mehndiratta, M.M.; Mehrotra, R.; Mehta, K.M.; Mehta, V.; Mekonnen, T.C.; Melese, A.; Melku, M.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Mensah, G.A.; Mereta, S.T.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Mezgebe, H.B.; Miazgowski, B.; Miazgowski, T.; Millear, A.I.; Miller, T.R.; Miller-Petrie, M.K.; Mini, G.K.; Mirabi, P.; Mirarefin, M.; Mirica, A.; Mirrakhimov, E.M.; Misganaw, A.T.; Mitiku, H.; Moazen, B.; Mohammad, K.A.; Mohammadi, M.; Mohammadifard, N.; Mohammed, M.A.; Mohammed, S.; Mohan, V.; Mokdad, A.H.; Molokhia, M.; Monasta, L.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morgado-Da-Costa, J.; Morrison, S.D.; Moschos, M.M.; Mouodi, S.; Mousavi, S.M.; Muchie, K.F.; Mueller, U.O.; Mukhopadhyay, S.; Muller, K.; Mumford, J.E.; Musa, J.; Musa, K.I.; Mustafa, G.; Muthupandian, S.; Nachega, J.B.; Nagel, G.; Naheed, A.; Nahvijou, A.; Naik, G.; Nair, S.; Najafi, F.; Naldi, L.; Nam, H.S.; Nangia, V.; Nansseu, J.R.; Nascimento, B.R.; Natarajan, G.; Neamati, N.; Negoi, I.; Negoi, R.I.; Neupane, S.; Newton, C.R.J.; Ngalesoni, F.N.; Ngunjiri, J.W.; Nguyen, A.Q.; Nguyen, G.; Nguyen, H.T.; Nguyen, H.T.; Nguyen, L.H.; Nguyen, M.; Nguyen, T.H.; Nichols, E.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Nolutshungu, N.; Nomura, S.; Norheim, O.F.; Noroozi, M.; Norrving, B.; Noubiap, J.J.; Nouri, H.R.; Nourollahpour Shiadeh, M.; Nowroozi, M.R.; Nyasulu, P.S.; Odell, C.M.; Ofori-Asenso, R.; Ogbo, F.A.; Oh, I-H.; Oladimeji, O.; Olagunju, A.T.; Olivares, P.R.; Olsen, H.E.; Olusanya, B.O.; Olusanya, J.O.; Ong, K.L.; Ong, S.K.S.; Oren, E.; Orpana, H.M.; Ortiz, A.; Ortiz, J.R.; Otstavnov, S.S.; Øverland, S.; Owolabi, M.O.; Özdemir, R.; P A, M.; Pacella, R.; Pakhale, S.; Pakhare, A.P.; Pakpour, A.H.; Pana, A.; Panda-Jonas, S.; Pandian, J.D.; Parisi, A.; Park, E-K.; Parry, C.D.H.; Parsian, H.; Patel, S.; Pati, S.; Patton, G.C.; Paturi, V.R.; Paulson, K.R.; Pereira, A.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Petzold, M.; Phillips, M.R.; Piel, F.B.; Pigott, D.M.; Pillay, J.D.; Pirsaheb, M.; Pishgar, F.; Polinder, S.; Postma, M.J.; Pourshams, A.; Poustchi, H.; Pujar, A.; Prakash, S.; Prasad, N.; Purcell, C.A.; Qorbani, M.; Quintana, H.; Quistberg, D.A.; Rade, K.W.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi, K.; Rahimi-Movaghar, A.; Rahman, M.; Rahman, M.H.U.; Rahman, M.A.; Rai, R.K.; Rajsic, S.; Ram, U.; Ranabhat, C.L.; Ranjan, P.; Rao, P.C.; Rawaf, D.L.; Rawaf, S.; Razo-García, C.; Reddy, K.S.; Reiner, R.C.; Reitsma, M.B.; Remuzzi, G.; Renzaho, A.M.N.; Resnikoff, S.; Rezaei, S.; Rezaeian, S.; Rezai, M.S.; Riahi, S.M.; Ribeiro, A.L.P.; Rios-Blancas, M.J.; Roba, K.T.; Roberts, N.L.S.; Robinson, S.R.; Roever, L.; Ronfani, L.; Roshandel, G.; Rostami, A.; Rothenbacher, D.; Roy, A.; Rubagotti, E.; Sachdev, P.S.; Saddik, B.; Sadeghi, E.; Safari, H.; Safdarian, M.; Safi, S.; Safiri, S.; Sagar, R.; Sahebkar, A.; Sahraian, M.A.; Salam, N.; Salama, J.S.; Salamati, P.; Saldanha, R.D.F.; Saleem, Z.; Salimi, Y.; Salvi, S.S.; Salz, I.; Sambala, E.Z.; Samy, A.M.; Sanabria, J.; Sanchez-Niño, M.D.; Santomauro, D.F.; Santos, I.S.; Santos, J.V.; Milicevic, M.M.S.; Sao Jose, B.P.; Sarker, A.R.; Sarmiento-Suárez, R.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Saxena, S.; Sayyah, M.; Schaeffner, E.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schutte, A.E.; Schwebel, D.C.; Schwendicke, F.; Scott, J.G.; Sekerija, M.; Sepanlou, S.G.; Serván-Mori, E.; Seyedmousavi, S.; Shabaninejad, H.; Shackelford, K.A.; Shafieesabet, A.; Shahbazi, M.; Shaheen, A.A.; Shaikh, M.A.; Shams-Beyranvand, M.; Shamsi, M.; Shamsizadeh, M.; Sharafi, K.; Sharif, M.; Sharif-Alhoseini, M.; Sharma, R.; She, J.; Sheikh, A.; Shi, P.; Shiferaw, M.S.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shiue, I.; Shokraneh, F.; Shrime, M.G.; Si, S.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silberberg, D.H.; Silva, D.A.S.; Silva, J.P.; Silva, N.T.D.; Silveira, D.G.A.; Singh, J.A.; Singh, N.P.; Singh, P.K.; Singh, V.; Sinha, D.N.; Sliwa, K.; Smith, M.; Sobaih, B.H.; Sobhani, S.; Sobngwi, E.; Soneji, S.S.; Soofi, M.; Sorensen, R.J.D.; Soriano, J.B.; Soyiri, I.N.; Sposato, L.A.; Sreeramareddy, C.T.; Srinivasan, V.; Stanaway, J.D.; Starodubov, V.I.; Stathopoulou, V.; Stein, D.J.; Steiner, C.; Stewart, L.G.; Stokes, M.A.; Subart, M.L.; Sudaryanto, A.; Sufiyan, M.B.; Sur, P.J.; Sutradhar, I.; Sykes, B.L.; Sylaja, P.N.; Sylte, D.O.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Tabuchi, T.; Tadakamadla, S.K.; Takahashi, K.; Tandon, N.; Tassew, S.G.; Taveira, N.; Tehrani-Banihashemi, A.; Tekalign, T.G.; Tekle, M.G.; Temsah, M-H.; Temsah, O.; Terkawi, A.S.; Teshale, M.Y.; Tessema, B.; Tessema, G.A.; Thankappan, K.R.; Thirunavukkarasu, S.; Thomas, N.; Thrift, A.G.; Thurston, G.D.; Tilahun, B.; To, Q.G.; Tobe-Gai, R.; Tonelli, M.; Topor-Madry, R.; Torre, A.E.; Tortajada-Girbés, M.; Touvier, M.; Tovani-Palone, M.R.; Tran, B.X.; Tran, K.B.; Tripathi, S.; Troeger, C.E.; Truelsen, T.C.; Truong, N.T.; Tsadik, A.G.; Tsoi, D.; Tudor Car, L.; Tuzcu, E.M.; Tyrovolas, S.; Ukwaja, K.N.; Ullah, I.; Undurraga, E.A.; Updike, R.L.; Usman, M.S.; Uthman, O.A.; Uzun, S.B.; Vaduganathan, M.; Vaezi, A.; Vaidya, G.; Valdez, P.R.; Varavikova, E.; Vasankari, T.J.; Venketasubramanian, N.; Villafaina, S.; Violante, F.S.; Vladimirov, S.K.; Vlassov, V.; Vollset, S.E.; Vos, T.; Wagner, G.R.; Wagnew, F.S.; Waheed, Y.; Wallin, M.T.; Walson, J.L.; Wang, Y.; Wang, Y-P.; Wassie, M.M.; Weiderpass, E.; Weintraub, R.G.; Weldegebreal, F.; Weldegwergs, K.G.; Werdecker, A.; Werkneh, A.A.; West, T.E.; Westerman, R.; Whiteford, H.A.; Widecka, J.; Wilner, L.B.; Wilson, S.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Wu, S.; Wu, Y-C.; Wyper, G.M.A.; Xavier, D.; Xu, G.; Yadgir, S.; Yadollahpour, A.; Yahyazadeh Jabbari, S.H.; Yakob, B.; Yan, L.L.; Yano, Y.; Yaseri, M.; Yasin, Y.J.; Yentür, G.K.; Yeshaneh, A.; Yimer, E.M.; Yip, P.; Yirsaw, B.D.; Yisma, E.; Yonemoto, N.; Yonga, G.; Yoon, S-J.; Yotebieng, M.; Younis, M.Z.; Yousefifard, M.; Yu, C.; Zadnik, V.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zare, Z.; Zeleke, A.J.; Zenebe, Z.M.; Zhang, A.L.; Zhang, K.; Zhou, M.; Zodpey, S.; Zuhlke, L.J.; Naghavi, M.; Murray, C.J.L. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1736-1788.
[http://dx.doi.org/10.1016/S0140-6736(18)32203-7] [PMID: 30496103]
[41]
Damaskos, C.; Garmpis, N.; Kollia, P.; Mitsiopoulos, G.; Barlampa, D.; Drosos, A.; Patsouras, A.; Gravvanis, N.; Antoniou, V.; Litos, A.; Diamantis, E. Assessing cardiovascular risk in patients with diabetes: An update. Curr. Cardiol. Rev., 2021, 16(4), 266-274.
[http://dx.doi.org/10.2174/1573403X15666191111123622] [PMID: 31713488]
[42]
Toborek, M.; Barger, S.W.; Mattson, M.P.; Barve, S.; McClain, C.J.; Hennig, B. Linoleic acid and TNF-alpha cross-amplify oxidative injury and dysfunction of endothelial cells. J. Lipid Res., 1996, 37(1), 123-135.
[http://dx.doi.org/10.1016/S0022-2275(20)37641-0] [PMID: 8820108]
[43]
Peng, M.; Fu, Y.; Wu, C.; Zhang, Y.; Ren, H.; Zhou, S. Signaling pathways related to oxidative stress in diabetic cardiomyopathy. Front. Endocrinol., 2022, 13, 907757.
