Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Causal Effects of Blood Metabolites and Obstructive Sleep Apnea: A Mendelian Randomization Study

Author(s): Jing-Hao Wu, Ying-Hao Yang, Yun-Chao Wang, Wen-Kai Yu, Shan-Shan Li, Yun-Yun Mei, Ce-Zong, Zi-Han Zhou, Hang-Hang Zhu, Liu-Chang He, Xin-Yu Li, Chang-He Shi* and Yu-Sheng Li*

Volume 21, Issue 1, 2024

Published on: 18 October, 2023

Page: [101 - 109] Pages: 9

DOI: 10.2174/0115672026266627230921052416

Price: $65

Abstract

Background: Obstructive sleep apnea (OSA) is one of the most common forms of sleep-disordered breathing. Studies have shown that certain changes in metabolism play an important role in the pathophysiology of OSA. However, the causal relationship between these metabolites and OSA remains unclear.

Aims: We use a mendelian randomization (MR) approach to investigate the causal associations between the genetic liability to metabolites and OSA.

Methods: We performed a 2-sample inverse-variance weighted mendelian randomization analysis to evaluate the causal effects of genetically determined 486 metabolites on OSA. Multiple sensitivity analyses were performed to assess pleiotropy. We used multivariate mendelian randomization analyses to assess confounding factors and mendelian randomization Bayesian model averaging to rank the significant biomarkers by their genetic evidence. We also conducted a metabolic pathway analysis to identify potential metabolic pathways.

Results: We identified 14 known serum metabolites (8 risk factors and 6 protective factors) and 12 unknown serum metabolites associated with OSA. These 14 known metabolites included 8 lipids( 1-arachidonoylglycerophosphoethanolamine, Tetradecanedioate, Epiandrosteronesulfate, Acetylca Glycerol3-phosphate, 3-dehydrocarnitine, Margarate17:0, Docosapentaenoaten3;22:5n3), 3 Aminoacids (Isovalerylcarnitine,3-methyl-2-oxobutyrate,Methionine), 2 Cofactors and vitamins [Bilirubin(E,ZorZ,E),X-11593--O-methylascorbate], 1Carbohydrate(1,6-anhydroglucose). We also identified several metabolic pathways that involved in the pathogenesis of OSA.

Conclusion: MR (mendelian randomization) approach was performed to identify 6 protective factors and 12 risk factors for OSA in the present study. 3-Dehydrocarnitine was the most significant risk factors for OSA. Our study also confirmed several significant metabolic pathways that were involved in the pathogenesis of OSA. Valine, leucine and isoleucine biosynthesis metabolic pathways were the most significant metabolic pathways that were involved in the pathogenesis of OSA.

Keywords: Metabolites, mendelian randomization, obstructive sleep apnea, multivariable mendelian randomization, MR bayesian model averaging, pleiotropy.