[http://dx.doi.org/10.3389/fendo.2022.907757] [PMID: 35784531]
[44]
Seferović, P.M.; Petrie, M.C.; Filippatos, G.S.; Anker, S.D.; Rosano, G.; Bauersachs, J.; Paulus, W.J.; Komajda, M.; Cosentino, F.; de Boer, R.A.; Farmakis, D.; Doehner, W.; Lambrinou, E.; Lopatin, Y.; Piepoli, M.F.; Theodorakis, M.J.; Wiggers, H.; Lekakis, J.; Mebazaa, A.; Mamas, M.A.; Tschöpe, C.; Hoes, A.W.; Seferović, J.P.; Logue, J.; McDonagh, T.; Riley, J.P.; Milinković, I.; Polovina, M.; van Veldhuisen, D.J.; Lainscak, M.; Maggioni, A.P.; Ruschitzka, F.; McMurray, J.J.V. Type 2 diabetes mellitus and heart failure: A position statement from the heart failure association of the european society of cardiology. Eur. J. Heart Fail., 2018, 20(5), 853-872.
[http://dx.doi.org/10.1002/ejhf.1170] [PMID: 29520964]
[45]
Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev., 2013, 93(1), 137-188.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[46]
Makrilakis, K.; Liatis, S. Cardiovascular screening for the asymptomatic patient with diabetes: More cons than pros. J. Diabetes Res., 2017, 2017, 1-19.
[http://dx.doi.org/10.1155/2017/8927473] [PMID: 29387731]
[47]
Tanaskovic, S.; Isenovic, E.R.; Radak, D. Inflammation as a marker for the prediction of internal carotid artery restenosis following eversion endarterectomy--evidence from clinical studies. Angiology, 2011, 62(7), 535-542.
[http://dx.doi.org/10.1177/0003319710398010] [PMID: 21873348]
[48]
Radak, D.; Katsiki, N.; Resanovic, I.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Mousad, S.A.; Isenovic, E.R. Apoptosis and acute brain ischemia in ischemic stroke. Curr. Vasc. Pharmacol., 2017, 15(2), 115-122.
[http://dx.doi.org/10.2174/1570161115666161104095522] [PMID: 27823556]
[49]
Nativel, M.; Potier, L.; Alexandre, L.; Baillet-Blanco, L.; Ducasse, E.; Velho, G.; Marre, M.; Roussel, R.; Rigalleau, V.; Mohammedi, K. Lower extremity arterial disease in patients with diabetes: A contemporary narrative review. Cardiovasc Diabetol., 2018, 17(1), 138.
[http://dx.doi.org/10.1186/s12933-018-0781-1]
[50]
Resanović, I.; Gluvić, Z.; Zarić, B.; Sudar-Milovanović, E.; Vučić, V.; Arsić, A.; Nedić, O.; Šunderić, M.; Gligorijević, N.; Milačić, D.; Isenović, E.R. Effect of hyperbaric oxygen therapy on fatty acid composition and insulin-like growth factor binding protein 1 in adult type 1 diabetes mellitus patients: A pilot study. Can. J. Diabetes, 2020, 44(1), 22-29.
[http://dx.doi.org/10.1016/j.jcjd.2019.04.018] [PMID: 31311728]
[51]
Xu, G-T.; Zhang, J-F.; Tang, L. Inflammation in diabetic retinopathy: Possible roles in pathogenesis and potential implications for therapy. Neural Regen. Res., 2023, 18(5), 976-982.
[http://dx.doi.org/10.4103/1673-5374.355743] [PMID: 36254977]
[52]
Chudasama, Y.V.; Khunti, K. Healthy lifestyle choices and microvascular complications: New insights into diabetes management. PLoS Med., 2023, 20(1), e1004152.
[53]
Sanaye, M.M.; Kavishwar, S.A. Diabetic neuropathy: Review on molecular mechanisms. Curr. Mol. Med., 2023, 23(2), 97-110.
[http://dx.doi.org/10.2174/1566524021666210816093111] [PMID: 34397329]
[54]
Wang, P.; Guo, R.; Bai, X.; Cui, W.; Zhang, Y.; Li, H.; Shang, J.; Zhao, Z. Sacubitril/Valsartan contributes to improving the diabetic kidney disease and regulating the gut microbiota in mice. Front. Endocrinol., 2022, 13, 1034818.
[http://dx.doi.org/10.3389/fendo.2022.1034818] [PMID: 36589853]
[55]
McGuire, D.K.; Shih, W.J.; Cosentino, F.; Charbonnel, B.; Cherney, D.Z.I.; Dagogo-Jack, S.; Pratley, R.; Greenberg, M.; Wang, S.; Huyck, S.; Gantz, I.; Terra, S.G.; Masiukiewicz, U.; Cannon, C.P. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes. JAMA Cardiol., 2021, 6(2), 148-158.
[http://dx.doi.org/10.1001/jamacardio.2020.4511] [PMID: 33031522]
[56]
Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; Cannon, C.P.; Capuano, G.; Chu, P.L.; de Zeeuw, D.; Greene, T.; Levin, A.; Pollock, C.; Wheeler, D.C.; Yavin, Y.; Zhang, H.; Zinman, B.; Meininger, G.; Brenner, B.M.; Mahaffey, K.W. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med., 2019, 380(24), 2295-2306.
[http://dx.doi.org/10.1056/NEJMoa1811744] [PMID: 30990260]
[57]
Baigent, C.; Emberson, J.R.; Haynes, R.; Herrington, W.G.; Judge, P.; Landray, M.J.; Mayne, K.J.; Ng, S.Y.A.; Preiss, D.; Roddick, A.J.; Staplin, N.; Zhu, D.; Anker, S.D.; Bhatt, D.L.; Brueckmann, M.; Butler, J.; Cherney, D.Z.I.; Green, J.B.; Hauske, S.J.; Haynes, R.; Heerspink, H.J.L.; Herrington, W.G.; Inzucchi, S.E.; Jardine, M.J.; Liu, C-C.; Mahaffey, K.W.; McCausland, F.R.; McGuire, D.K.; McMurray, J.J.V.; Neal, B.; Neuen, B.L.; Packer, M.; Perkovic, V.; Sabatine, M.S.; Solomon, S.D.; Vaduganathan, M.; Wanner, C.; Wheeler, D.C.; Wiviott, S.D.; Zannad, F. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: Collaborative meta-analysis of large placebo-controlled trials. Lancet, 2022, 400(10365), 1788-1801.
[http://dx.doi.org/10.1016/S0140-6736(22)02074-8] [PMID: 36351458]
[58]
Bonora, B.M.; Avogaro, A.; Fadini, G.P. Extraglycemic effects of SGLT2 inhibitors: A review of the evidence. Diabetes Metab. Syndr. Obes., 2020, 13, 161-174.
[http://dx.doi.org/10.2147/DMSO.S233538] [PMID: 32021362]
[59]
Ishibashi, F.; Kosaka, A.; Tavakoli, M. Sodium glucose cotransporter-2 inhibitor protects against diabetic neuropathy and nephropathy in modestly controlled type 2 diabetes: Follow-up study. Front. Endocrinol., 2022, 13(864332), 864332.
[http://dx.doi.org/10.3389/fendo.2022.864332] [PMID: 35784562]
[60]
Anders, H.J.; Davis, J.M.; Thurau, K. Nephron protection in diabetic kidney disease. N. Engl. J. Med., 2016, 375(21), 2096-2098.
[http://dx.doi.org/10.1056/NEJMcibr1608564] [PMID: 27959742]
[61]
Cherney, D.Z.I.; Perkins, B.A.; Soleymanlou, N.; Har, R.; Fagan, N.; Johansen, O.; Woerle, H.J.; von Eynatten, M.; Broedl, U.C. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc. Diabetol., 2014, 13(1), 28.
[http://dx.doi.org/10.1186/1475-2840-13-28] [PMID: 24475922]
[62]
Podestà, M.A.; Sabiu, G.; Galassi, A.; Ciceri, P.; Cozzolino, M. SGLT2 inhibitors in diabetic and non-diabetic chronic kidney disease. Biomedicines, 2023, 11(2), 279.
[http://dx.doi.org/10.3390/biomedicines11020279] [PMID: 36830815]
[63]
Nedosugova, L.V.; Markina, Y.V. Inflammatory mechanisms of diabetes and its vascular complications. Biomedicines, 2022, 10(5), 1168.
[http://dx.doi.org/10.3390/biomedicines10051168]
[64]
ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Das, S.R.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; Kahan, S.; Khunti, K.; Kosiborod, M.; Leon, J.; Lyons, S.K.; Perry, M.L.; Prahalad, P.; Pratley, R.E.; Seley, J.J.; Stanton, R.C.; Gabbay, R.A. Cardiovascular disease and risk management: Standards of care in diabetes-2023. Diabetes Care, 2023, 46(Suppl. 1), S158-S190.
[http://dx.doi.org/10.2337/dc23-S010] [PMID: 36507632]
[65]
Isenovic, E.R. Clinical approach for the treatment of obesity-associated diseases. Curr. Pharm. Des., 2019, 25(18), 2017-2018.
[http://dx.doi.org/10.2174/138161282518190822153931] [PMID: 31538880]
[66]
Zaric, B.L.; Obradovic, M.; Sudar-Milovanovic, E.; Nedeljkovic, J.; Lazic, V.; Isenovic, E.R. Drug delivery systems for diabetes treatment. Curr. Pharm. Des., 2019, 25(2), 166-173.
[http://dx.doi.org/10.2174/1381612825666190306153838] [PMID: 30848184]
[67]
Isenovic, E.; Meng, Y.; Jamali, N.; Milivojevic, N.; Sowers, J. Ang II attenuates IGF-1-stimulated Na+, K+-ATPase activity via PI3K/Akt pathway in vascular smooth muscle cells. Int. J. Mol. Med., 2004, 13(6), 915-922.
[http://dx.doi.org/10.3892/ijmm.13.6.915] [PMID: 15138635]
[68]
Isenovic, E.R.; Jacobs, D.B.; Kedees, M.H.; Sha, Q.; Milivojevic, N.; Kawakami, K.; Gick, G.; Sowers, J.R. Angiotensin II regulation of the Na+ pump involves the phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways in vascular smooth muscle cells. Endocrinology, 2004, 145(3), 1151-1160.
[http://dx.doi.org/10.1210/en.2003-0100] [PMID: 14630723]
[69]
Wright, E.M.; Turk, E. The sodium/glucose cotransport family SLC5. Pflugers Arch., 2004, 447(5), 813-815.
[http://dx.doi.org/10.1007/s00424-003-1202-0] [PMID: 12748858]
[70]
Boyd, C.A.R. Facts, fantasies and fun in epithelial physiology. Exp. Physiol., 2008, 93(3), 303-314.
[http://dx.doi.org/10.1113/expphysiol.2007.037523] [PMID: 18192340]
[71]
Kanai, Y.; Lee, W.S.; You, G.; Brown, D.; Hediger, M.A. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J. Clin. Invest., 1994, 93(1), 397-404.
[http://dx.doi.org/10.1172/JCI116972] [PMID: 8282810]
[72]
Zhao, F.Q.; Keating, A. Functional properties and genomics of glucose transporters. Curr. Genomics, 2007, 8(2), 113-128.
[http://dx.doi.org/10.2174/138920207780368187] [PMID: 18660845]
[73]
Sabolić, I.; Vrhovac, I.; Eror, D.B.; Gerasimova, M.; Rose, M.; Breljak, D.; Ljubojević, M.; Brzica, H.; Sebastiani, A.; Thal, S.C.; Sauvant, C.; Kipp, H.; Vallon, V.; Koepsell, H. Expression of Na +-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am. J. Physiol. Cell Physiol., 2012, 302(8), C1174-C1188.
[http://dx.doi.org/10.1152/ajpcell.00450.2011] [PMID: 22262063]
[74]
Balen, D.; Ljubojević, M.; Breljak, D.; Brzica, H.; Z̆lender, V.; Koepsell, H.; Sabolić, I. Revised immunolocalization of the Na+-D-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am. J. Physiol. Cell Physiol., 2008, 295(2), C475-C489.
[http://dx.doi.org/10.1152/ajpcell.00180.2008] [PMID: 18524944]
[75]
Bonner, C.; Kerr-Conte, J.; Gmyr, V.; Queniat, G.; Moerman, E.; Thévenet, J.; Beaucamps, C.; Delalleau, N.; Popescu, I.; Malaisse, W.J.; Sener, A.; Deprez, B.; Abderrahmani, A.; Staels, B.; Pattou, F. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat. Med., 2015, 21(5), 512-517.
[http://dx.doi.org/10.1038/nm.3828] [PMID: 25894829]
[76]
Ehrenkranz, J.R.L.; Lewis, N.G.; Ronald Kahn, C.; Roth, J. Phlorizin: A review. Diabetes Metab. Res. Rev., 2005, 21(1), 31-38.
[http://dx.doi.org/10.1002/dmrr.532] [PMID: 15624123]
[77]
Ramani, J.; Shah, H.; Vyas, V.K.; Sharma, M. A review on the medicinal chemistry of sodium glucose co-transporter 2 inhibitors (SGLT2-I): Update from 2010 to present. European J. Med. Chem. Reports, 2022, 6, 100074.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100074]
[78]
Dardi, I.; Kouvatsos, T.; Jabbour, S.A. SGLT2 inhibitors. Biochem. Pharmacol., 2016, 101, 27-39.
[http://dx.doi.org/10.1016/j.bcp.2015.09.005] [PMID: 26362302]
[79]
Rieg, T.; Vallon, V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia, 2018, 61(10), 2079-2086.
[http://dx.doi.org/10.1007/s00125-018-4654-7] [PMID: 30132033]
[80]
Link, J.T.; Sorensen, B.K. A method for preparing C-glycosides related to phlorizin. Tetrahedron Lett., 2000, 41(48), 9213-9217.
[http://dx.doi.org/10.1016/S0040-4039(00)01709-3]
[81]
Meng, W.; Ellsworth, B.A.; Nirschl, A.A.; McCann, P.J.; Patel, M.; Girotra, R.N.; Wu, G.; Sher, P.M.; Morrison, E.P.; Biller, S.A.; Zahler, R.; Deshpande, P.P.; Pullockaran, A.; Hagan, D.L.; Morgan, N.; Taylor, J.R.; Obermeier, M.T.; Humphreys, W.G.; Khanna, A.; Discenza, L.; Robertson, J.G.; Wang, A.; Han, S.; Wetterau, J.R.; Janovitz, E.B.; Flint, O.P.; Whaley, J.M.; Washburn, W.N. Discovery of dapagliflozin: A potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J. Med. Chem., 2008, 51(5), 1145-1149.
[http://dx.doi.org/10.1021/jm701272q] [PMID: 18260618]
[82]
Manoj, A.; Das, S. SGLT2 inhibitors, an accomplished development in field of medicinal chemistry: An extensive review. Future Med. Chem., 2020, 12(21), 1961-1990.
[83]
Cai, W.; Jiang, L.; Xie, Y.; Liu, Y.; Liu, W.; Zhao, G. Design of SGLT2 inhibitors for the treatment of type 2 diabetes: A history driven by biology to chemistry. Med. Chem., 2015, 11(4), 317-328.
[http://dx.doi.org/10.2174/1573406411666150105105529] [PMID: 25557661]
[84]
Marrs, J.C.; Anderson, S.L. Ertugliflozin in the treatment of type 2 diabetes mellitus. Drugs Context, 2020, 9, 1-10.
[http://dx.doi.org/10.7573/dic.2020-7-4] [PMID: 33293984]
[85]
Azzam, O.; Carnagarin, R.; Lugo-Gavidia, L.M.; Nolde, J.; Matthews, V.B.; Schlaich, M.P. Bexagliflozin for type 2 diabetes: An overview of the data. Expert Opin. Pharmacother., 2021, 22(16), 2095-2103.
[http://dx.doi.org/10.1080/14656566.2021.1959915]
[86]
Allegretti, A.S.; Zhang, W.; Zhou, W.; Thurber, T.K.; Rigby, S.P.; Bowman-Stroud, C.; Trescoli, C.; Serusclat, P.; Freeman, M.W.; Halvorsen, Y.D.C. Safety and effectiveness of bexagliflozin in patients with type 2 diabetes mellitus and stage 3a/3b CKD. Am. J. Kidney Dis., 2019, 74(3), 328-337.
[http://dx.doi.org/10.1053/j.ajkd.2019.03.417] [PMID: 31101403]
[87]
Kasichayanula, S.; Liu, X.; LaCreta, F.; Griffen, S.C.; Boulton, D.W. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin. Pharmacokinet., 2014, 53(1), 17-27.
[http://dx.doi.org/10.1007/s40262-013-0104-3] [PMID: 24105299]
[88]
Devineni, D.; Curtin, C.R.; Polidori, D.; Gutierrez, M.J.; Murphy, J.; Rusch, S.; Rothenberg, P.L. Pharmacokinetics and pharmacodynamics of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in subjects with type 2 diabetes mellitus. J. Clin. Pharmacol., 2013, 53(6), 601-610.
[http://dx.doi.org/10.1002/jcph.88] [PMID: 23670707]
[89]
Heise, T.; Seewaldt-Becker, E.; Macha, S.; Hantel, S.; Pinnetti, S.; Seman, L.; Woerle, H.J. Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks’ treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes. Metab., 2013, 15(7), 613-621.
[http://dx.doi.org/10.1111/dom.12073] [PMID: 23356556]
[90]
Fediuk, D.J.; Nucci, G.; Dawra, V.K.; Cutler, D.L.; Amin, N.B.; Terra, S.G.; Boyd, R.A.; Krishna, R.; Sahasrabudhe, V. Overview of the clinical pharmacology of ertugliflozin, a novel sodium-glucose cotransporter 2 (SGLT2) Inhibitor. Clin. Pharmacokinet., 2020, 59(8), 949-965.
[http://dx.doi.org/10.1007/s40262-020-00875-1] [PMID: 32337660]
[91]
Ohno, H.; Kojima, Y.; Harada, H.; Abe, Y.; Endo, T.; Kobayashi, M. Absorption, disposition, metabolism and excretion of [ 14 C]mizagliflozin, a novel selective SGLT1 inhibitor, in rats. Xenobiotica, 2019, 49(4), 463-473.
[http://dx.doi.org/10.1080/00498254.2018.1449269] [PMID: 29558223]
[92]
Inoue, T.; Takemura, M.; Fushimi, N.; Fujimori, Y.; Onozato, T.; Kurooka, T.; Asari, T.; Takeda, H.; Kobayashi, M.; Nishibe, H.; Isaji, M. Mizagliflozin, a novel selective SGLT1 inhibitor, exhibits potential in the amelioration of chronic constipation. Eur. J. Pharmacol., 2017, 806, 25-31.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.010] [PMID: 28410751]
[93]
Fukudo, S.; Endo, Y.; Hongo, M.; Nakajima, A.; Abe, T.; Kobayashi, H.; Nakata, T.; Nakajima, T.; Sameshima, K.; Kaku, K.; Shoji, E.; Tarumi, K.; Nagaoka, Y.; Ooshima, T.; Ozawa, K.; Majima, T.; Kamata, S.; Tada, T.; Ishii, H.; Segawa, Y.; Miyazaki, S.; Yamamoto, T.; Yagi, Y.; Sawada, H.; Shirota, S.; Otsuka, S.; Yamada, N.; Suzuki, R.; Kurakata, H.; Nakai, K.; Syuji, Y.; Usui, T.; Yamamura, M.; Oishi, T.; Tanaka, H. Safety and efficacy of the sodium-glucose cotransporter 1 inhibitor mizagliflozin for functional constipation: A randomised, placebo-controlled, double-blind phase 2 trial. Lancet Gastroenterol. Hepatol., 2018, 3(9), 603-613.
[http://dx.doi.org/10.1016/S2468-1253(18)30165-1] [PMID: 30056028]
[94]
Markham, A.; Keam, S.J. Sotagliflozin: First global approval. Drugs, 2019, 79(9), 1023-1029.
[http://dx.doi.org/10.1007/s40265-019-01146-5] [PMID: 31172412]
[95]
Buse, J.B.; Garg, S.K.; Rosenstock, J.; Bailey, T.S.; Banks, P.; Bode, B.W.; Danne, T.; Kushner, J.A.; Lane, W.S.; Lapuerta, P.; McGuire, D.K.; Peters, A.L.; Reed, J.; Sawhney, S.; Strumph, P. Sotagliflozin in combination with optimized insulin therapy in adults with type 1 diabetes: The north American intandem1 study. Diabetes Care, 2018, 41(9), 1970-1980.
[http://dx.doi.org/10.2337/dc18-0343] [PMID: 29937430]
[96]
Danne, T.; Cariou, B.; Banks, P.; Brandle, M.; Brath, H.; Franek, E.; Kushner, J.A.; Lapuerta, P.; McGuire, D.K.; Peters, A.L.; Sawhney, S.; Strumph, P. HbA1c and hypoglycemia reductions at 24 and 52 weeks with sotagliflozin in combination with insulin in adults with type 1 diabetes: The european intandem2 study. Diabetes Care, 2018, 41(9), 1981-1990.