[1]
Gottlieb DJ, Punjabi NM. Diagnosis and management of obstructive sleep apnea. JAMA 2020; 323(14): 1389-400.
[http://dx.doi.org/10.1001/jama.2020.3514] [PMID: 32286648]
[2]
Senaratna CV, Perret JL, Lodge CJ, et al. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med Rev 2017; 34: 70-81.
[http://dx.doi.org/10.1016/j.smrv.2016.07.002] [PMID: 27568340]
[3]
Watson NF. Health care savings: The economic value of diagnostic and therapeutic care for obstructive sleep apnea. J Clin Sleep Med 2016; 12(8): 1075-7.
[http://dx.doi.org/10.5664/jcsm.6034] [PMID: 27448424]
[4]
Semelka M, Wilson J, Floyd R. Diagnosis and treatment of obstructive sleep apnea in adults. Am Fam Physician 2016; 94(5): 355-60.
[PMID: 27583421]
[5]
Gieger C, Geistlinger L, Altmaier E, et al. Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. PLoS Genet 2008; 4(11): e1000282.
[http://dx.doi.org/10.1371/journal.pgen.1000282] [PMID: 19043545]
[6]
Xu H, Li X, Zheng X, et al. Pediatric obstructive sleep apnea is associated with changes in the oral microbiome and urinary metabolomics profile: A pilot study. J Clin Sleep Med 2018; 14(9): 1559-67.
[http://dx.doi.org/10.5664/jcsm.7336] [PMID: 30176961]
[7]
Zhang X, Wang S, Xu H, Yi H, Guan J, Yin S. Metabolomics and microbiome profiling as biomarkers in obstructive sleep apnoea: A comprehensive review. Eur Respir Rev 2021; 30(160): 200220.
[http://dx.doi.org/10.1183/16000617.0220-2020] [PMID: 33980666]
[8]
Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA 2017; 318(19): 1925-6.
[http://dx.doi.org/10.1001/jama.2017.17219] [PMID: 29164242]
[9]
Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ 2018; 362: k601.
[http://dx.doi.org/10.1136/bmj.k601] [PMID: 30002074]
[10]
Shin SY, Fauman EB, Petersen AK, et al. An atlas of genetic influences on human blood metabolites. Nat Genet 2014; 46(6): 543-50.
[http://dx.doi.org/10.1038/ng.2982] [PMID: 24816252]
[11]
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012; 40(D1): D109-14.
[http://dx.doi.org/10.1093/nar/gkr988] [PMID: 22080510]
[12]
Sun S, Jiao M, Han C, et al. Causal effects of genetically determined metabolites on risk of polycystic ovary syndrome: A mendelian randomization study. Front Endocrinol 2020; 11: 621.
[http://dx.doi.org/10.3389/fendo.2020.00621] [PMID: 33013699]
[13]
Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med 2017; 36(11): 1783-802.
[http://dx.doi.org/10.1002/sim.7221] [PMID: 28114746]
[14]
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 2016; 40(4): 304-14.
[http://dx.doi.org/10.1002/gepi.21965] [PMID: 27061298]
[15]
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int J Epidemiol 2015; 44(2): 512-25.
[http://dx.doi.org/10.1093/ije/dyv080] [PMID: 26050253]
[16]
Hammerton G, Munafò MR. Causal inference with observational data: The need for triangulation of evidence – CORRIGENDUM. Psychol Med 2021; 51(9): 1591.
[http://dx.doi.org/10.1017/S0033291721002634] [PMID: 34236016]
[17]
Feng R, Lu M, Xu J, et al. Pulmonary embolism and 529 human blood metabolites: Genetic correlation and two-sample Mendelian randomization study. BMC Genomic Data 2022; 23(1): 69.
[http://dx.doi.org/10.1186/s12863-022-01082-6] [PMID: 36038828]
[18]
Song P, Rudan D, Zhu Y, et al. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: An updated systematic review and analysis. Lancet Glob Health 2019; 7(8): e1020-30.
[http://dx.doi.org/10.1016/S2214-109X(19)30255-4] [PMID: 31303293]
[19]
Zuber V, Colijn JM, Klaver C, Burgess S. Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization. Nat Commun 2020; 11(1): 29.
[http://dx.doi.org/10.1038/s41467-019-13870-3] [PMID: 31911605]
[20]
Tang SN, Zuber V, Tsilidis KK. Identifying and ranking causal biochemical biomarkers for breast cancer: A Mendelian randomisation study. BMC Med 2022; 20(1): 457.
[http://dx.doi.org/10.1186/s12916-022-02660-2] [PMID: 36424572]
[21]
Samimi M, Jamilian M, Ebrahimi FA, Rahimi M, Tajbakhsh B, Asemi Z. Oral carnitine supplementation reduces body weight and insulin resistance in women with polycystic ovary syndrome: A randomized, double‐blind, placebo‐controlled trial. Clin Endocrinol 2016; 84(6): 851-7.
[http://dx.doi.org/10.1111/cen.13003] [PMID: 26666519]
[22]
Sun L, Liang L, Gao X, et al. Early prediction of developing type 2 diabetes by plasma acylcarnitines: A population-based study. Diabetes Care 2016; 39(9): 1563-70.
[http://dx.doi.org/10.2337/dc16-0232] [PMID: 27388475]
[23]
Kiens O, Taalberg E, Ivanova V, et al. Apnoea-hypopnoea index of 5 events·h −1 as a metabolomic threshold in patients with sleep complaints. ERJ Open Res 2023; 9(1): 00325-2022.
[http://dx.doi.org/10.1183/23120541.00325-2022] [PMID: 36632170]
[24]
Kaur G, Sinclair AJ, Cameron-Smith D, Barr DP, Molero-Navajas JC, Konstantopoulos N. Docosapentaenoic acid (22:5n-3) down-regulates the expression of genes involved in fat synthesis in liver cells. Prostaglandins Leukot Essent Fatty Acids 2011; 85(3-4): 155-61.
[http://dx.doi.org/10.1016/j.plefa.2011.06.002] [PMID: 21807486]
[25]
Wanders D, Hobson K, Ji X. Methionine restriction and cancer biology. Nutrients 2020; 12(3): 684.
[http://dx.doi.org/10.3390/nu12030684] [PMID: 32138282]
[26]
Zhang Y, Jelleschitz J, Grune T, et al. Methionine restriction - Association with redox homeostasis and implications on aging and diseases. Redox Biol 2022; 57: 102464.
[http://dx.doi.org/10.1016/j.redox.2022.102464] [PMID: 36152485]
[27]
Nichenametla SN, Mattocks DAL, Cooke D, et al. Cysteine restriction‐specific effects of sulfur amino acid restriction on lipid metabolism. Aging