[http://dx.doi.org/10.2337/dc18-0342] [PMID: 29937431]
[97]
Zambrowicz, B.; Freiman, J.; Brown, P.M.; Frazier, K.S.; Turnage, A.; Bronner, J.; Ruff, D.; Shadoan, M.; Banks, P.; Mseeh, F.; Rawlins, D.B.; Goodwin, N.C.; Mabon, R.; Harrison, B.A.; Wilson, A.; Sands, A.; Powell, D.R. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin. Pharmacol. Ther., 2012, 92(2), 158-169.
[http://dx.doi.org/10.1038/clpt.2012.58] [PMID: 22739142]
[98]
Rosenstock, J.; Cefalu, W.T.; Lapuerta, P.; Zambrowicz, B.; Ogbaa, I.; Banks, P.; Sands, A. Greater dose-ranging effects on A1C levels than on glucosuria with LX4211, a dual inhibitor of SGLT1 and SGLT2, in patients with type 2 diabetes on metformin monotherapy. Diabetes Care, 2015, 38(3), 431-438.
[http://dx.doi.org/10.2337/dc14-0890] [PMID: 25216510]
[99]
Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; Bhatt, D.L. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl. J. Med., 2019, 380(4), 347-357.
[100]
Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med., 2017, 377(7), 644-657.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[101]
Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi, S.E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med., 2015, 373(22), 2117-2128.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[102]
Abdul-Ghani, M.; Del Prato, S.; Chilton, R.; DeFronzo, R.A. SGLT2 inhibitors and cardiovascular risk: Lessons learned from the EMPA-REG OUTCOME study. Diabetes Care, 2016, 39(5), 717-725.
[http://dx.doi.org/10.2337/dc16-0041] [PMID: 27208375]
[103]
Fitchett, D.; Inzucchi, S.E.; Lachin, J.M.; Wanner, C.; van de Borne, P.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; George, J.T.; Zinman, B. Cardiovascular mortality reduction with empagliflozin in patients with type 2 diabetes and cardiovascular disease. J. Am. Coll. Cardiol., 2018, 71(3), 364-367.
[http://dx.doi.org/10.1016/j.jacc.2017.11.022] [PMID: 29348030]
[104]
Grunberger, G.; Camp, S.; Johnson, J.; Huyck, S.; Terra, S.G.; Mancuso, J.P.; Jiang, Z.W.; Golm, G.; Engel, S.S.; Lauring, B. Ertugliflozin in patients with stage 3 chronic kidney disease and type 2 diabetes mellitus: The VERTIS RENAL randomized study. Diabetes Ther., 2018, 9(1), 49-66.
[http://dx.doi.org/10.1007/s13300-017-0337-5] [PMID: 29159457]
[105]
Aronson, R.; Frias, J. Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study. Diabetes Obes. Metab., 2018, 20(6), 1453-1460.
[106]
Hopf, M.; Kloos, C.; Wolf, G.; Müller, U.A. Effectiveness and safety of SGLT2 inhibitors in clinical routine treatment of patients with diabetes mellitus type 2. J. Clin. Med., 2021, 10(4), 571.
[107]
McGovern, A.P.; Hogg, M.; Shields, B.M.; Sattar, N.A.; Holman, R.R.; Pearson, E.R.; Hattersley, A.T.; Jones, A.G.; Dennis, J.M. Risk factors for genital infections in people initiating SGLT2 inhibitors and their impact on discontinuation. BMJ Open Diabetes Res. Care, 2020, 8(1), e001238.
[http://dx.doi.org/10.1136/bmjdrc-2020-001238] [PMID: 32448787]
[108]
Arnott, C.; Huang, Y.; Neuen, B.L. The effect of canagliflozin on amputation risk in the CANVAS program and the CREDENCE trial. Diabetes Obes. Metab., 2020, 22(10), 1735-1766.
[http://dx.doi.org/10.1111/dom.14091]
[109]
Furtado, R.H.M.; Raz, I.; Goodrich, E.L.; Murphy, S.A.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; Aylward, P.; Dalby, A.J.; Dellborg, M.; Dimulescu, D.; Nicolau, J.C.; Oude Ophuis, A.J.M.; Cahn, A.; Mosenzon, O.; Gause-Nilsson, I.; Langkilde, A.M.; Sabatine, M.S.; Wiviott, S.D. Efficacy and safety of dapagliflozin in type 2 diabetes according to baseline blood pressure: Observations from DECLARE-TIMI 58 Trial. Circulation, 2022, 145(21), 1581-1591.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.121.058103] [PMID: 35510542]
[110]
Toyama, T.; Neuen, B.L. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis. Diabetes Obes. Metab., 2019, 21(5), 1237-1250.
[http://dx.doi.org/10.1111/dom.13648]
[111]
Fukuda, M.; Nabeta, M.; Muta, T.; Fukami, K.; Takasu, O. Euglycemic diabetic ketoacidosis caused by canagliflozin: A case report. Int. J. Emerg. Med., 2020, 13(1), 020-0261.
[http://dx.doi.org/10.1186/s12245-020-0261-8]
[112]
Luo, X.; Ji, R.; Lu, W.; Zhu, H.; Li, L.; Hu, J. Dapagliflozin-associated euglycemic diabetic ketoacidosis in a patient who underwent surgery for pancreatic carcinoma: A case report. Front. Surg., 2022, 9, 769041.
[http://dx.doi.org/10.3389/fsurg.2022.769041]
[113]
Altowayan, W.M. Empagliflozin induced euglycemic diabetic ketoacidosis. A case reports. Ann. Med. Surg., 2022, 84, 104879.
[http://dx.doi.org/10.1016/j.amsu.2022.104879]
[114]
Chandrakumar, H.P.; Chillumuntala, S.; Singh, G.; McFarlane, S.I. Postoperative euglycemic ketoacidosis in type 2 diabetes associated with sodium-glucose cotransporter 2 inhibitor: Insights into pathogenesis and management strategy. Cureus, 2021, 13(6), e15533.
[http://dx.doi.org/10.7759/cureus.15533] [PMID: 34123681]
[115]
Donnan, J.R.; Grandy, C.A.; Chibrikov, E.; Marra, C.A.; Aubrey-Bassler, K.; Johnston, K.; Swab, M.; Hache, J.; Curnew, D.; Nguyen, H.; Gamble, J.M. Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: A systematic review and meta-analysis. BMJ Open, 2019, 9(1), e022577.
[116]
Danne, T.; Garg, S.; Peters, A.L.; Buse, J.B.; Mathieu, C.; Pettus, J.H.; Alexander, C.M.; Battelino, T.; Ampudia-Blasco, F.J.; Bode, B.W.; Cariou, B.; Close, K.L.; Dandona, P.; Dutta, S.; Ferrannini, E.; Fourlanos, S.; Grunberger, G.; Heller, S.R.; Henry, R.R.; Kurian, M.J.; Kushner, J.A.; Oron, T.; Parkin, C.G.; Pieber, T.R.; Rodbard, H.W.; Schatz, D.; Skyler, J.S.; Tamborlane, W.V.; Yokote, K.; Phillip, M. International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) Inhibitors. Diabetes Care, 2019, 42(6), 1147-1154.
[http://dx.doi.org/10.2337/dc18-2316] [PMID: 30728224]
[117]
Zhou, Z.; Jardine, M.; Perkovic, V.; Matthews, D.R.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Desai, M.; Oh, R.; Simpson, R.; Watts, N.B.; Neal, B. Canagliflozin and fracture risk in individuals with type 2 diabetes: Results from the CANVAS Program. Diabetologia, 2019, 62(10), 1854-1867.
[http://dx.doi.org/10.1007/s00125-019-4955-5] [PMID: 31399845]
[118]
Blau, J.E.; Taylor, S.I. Adverse effects of SGLT2 inhibitors on bone health. Nat. Rev. Nephrol., 2018, 14(8), 473-474.
[http://dx.doi.org/10.1038/s41581-018-0028-0] [PMID: 29875481]
[119]
Saisho, Y. SGLT2 inhibitors: The star in the treatment of type 2 diabetes? Diseases, 2020, 8(2), 14.
[http://dx.doi.org/10.3390/diseases8020014] [PMID: 32403420]
[120]
Taylor, S.I.; Yazdi, Z.S.; Beitelshees, A.L. Pharmacological treatment of hyperglycemia in type 2 diabetes. J. Clin. Invest., 2021, 131(2), e142243.
[http://dx.doi.org/10.1172/JCI142243] [PMID: 33463546]
[121]
Khoo, C.M.; Deerochanawong, C. Use of sodium-glucose co-transporter-2 inhibitors in Asian patients with type 2 diabetes and kidney disease: An Asian perspective and expert recommendations. Diabetes Obes. Metab., 2021, 23(2), 299-317.
[122]
Bloomgarden, Z.; Handelsman, Y. Management and prevention of cardiovascular disease for type 2 diabetes: Integrating the diabetes management recommendations of AACE, ADA, EASD, AHA, ACC, and ESC. Am. J. Preventive Cardiol., 2020, 1, 100007.
[123]
Xu, B.; Li, S.; Kang, B.; Zhou, J. The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management. Cardiovasc. Diabetol., 2022, 21(1), 83.
[http://dx.doi.org/10.1186/s12933-022-01512-w]
[124]
Dhillon, S. Dapagliflozin: A review in type 2 diabetes. Drugs, 2019, 79(10), 1135-1146.
[http://dx.doi.org/10.1007/s40265-019-01148-3] [PMID: 31236801]
[125]
Elkinson, S.; Scott, L.J. Canagliflozin: First global approval. Drugs, 2013, 73(9), 979-988.
[http://dx.doi.org/10.1007/s40265-013-0064-9] [PMID: 23729000]
[126]
Markham, A. Ertugliflozin: First global approval. Drugs, 2018, 78(4), 513-519.
[http://dx.doi.org/10.1007/s40265-018-0878-6] [PMID: 29476348]
[127]
Scott, L.J. Empagliflozin: A review of its use in patients with type 2 diabetes mellitus. Drugs, 2014, 74(15), 1769-1784.
[http://dx.doi.org/10.1007/s40265-014-0298-1] [PMID: 25274537]
[128]
Plosker, G.L. Dapagliflozin: A review of its use in patients with type 2 diabetes. Drugs, 2014, 74(18), 2191-2209.
[http://dx.doi.org/10.1007/s40265-014-0324-3] [PMID: 25389049]
[129]
Fonseca-Correa, J.I.; Correa-Rotter, R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: A review. Front. Med., 2021, 8, 777861.
[http://dx.doi.org/10.3389/fmed.2021.777861] [PMID: 34988095]
[130]
Chiba, Y.; Yamada, T.; Tsukita, S.; Takahashi, K.; Munakata, Y.; Shirai, Y.; Kodama, S.; Asai, Y.; Sugisawa, T.; Uno, K.; Sawada, S.; Imai, J.; Nakamura, K.; Katagiri, H. Dapagliflozin, a sodium-glucose co-transporter 2 inhibitor, acutely reduces energy expenditure in BAT via neural signals in mice. PLoS One, 2016, 11(3), e0150756.
[http://dx.doi.org/10.1371/journal.pone.0150756] [PMID: 26963613]
[131]
Yoshikawa, T.; Kishi, T.; Shinohara, K.; Takesue, K.; Shibata, R.; Sonoda, N.; Inoguchi, T.; Sunagawa, K.; Tsutsui, H.; Hirooka, Y. Arterial pressure lability is improved by sodium-glucose cotransporter 2 inhibitor in streptozotocin-induced diabetic rats. Hypertens Res., 2017, 40(7), 646-651.
[132]
Matthews, V.B.; Elliot, R.H.; Rudnicka, C.; Hricova, J.; Herat, L.; Schlaich, M.P. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J. Hypertens., 2017, 35(10), 2059-2068.
[http://dx.doi.org/10.1097/HJH.0000000000001434] [PMID: 28598954]
[133]
Kimmerly, D.S.; Shoemaker, J.K. Hypovolemia and neurovascular control during orthostatic stress. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(2), H645-H655.
[http://dx.doi.org/10.1152/ajpheart.00535.2001] [PMID: 11788414]
[134]
Jordan, J.; Tank, J.; Heusser, K.; Heise, T.; Wanner, C.; Heer, M.; Macha, S.; Mattheus, M.; Lund, S.S.; Woerle, H.J.; Broedl, U.C. The effect of empagliflozin on muscle sympathetic nerve activity in patients with type II diabetes mellitus. J. Am. Soc. Hypertens., 2017, 11(9), 604-612.
[http://dx.doi.org/10.1016/j.jash.2017.07.005] [PMID: 28757109]
[135]
Sano, M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J. Cardiol., 2018, 71(5), 471-476.
[http://dx.doi.org/10.1016/j.jjcc.2017.12.004] [PMID: 29415819]
[136]
Garvey, W.T.; Van Gaal, L.; Leiter, L.A.; Vijapurkar, U.; List, J.; Cuddihy, R.; Ren, J.; Davies, M.J. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism, 2018, 85, 32-37.
[http://dx.doi.org/10.1016/j.metabol.2018.02.002] [PMID: 29452178]
[137]
Mudaliar, S.; Henry, R.R.; Boden, G.; Smith, S.; Chalamandaris, A.G.; Duchesne, D.; Iqbal, N.; List, J. Changes in insulin sensitivity and insulin secretion with the sodium glucose cotransporter 2 inhibitor dapagliflozin. Diabetes Technol. Ther., 2014, 16(3), 137-144.
[http://dx.doi.org/10.1089/dia.2013.0167] [PMID: 24237386]
[138]
Hayashi, T.; Fukui, T.; Nakanishi, N.; Yamamoto, S.; Tomoyasu, M.; Osamura, A.; Ohara, M.; Yamamoto, T.; Ito, Y.; Hirano, T. Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 diabetes: Comparison with sitagliptin. Cardiovasc. Diabetol., 2017, 16(1), 8.
[http://dx.doi.org/10.1186/s12933-016-0491-5] [PMID: 28086872]
[139]
Milonas, D.; Tziomalos, K. Sodium-glucose cotransporter 2 inhibitors and ischemic stroke. Cardiovasc. Hematol. Disord. Drug Targets, 2018, 18(2), 134-138.
[http://dx.doi.org/10.2174/1871529X18666180206120444] [PMID: 29412119]
[140]
Li, D.; Wu, T.; Wang, T.; Wei, H.; Wang, A.; Tang, H. Effects of sodium glucose cotransporter 2 inhibitors on risk of dyslipidemia among patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Pharmacoepidemiol. Drug Saf., 2020, 29(5), 582-590.
[http://dx.doi.org/10.1002/pds.4985]
[141]
Chen, L.H.; Leung, P.S. Inhibition of the sodium glucose co-transporter-2: Its beneficial action and potential combination therapy for type 2 diabetes mellitus. Diabetes Obes. Metab., 2013, 15(5), 392-402.
[http://dx.doi.org/10.1111/dom.12064] [PMID: 23331516]
[142]
Ferrannini, E.; Muscelli, E.; Frascerra, S.; Baldi, S.; Mari, A.; Heise, T.; Broedl, U.C.; Woerle, H.J. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest., 2014, 124(2), 499-508.
[http://dx.doi.org/10.1172/JCI72227] [PMID: 24463454]
[143]
Kullmann, S.; Hummel, J.; Wagner, R.; Dannecker, C.; Vosseler, A.; Fritsche, L. Empagliflozin improves insulin sensitivity of the hypothalamus in humans with prediabetes: A randomized, double-blind, placebo-controlled, phase 2 trial. Diabetes Care, 2022, 45(2), 398-406.
[144]
Sumida, Y.; Yoneda, M.; Tokushige, K.; Kawanaka, M.; Fujii, H.; Yoneda, M.; Imajo, K. Antidiabetic therapy in the treatment of nonalcoholic steatohepatitis. Int. J. Mol. Sci., 2020, 21(6), 1907.
[145]
Jung, C.H.; Mok, J.O. The effects of hypoglycemic agents on non-alcoholic fatty liver disease: Focused on sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide-1 receptor agonists. J. Obes. Metab. Syndr., 2019, 28(1), 18-29.
[http://dx.doi.org/10.7570/jomes.2019.28.1.18] [PMID: 31089576]
[146]
Cho, K.Y.; Nakamura, A. Favorable effect of sodium-glucose cotransporter 2 inhibitor, dapagliflozin, on non-alcoholic fatty liver disease compared with pioglitazone. J. Diabetes Investig., 2021, 12(7), 1272-1277.
[http://dx.doi.org/10.1111/jdi.13457]
[147]
Kuchay, M.S.; Krishan, S.; Mishra, S.K.; Farooqui, K.J.; Singh, M.K.; Wasir, J.S.; Bansal, B.; Kaur, P.; Jevalikar, G.; Gill, H.K.; Choudhary, N.S.; Mithal, A. Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: A randomized controlled trial (E-LIFT Trial). Diabetes Care, 2018, 41(8), 1801-1808.
[http://dx.doi.org/10.2337/dc18-0165] [PMID: 29895557]
[148]
Wong, C.; Yaow, C.Y.L.; Ng, C.H.; Chin, Y.H.; Low, Y.F.; Lim, A.Y.L.; Muthiah, M.D.; Khoo, C.M. Sodium-glucose co-transporter 2 inhibitors for non-alcoholic fatty liver disease in Asian patients with type 2 diabetes: A meta-analysis. Front. Endocrinol., 2021, 11, 609135.
[http://dx.doi.org/10.3389/fendo.2020.609135] [PMID: 33643221]
[149]
Mantovani, A.; Petracca, G.; Csermely, A.; Beatrice, G.; Targher, G. Sodium-glucose cotransporter-2 inhibitors for treatment of nonalcoholic fatty liver disease: A meta-analysis of randomized controlled trials. Metabolites, 2020, 11(1), 22.
[http://dx.doi.org/10.3390/metabo11010022]
[150]
Lopaschuk, G.D.; Verma, S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. JACC Basic Transl. Sci., 2020, 5(6), 632-644.
[http://dx.doi.org/10.1016/j.jacbts.2020.02.004] [PMID: 32613148]
[151]
Mazidi, M.; Rezaie, P.; Gao, H.K.; Kengne, A.P. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: A systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J. Am. Heart Assoc., 2017, 6(6), e004007.
[http://dx.doi.org/10.1161/JAHA.116.004007] [PMID: 28546454]
[152]
Ferrannini, E.; Baldi, S.; Frascerra, S.; Astiarraga, B.; Barsotti, E.; Clerico, A.; Muscelli, E. Renal handling of ketones in response to sodium-glucose cotransporter 2 inhibition in patients with type 2 diabetes. Diabetes Care, 2017, 40(6), 771-776.
[http://dx.doi.org/10.2337/dc16-2724] [PMID: 28325783]
[153]
Lambers Heerspink, H.J.; de Zeeuw, D.; Wie, L.; Leslie, B.; List, J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes. Metab., 2013, 15(9), 853-862.
[http://dx.doi.org/10.1111/dom.12127] [PMID: 23668478]
[154]
Hallow, K.M.; Helmlinger, G.; Greasley, P.J.; McMurray, J.J.V. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes. Metab., 2018, 20(3), 479-487.
[155]
Ghanim, H.; Batra, M.; Green, K.; Hejna, J.; Abuaysheh, S.; Makdissi, A.; Chaudhuri, A.; Dandona, P. Dapagliflozin reduces systolic blood pressure and modulates vasoactive factors. Diabetes Obes. Metab., 2021, 23(7), 1614-1623.
[http://dx.doi.org/10.1111/dom.14377]
[156]
Lopaschuk, G.D.; Ussher, J.R.; Folmes, C.D.L.; Jaswal, J.S.; Stanley, W.C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev., 2010, 90(1), 207-258.
[http://dx.doi.org/10.1152/physrev.00015.2009] [PMID: 20086077]
[157]
Zhang, L.; Jaswal, J.S.; Ussher, J.R.; Sankaralingam, S.; Wagg, C.; Zaugg, M.; Lopaschuk, G.D. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ. Heart Fail., 2013, 6(5), 1039-1048.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.000228] [PMID: 23861485]
[158]
Wen, J.; Wang, J.; Guo, L.; Cai, W.; Wu, Y.; Chen, W.; Tang, X. Chemerin stimulates aortic smooth muscle cell proliferation and migration via activation of autophagy in VSMCs of metabolic hypertension rats. Am. J. Transl. Res., 2019, 11(3), 1327-1342.
[PMID: 30972165]
[159]
Mori, J.; Basu, R.; McLean, B.A.; Das, S.K.; Zhang, L.; Patel, V.B.; Wagg, C.S.; Kassiri, Z.; Lopaschuk, G.D.; Oudit, G.Y. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: A metabolic contribution to heart failure with normal ejection fraction. Circ. Heart Fail., 2012, 5(4), 493-503.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.966705] [PMID: 22705769]
[160]
Neubauer, S. The failing heart-an engine out of fuel. N. Engl. J. Med., 2007, 356(11), 1140-1151.
[http://dx.doi.org/10.1056/NEJMra063052] [PMID: 17360992]
[161]
AbouEzzeddine, O.F.; Kemp, B.J.; Borlaug, B.A.; Mullan, B.P.; Behfar, A.; Pislaru, S.V.; Fudim, M.; Redfield, M.M.; Chareonthaitawee, P. Myocardial energetics in heart failure with preserved ejection fraction. Circ. Heart Fail., 2019, 12(10), e006240.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.119.006240] [PMID: 31610726]
[162]
Al Jobori, H.; Daniele, G.; Adams, J.; Cersosimo, E.; Triplitt, C.; DeFronzo, R.A.; Abdul-Ghani, M. Determinants of the increase in ketone concentration during SGLT2 inhibition in NGT, IFG and T2DM patients. Diabetes Obes Metab., 2017, 19(6), 809-813.
[163]
Ferrannini, E.; Baldi, S.; Frascerra, S.; Astiarraga, B.; Heise, T.; Bizzotto, R.; Mari, A.; Pieber, T.R.; Muscelli, E. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes, 2016, 65(5), 1190-1195.
[http://dx.doi.org/10.2337/db15-1356] [PMID: 26861783]
[164]
Mudaliar, S.; Alloju, S.; Henry, R.R. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME Study? A unifying hypothesis. Diabetes Care, 2016, 39(7), 1115-1122.
[http://dx.doi.org/10.2337/dc16-0542] [PMID: 27289124]
[165]
Ferrannini, E.; Mark, M.; Mayoux, E. CV Protection in the EMPA-REG OUTCOME trial: A “Thrifty Substrate” Hypothesis. Diabetes Care, 2016, 39(7), 1108-1114.
[http://dx.doi.org/10.2337/dc16-0330] [PMID: 27289126]
[166]
Lopaschuk, G.D.; Verma, S. Empagliflozin’s fuel hypothesis: Not so soon. Cell Metab., 2016, 24(2), 200-202.
[http://dx.doi.org/10.1016/j.cmet.2016.07.018] [PMID: 27508868]
[167]
Ho, K.L.; Zhang, L.; Wagg, C.; Al Batran, R.; Gopal, K.; Levasseur, J.; Leone, T.; Dyck, J.R.B.; Ussher, J.R.; Muoio, D.M.; Kelly, D.P.; Lopaschuk, G.D. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovasc. Res., 2019, 115(11), 1606-1616.
[http://dx.doi.org/10.1093/cvr/cvz045] [PMID: 30778524]
[168]
Bedi, K.C., Jr; Snyder, N.W.; Brandimarto, J.; Aziz, M.; Mesaros, C.; Worth, A.J.; Wang, L.L.; Javaheri, A.; Blair, I.A.; Margulies, K.B.; Rame, J.E. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation, 2016, 133(8), 706-716.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.017545] [PMID: 26819374]
[169]
Aubert, G.; Martin, O.J.; Horton, J.L.; Lai, L.; Vega, R.B.; Leone, T.C.; Koves, T.; Gardell, S.J.; Krüger, M.; Hoppel, C.L.; Lewandowski, E.D.; Crawford, P.A.; Muoio, D.M.; Kelly, D.P. The failing heart relies on ketone bodies as a fuel. Circulation, 2016, 133(8), 698-705.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.017355] [PMID: 26819376]
[170]
Horton, J.L.; Davidson, M.T.; Kurishima, C.; Vega, R.B.; Powers, J.C.; Matsuura, T.R.; Petucci, C.; Lewandowski, E.D.; Crawford, P.A.; Muoio, D.M.; Recchia, F.A.; Kelly, D.P. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight, 2019, 4(4), e124079.
[http://dx.doi.org/10.1172/jci.insight.124079] [PMID: 30668551]
[171]
Verma, S.; Rawat, S.; Ho, K.L.; Wagg, C.S.; Zhang, L.; Teoh, H.; Dyck, J.E.; Uddin, G.M.; Oudit, G.Y.; Mayoux, E.; Lehrke, M.; Marx, N.; Lopaschuk, G.D. Empagliflozin increases cardiac energy production in diabetes. JACC Basic Transl. Sci., 2018, 3(5), 575-587.
[http://dx.doi.org/10.1016/j.jacbts.2018.07.006] [PMID: 30456329]
[172]
Nielsen, R.; Møller, N.; Gormsen, L.C.; Tolbod, L.P.; Hansson, N.H.; Sorensen, J.; Harms, H.J.; Frøkiær, J.; Eiskjaer, H.; Jespersen, N.R.; Mellemkjaer, S.; Lassen, T.R.; Pryds, K.; Bøtker, H.E.; Wiggers, H. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation, 2019, 139(18), 2129-2141.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.036459] [PMID: 30884964]
[173]
Zhou, B.; Tian, R. Mitochondrial dysfunction in pathophysiology of heart failure. J. Clin. Invest., 2018, 128(9), 3716-3726.
[http://dx.doi.org/10.1172/JCI120849] [PMID: 30124471]
[174]
Li, C.; Zhang, J.; Xue, M.; Li, X.; Han, F.; Liu, X.; Xu, L.; Lu, Y.; Cheng, Y.; Li, T.; Yu, X.; Sun, B.; Chen, L. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc. Diabetol., 2019, 18(1), 15.
[http://dx.doi.org/10.1186/s12933-019-0816-2] [PMID: 30710997]
[175]
Dick, S.A.; Epelman, S. Chronic heart failure and inflammation. Circ. Res., 2016, 119(1), 159-176.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308030] [PMID: 27340274]
[176]
Mehta, J.L.; Pothineni, N.V. Inflammation in heart failure: The holy grail? Hypertension, 2016, 68(1), 27-29.
[177]
Briasoulis, A.; Androulakis, E.; Christophides, T.; Tousoulis, D. The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Fail. Rev., 2016, 21(2), 169-176.
[http://dx.doi.org/10.1007/s10741-016-9533-z] [PMID: 26872673]
[178]
Heerspink, H.J.L.; Perco, P.; Mulder, S.; Leierer, J.; Hansen, M.K.; Heinzel, A.; Mayer, G. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia, 2019, 62(7), 1154-1166.
[http://dx.doi.org/10.1007/s00125-019-4859-4] [PMID: 31001673]
[179]
Iannantuoni, F. The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes. J. Clin. Med., 2019, 8(11), 1814.
[180]
Leng, W.; Wu, M.; Pan, H.; Lei, X.; Chen, L.; Wu, Q.; Ouyang, X.; Liang, Z. The SGLT2 inhibitor dapagliflozin attenuates the activity of ROS-NLRP3 inflammasome axis in steatohepatitis with diabetes mellitus. Ann. Transl. Med., 2019, 7(18), 429.
[http://dx.doi.org/10.21037/atm.2019.09.03] [PMID: 31700865]
[181]
Lee, T.M.; Chang, N.C.; Lin, S.Z. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic. Biol. Med., 2017, 104, 298-310.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.035] [PMID: 28132924]
[182]
Kang, S.; Verma, S.; Hassanabad, A.F.; Teng, G.; Belke, D.D.; Dundas, J.A.; Guzzardi, D.G.; Svystonyuk, D.A.; Pattar, S.S.; Park, D.S.J.; Turnbull, J.D.; Duff, H.J.; Tibbles, L.A.; Cunnington, R.H.; Dyck, J.R.B.; Fedak, P.W.M. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: Novel translational clues to explain empa-reg outcome results. Can. J. Cardiol., 2020, 36(4), 543-553.
[http://dx.doi.org/10.1016/j.cjca.2019.08.033] [PMID: 31837891]
[183]
Grubić Rotkvić, P.; Cigrovski Berković, M.; Bulj, N.; Rotkvić, L. Minireview: Are SGLT2 inhibitors heart savers in diabetes? Heart Fail. Rev., 2020, 25(6), 899-905.
[http://dx.doi.org/10.1007/s10741-019-09849-3] [PMID: 31410757]
[184]
Butts, B.; Gary, R.A.; Dunbar, S.B.; Butler, J. The importance of nlrp3 inflammasome in heart failure. J. Card. Fail., 2015, 21(7), 586-593.
[http://dx.doi.org/10.1016/j.cardfail.2015.04.014] [PMID: 25982825]
[185]
Lee, Y.H.; Kim, S.R.; Han, D.H.; Yu, H.T.; Han, Y.D.; Kim, J.H.; Kim, S.H.; Lee, C.J. Senescent T cells predict the development of hyperglycemia in humans. Diabetes, 2019, 68(1), 156-162.
[http://dx.doi.org/10.2337/db17-1218]
[186]
Tahara, A.; Kurosaki, E.; Yokono, M.; Yamajuku, D.; Kihara, R.; Hayashizaki, Y.; Takasu, T.; Imamura, M.; Li, Q.; Tomiyama, H.; Kobayashi, Y.; Noda, A.; Sasamata, M.; Shibasaki, M. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur. J. Pharmacol., 2013, 715(1-3), 246-255.
[http://dx.doi.org/10.1016/j.ejphar.2013.05.014] [PMID: 23707905]
[187]
Benetti, E.; Mastrocola, R.; Vitarelli, G.; Cutrin, J.C.; Nigro, D.; Chiazza, F.; Mayoux, E.; Collino, M.; Fantozzi, R. Empagliflozin protects against diet-induced nlrp-3 inflammasome activation and lipid accumulation. J. Pharmacol. Exp. Ther., 2016, 359(1), 45-53.
[http://dx.doi.org/10.1124/jpet.116.235069] [PMID: 27440421]
[188]
Ye, Y.; Jia, X.; Bajaj, M.; Birnbaum, Y. Dapagliflozin attenuates Na(+)/H(+) exchanger-1 in cardiofibroblasts via AMPK activation. Cardiovasc. Drugs Ther., 2018, 32(6), 553-558.
[189]
Byrne, N.J.; Matsumura, N.; Maayah, Z.H.; Ferdaoussi, M.; Takahara, S.; Darwesh, A.M.; Levasseur, J.L.; Jahng, J.W.S.; Vos, D.; Parajuli, N.; El-Kadi, A.O.S.; Braam, B.; Young, M.E.; Verma, S.; Light, P.E.; Sweeney, G.; Seubert, J.M.; Dyck, J.R.B. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) inflammasome activation in heart failure. Circ. Heart Fail., 2020, 13(1), e006277.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.119.006277] [PMID: 31957470]
[190]
Youm, Y.H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.D.; Kang, S.; Horvath, T.L.; Fahmy, T.M.; Crawford, P.A.; Biragyn, A.; Alnemri, E.; Dixit, V.D. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat. Med., 2015, 21(3), 263-269.
[http://dx.doi.org/10.1038/nm.3804] [PMID: 25686106]
[191]
Connelly, K.A.; Zhang, Y.; Visram, A.; Advani, A.; Batchu, S.N.; Desjardins, J.F.; Thai, K.; Gilbert, R.E. Empagliflozin improves diastolic function in a nondiabetic rodent model of heart failure with preserved ejection fraction. JACC Basic Transl. Sci., 2019, 4(1), 27-37.
[http://dx.doi.org/10.1016/j.jacbts.2018.11.010] [PMID: 30847416]
[192]
Byrne, N.J.; Parajuli, N.; Levasseur, J.L.; Boisvenue, J.; Beker, D.L.; Masson, G.; Fedak, P.W.M.; Verma, S.; Dyck, J.R.B. Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic Transl. Sci., 2017, 2(4), 347-354.
[http://dx.doi.org/10.1016/j.jacbts.2017.07.003] [PMID: 30062155]
[193]
Shi, L.; Zhu, D.; Wang, S.; Jiang, A.; Li, F. Dapagliflozin attenuates cardiac remodeling in mice model of cardiac pressure overload. Am. J. Hypertens., 2019, 32(5), 452-459.
[http://dx.doi.org/10.1093/ajh/hpz016] [PMID: 30689697]
[194]
Verma, S.; Garg, A.; Yan, A.T.; Gupta, A.K.; Al-Omran, M.; Sabongui, A.; Teoh, H.; Mazer, C.D.; Connelly, K.A. Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: An important clue to the EMPA-REG OUTCOME trial? Diabetes Care, 2016, 39(12), e212-e213.
[http://dx.doi.org/10.2337/dc16-1312] [PMID: 27679584]
[195]
Esterline, R.L.; Vaag, A.; Oscarsson, J.; Vora, J. Mechanisms in endocrinology: SGLT2 inhibitors: Clinical benefits by restoration of normal diurnal metabolism? Eur. J. Endocrinol., 2018, 178(4), R113-R125.
[http://dx.doi.org/10.1530/EJE-17-0832] [PMID: 29371333]
[196]
Lee, H.C.; Shiou, Y.L.; Jhuo, S.J.; Chang, C.Y.; Liu, P.L.; Jhuang, W.J.; Dai, Z.K.; Chen, W.Y.; Chen, Y.F.; Lee, A.S. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc. Diabetol., 2019, 18(1), 45.
[http://dx.doi.org/10.1186/s12933-019-0849-6]
[197]
Lim, V.G.; Bell, R.M.; Arjun, S.; Kolatsi-Joannou, M.; Long, D.A.; Yellon, D.M. SGLT2 inhibitor, canagliflozin, attenuates myocardial infarction in the diabetic and nondiabetic heart. JACC Basic Transl. Sci., 2019, 4(1), 15-26.
[http://dx.doi.org/10.1016/j.jacbts.2018.10.002] [PMID: 30847415]
[198]
Raggi, P.; Gadiyaram, V.; Zhang, C.; Chen, Z.; Lopaschuk, G.; Stillman, A.E. Statins reduce epicardial adipose tissue attenuation independent of lipid lowering: A potential pleiotropic effect. J. Am. Heart Assoc., 2019, 8(12), e013104.
[http://dx.doi.org/10.1161/JAHA.119.013104] [PMID: 31190609]
[199]
Iborra-Egea, O.; Santiago-Vacas, E.; Yurista, S.R.; Lupón, J.; Packer, M.; Heymans, S.; Zannad, F.; Butler, J.; Pascual-Figal, D.; Lax, A.; Núñez, J.; de Boer, R.A.; Bayés-Genís, A. Unraveling the molecular mechanism of action of empagliflozin in heart failure with reduced ejection fraction with or without diabetes. JACC Basic Transl. Sci., 2019, 4(7), 831-840.
[http://dx.doi.org/10.1016/j.jacbts.2019.07.010] [PMID: 31998851]
[200]
Sato, T.; Aizawa, Y.; Yuasa, S.; Kishi, S.; Fuse, K.; Fujita, S.; Ikeda, Y.; Kitazawa, H.; Takahashi, M.; Sato, M.; Okabe, M. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc. Diabetol., 2018, 17(1), 6.
[http://dx.doi.org/10.1186/s12933-017-0658-8] [PMID: 29301516]
[201]
Chan, M.C.Y.; Chan, J.C.H. Novel drugs for diabetes also have dramatic benefits on hard outcomes of heart and kidney disease. Curr. Cardiol. Rev., 2022, 18(6), e110522204572.
[http://dx.doi.org/10.2174/1573403X18666220511114443] [PMID: 35546744]
[202]
McDonald, M.; Virani, S.; Chan, M.; Ducharme, A.; Ezekowitz, J.A.; Giannetti, N.; Heckman, G.A.; Howlett, J.G.; Koshman, S.L.; Lepage, S.; Mielniczuk, L.; Moe, G.W.; O’Meara, E.; Swiggum, E.; Toma, M.; Zieroth, S.; Anderson, K.; Bray, S.A.; Clarke, B.; Cohen-Solal, A.; D’Astous, M.; Davis, M.; De, S.; Grant, A.D.M.; Grzeslo, A.; Heshka, J.; Keen, S.; Kouz, S.; Lee, D.; Masoudi, F.A.; McKelvie, R.; Parent, M.C.; Poon, S.; Rajda, M.; Sharma, A.; Siatecki, K.; Storm, K.; Sussex, B.; Van Spall, H.; Yip, A.M.C. CCS/CHFS heart failure guidelines update: Defining a new pharmacologic standard of care for heart failure with reduced ejection fraction. Can. J. Cardiol., 2021, 37(4), 531-546.
[http://dx.doi.org/10.1016/j.cjca.2021.01.017] [PMID: 33827756]
[203]
Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; Fang, J.C.; Fedson, S.E.; Fonarow, G.C.; Hayek, S.S.; Hernandez, A.F.; Khazanie, P.; Kittleson, M.M.; Lee, C.S.; Link, M.S.; Milano, C.A.; Nnacheta, L.C.; Sandhu, A.T.; Stevenson, L.W.; Vardeny, O.; Vest, A.R.; Yancy, C.W. 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation, 2022, 145(18), e895-e1032.
[http://dx.doi.org/10.1161/CIR.0000000000001063] [PMID: 35363499]
[204]
Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int., 2022, 102(5S), S1-S127.
[PMID: 36272764]
[205]
NICE Guideline. Type 2 diabetes in adults: Management; National Institute for Health and Care Excellence (NICE), 2015.
[206]
Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int., 2020, 98(4S), S1-S115.
[PMID: 32998798]
[207]
Chen, M.; Xie, C.G.; Gao, H.; Zheng, H.; Chen, Q.; Fang, J.Q. Comparative effectiveness of sodium-glucose co-transporter 2 inhibitors for controlling hyperglycaemia in patients with type 2 diabetes: Protocol for a systematic review and network meta-analysis: Table 1. BMJ Open, 2016, 6(1), e010252.
[http://dx.doi.org/10.1136/bmjopen-2015-010252] [PMID: 26826156]
[208]
Mascolo, A.; Di Napoli, R.; Balzano, N.; Cappetta, D.; Urbanek, K.; De Angelis, A.; Scisciola, L.; Di Meo, I.; Sullo, M.G.; Rafaniello, C.; Sportiello, L. Safety profile of sodium glucose co-transporter 2 (SGLT2) inhibitors: A brief summary. Front. Cardiovasc. Med., 2022, 9, 1010693.
[http://dx.doi.org/10.3389/fcvm.2022.1010693] [PMID: 36211584]
[209]
Chan, J.C.H.; Chan, M.C.Y. SGLT2 Inhibitors: The next blockbuster multifaceted drug? Medicina, 2023, 59(2), 388.
[http://dx.doi.org/10.3390/medicina59020388] [PMID: 36837589]
[210]
AlKindi, F.; Al-Omary, H.L.; Hussain, Q.; Al Hakim, M.; Chaaban, A.; Boobes, Y. Outcomes of SGLT2 inhibitors use in diabetic renal transplant patients. Transplant. Proc., 2020, 52(1), 175-178.
[http://dx.doi.org/10.1016/j.transproceed.2019.11.007] [PMID: 31924404]
[211]
Hecking, M.; Jenssen, T. Considerations for SGLT2 inhibitor use in post-transplantation diabetes. Nat. Rev. Nephrol., 2019, 15(9), 525-526.
[http://dx.doi.org/10.1038/s41581-019-0173-0] [PMID: 31235880]
[212]
Loutradis, C.; Papadopoulou, E.; Theodorakopoulou, M.; Karagiannis, A.; Sarafidis, P. The effect of SGLT-2 inhibitors on blood pressure: A pleiotropic action favoring cardio- and nephroprotection. Future Med. Chem., 2019, 11(11), 1285-1303.
[http://dx.doi.org/10.4155/fmc-2018-0514] [PMID: 31161798]
[213]
Harrington, J.; Udell, J.A.; Jones, W.S.; Anker, S.D.; Bhatt, D.L.; Petrie, M.C.; Vedin, O.; Sumin, M.; Zwiener, I.; Hernandez, A.F.; Butler, J. Empagliflozin in patients post myocardial infarction rationale and design of the EMPACT-MI trial. Am. Heart J., 2022, 253, 86-98.
[http://dx.doi.org/10.1016/j.ahj.2022.05.010] [PMID: 35595091]
[214]
He, X.; Gao, X.; Xie, P.; Liu, Y.; Bai, W.; Liu, Y.; Shi, A. Pharmacokinetics, pharmacodynamics, safety and tolerability of sotagliflozin after multiple ascending doses in chinese healthy subjects. Drug Des. Devel. Ther., 2022, 16, 2967-2980.
[http://dx.doi.org/10.2147/DDDT.S372575] [PMID: 36097559]
[215]
Huh, Y.; Kim, Y.S. Predictors for successful weight reduction during treatment with Dapagliflozin among patients with type 2 diabetes mellitus in primary care. BMC Primary Care, 2022, 23(1), 134.
[216]
Anderson, S.L. Dapagliflozin efficacy and safety: A perspective review. Ther. Adv. Drug Saf., 2014, 5(6), 242-254.
[http://dx.doi.org/10.1177/2042098614551938] [PMID: 25436106]
[217]
Mosenzon, O.; Wiviott, S.D.; Heerspink, H.J.L. The effect of dapagliflozin on albuminuria in DECLARE-TIMI 58. Diabetes Care, 2021, 44(8), 1085-1815.
[218]
Sjöström, C.D.; Johansson, P.; Ptaszynska, A.; List, J.; Johnsson, E. Dapagliflozin lowers blood pressure in hypertensive and non-hypertensive patients with type 2 diabetes. Diab. Vasc. Dis. Res., 2015, 12(5), 352-358.
[http://dx.doi.org/10.1177/1479164115585298] [PMID: 26008804]
[219]
McDowell, K.; Welsh, P.; Docherty, K.F.; Morrow, D.A.; Jhund, P.S.; de Boer, R.A.; O’Meara, E.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Hammarstedt, A.; Langkilde, A.M.; Sjöstrand, M.; Lindholm, D.; Solomon, S.D.; Sattar, N.; Sabatine, M.S.; McMurray, J.J.V. Dapagliflozin reduces uric acid concentration, an independent predictor of adverse outcomes in DAPA-HF. Eur. J. Heart Fail., 2022, 24(6), 1066-1076.
[http://dx.doi.org/10.1002/ejhf.2433] [PMID: 35064721]
[220]
McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; Böhm, M.; Chiang, C.E.; Chopra, V.K.; de Boer, R.A.; Desai, A.S.; Diez, M.; Drozdz, J.; Dukát, A.; Ge, J.; Howlett, J.G.; Katova, T.; Kitakaze, M.; Ljungman, C.E.A.; Merkely, B.; Nicolau, J.C.; O’Meara, E.; Petrie, M.C.; Vinh, P.N.; Schou, M.; Tereshchenko, S.; Verma, S.; Held, C.; DeMets, D.L.; Docherty, K.F. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl. J. Med., 2019, 381(21), 1995-2008.
[221]
Blonde, L.; Stenlöf, K.; Fung, A.; Xie, J.; Canovatchel, W.; Meininger, G. Effects of canagliflozin on body weight and body composition in patients with type 2 diabetes over 104 weeks. Postgrad. Med., 2016, 128(4), 371-380.
[http://dx.doi.org/10.1080/00325481.2016.1169894] [PMID: 27002421]
[222]
Geng, Q.; Hou, F.; Zhang, Y.; Wang, Z.; Zhao, M. Effects of different doses of canagliflozin on blood pressure and lipids in patients with type 2 diabetes: A meta-analysis. J. Hypertens., 2022, 40(5), 996-1001.
[http://dx.doi.org/10.1097/HJH.0000000000003106] [PMID: 35221325]
[223]
Schernthaner, G.; Lavalle-González, F.J.; Davidson, J.A.; Jodon, H.; Vijapurkar, U.; Qiu, R.; Canovatchel, W. Canagliflozin provides greater attainment of both HbA1c and body weight reduction versus sitagliptin in patients with type 2 diabetes. Postgrad. Med., 2016, 128(8), 725-730.
[http://dx.doi.org/10.1080/00325481.2016.1210988] [PMID: 27391951]
[224]
Neuen, B.L.; Ohkuma, T.; Neal, B.; Matthews, D.R.; de Zeeuw, D.; Mahaffey, K.W.; Fulcher, G.; Li, Q.; Jardine, M.; Oh, R.; Heerspink, H.L.; Perkovic, V. Effect of canagliflozin on renal and cardiovascular outcomes across different levels of albuminuria: Data from the CANVAS Program. J. Am. Soc. Nephrol., 2019, 30(11), 2229-2242.
[http://dx.doi.org/10.1681/ASN.2019010064] [PMID: 31530577]
[225]
Weir, M.R.; Januszewicz, A.; Gilbert, R.E.; Vijapurkar, U.; Kline, I.; Fung, A.; Meininger, G. Effect of canagliflozin on blood pressure and adverse events related to osmotic diuresis and reduced intravascular volume in patients with type 2 diabetes mellitus. J. Clin. Hypertens., 2014, 16(12), 875-882.
[http://dx.doi.org/10.1111/jch.12425] [PMID: 25329038]
[226]
Valentine, V.; Hinnen, D. Clinical implications of canagliflozin treatment in patients with type 2 diabetes. Clin. Diabetes, 2015, 33(1), 5-13.
[227]
Davies, M.J.; Trujillo, A.; Vijapurkar, U.; Damaraju, C.V.; Meininger, G. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes. Metab., 2015, 17(4), 426-429.
[http://dx.doi.org/10.1111/dom.12439] [PMID: 25600248]
[228]
Spertus, J.A.; Birmingham, M.C. The SGLT2 inhibitor canagliflozin in heart failure: The CHIEF-HF remote, patient-centered randomized trial. Nat. Med., 2022, 28(4), 809-813.
[http://dx.doi.org/10.1038/s41591-022-01703-8]
[229]
Xu, L.; Nagata, N.; Chen, G.; Nagashimada, M.; Zhuge, F.; Ni, Y.; Sakai, Y.; Kaneko, S.; Ota, T. Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet. BMJ Open Diabetes Res. Care, 2019, 7(1), e000783.
[http://dx.doi.org/10.1136/bmjdrc-2019-000783]
[230]
Jojima, T.; Sakurai, S.; Wakamatsu, S.; Iijima, T.; Saito, M.; Tomaru, T.; Kogai, T.; Usui, I.; Aso, Y. Empagliflozin increases plasma levels of campesterol, a marker of cholesterol absorption, in patients with type 2 diabetes: Association with a slight increase in high-density lipoprotein cholesterol. Int. J. Cardiol., 2021, 331, 243-248.
[http://dx.doi.org/10.1016/j.ijcard.2021.01.063] [PMID: 33556413]
[231]
Ozcelik, S.; Celik, M.; Vural, A.; Aydin, B. The effect of low and high dose empagliflozin on HbA1c and lipid profile in type 2 diabetes mellitus: A real-world data. North. Clin. Istanb., 2019, 7(2), 167-173.
[PMID: 32259039]
[232]
Borg, R.; Persson, F. Empagliflozin reduces albuminuria-a promise for better cardiorenal protection from the EMPA-REG OUTCOME trial. Ann. Transl. Med., 2017, 5(23), 478.
[http://dx.doi.org/10.21037/atm.2017.11.02] [PMID: 29285511]
[233]
Cheng, L.; Fu, Q.; Zhou, L.; Fan, Y.; Liu, F.; Fan, Y.; Zhang, X.; Lin, W.; Wu, X. Effect of SGLT-2 inhibitor, empagliflozin, on blood pressure reduction in Chinese elderly hypertension patients with type 2 diabetes and its possible mechanisms. Sci. Rep., 2022, 12(1), 3525.
[http://dx.doi.org/10.1038/s41598-022-07395-x] [PMID: 35241720]
[234]
Al-Jobori, H.; Daniele, G.; Cersosimo, E.; Triplitt, C.; Mehta, R.; Norton, L. Empagliflozin and kinetics of renal glucose transport in healthy individuals and individuals with type 2 diabetes. Diabetes, 2017, 66(7), 1999-2006.
[235]
Tikkanen, I.; Narko, K.; Zeller, C.; Green, A.; Salsali, A.; Broedl, U.C.; Woerle, H.J. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care, 2015, 38(3), 420-428.
[http://dx.doi.org/10.2337/dc14-1096] [PMID: 25271206]
[236]
Ferreira, J.P.; Inzucchi, S.E. Empagliflozin and uric acid metabolism in diabetes: A post hoc analysis of the EMPA-REG OUTCOME trial. Diabetes Obes. Metab., 2022, 24(1), 135-141.
[http://dx.doi.org/10.1111/dom.14559]
[237]
Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; Giannetti, N.; Gomez-Mesa, J.E.; Janssens, S.; Januzzi, J.L.; Gonzalez-Juanatey, J.R.; Merkely, B.; Nicholls, S.J.; Perrone, S.V.; Piña, I.L.; Ponikowski, P.; Senni, M.; Sim, D.; Spinar, J.; Squire, I.; Taddei, S.; Tsutsui, H.; Verma, S.; Vinereanu, D.; Zhang, J.; Carson, P.; Lam, C.S.P.; Marx, N.; Zeller, C.; Sattar, N.; Jamal, W.; Schnaidt, S.; Schnee, J.M.; Brueckmann, M.; Pocock, S.J.; Zannad, F.; Packer, M. Empagliflozin in heart failure with a preserved ejection fraction. N Engl. J. Med., 2021, 385(16), 1451-1461.
[238]
Heymsfield, S.B.; Raji, A.; Gallo, S.; Liu, J.; Pong, A.; Hannachi, H.; Terra, S.G. Efficacy and safety of ertugliflozin in patients with overweight and obesity with type 2 diabetes mellitus. Obesity, 2020, 28(4), 724-732.
[239]
Dagogo-Jack, S.; Liu, J.; Eldor, R.; Amorin, G.; Johnson, J.; Hille, D.; Liao, Y.; Huyck, S.; Golm, G.; Terra, S.G. Efficacy and safety of the addition of ertugliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sitagliptin: The VERTIS SITA2 placebo- controlled randomized study. Diabetes Obes. Metab., 2018, 20(3), 530-540.
[240]
Cherney, D.Z.I.; Charbonnel, B.; Cosentino, F.; Dagogo-Jack, S.; McGuire, D.K.; Pratley, R.; Shih, W.J.; Frederich, R.; Maldonado, M.; Pong, A.; Cannon, C.P. Effects of ertugliflozin on kidney composite outcomes, renal function and albuminuria in patients with type 2 diabetes mellitus: An analysis from the randomised VERTIS CV trial. Diabetologia, 2021, 64(6), 1256-1267.
[http://dx.doi.org/10.1007/s00125-021-05407-5] [PMID: 33665685]
[241]
Liu, J.; Pong, A.; Gallo, S.; Darekar, A.; Terra, S.G. Effect of ertugliflozin on blood pressure in patients with type 2 diabetes mellitus: A post hoc pooled analysis of randomized controlled trials. Cardiovasc. Diabetol., 2019, 18(1), 59.
[http://dx.doi.org/10.1186/s12933-019-0856-7] [PMID: 31064361]
[242]
Rosenstock, J.; Frias, J.; Páll, D.; Charbonnel, B.; Pascu, R.; Saur, D.; Darekar, A.; Huyck, S.; Shi, H.; Lauring, B. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes. Metab., 2018, 20(3), 520-529.
[243]
Segar, M.W.; Kolkailah, A.A. Mediators of ertugliflozin effects on heart failure and kidney outcomes among patients with type 2 diabetes mellitus. Diabetes Obes. Metab., 2022, 24(9), 1829-1839.
[http://dx.doi.org/10.1111/dom.14769]
[244]
Cosentino, F.; Cannon, C.P.; Cherney, D.Z.I.; Masiukiewicz, U.; Pratley, R.; Dagogo-Jack, S.; Frederich, R.; Charbonnel, B.; Mancuso, J.; Shih, W.J.; Terra, S.G.; Cater, N.B.; Gantz, I.; McGuire, D.K. Efficacy of ertugliflozin on heart failure-related events in patients with type 2 diabetes mellitus and established atherosclerotic cardiovascular disease. Circulation, 2020, 142(23), 2205-2215.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050255] [PMID: 33026243]
[245]
Patel, S.; Hickman, A.; Frederich, R.; Johnson, S.; Huyck, S.; Mancuso, J.P.; Gantz, I.; Terra, S.G. Safety of ertugliflozin in patients with type 2 diabetes mellitus: Pooled analysis of seven phase 3 randomized controlled trials. Diabetes Ther., 2020, 11(6), 1347-1367.
[http://dx.doi.org/10.1007/s13300-020-00803-3] [PMID: 32372382]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy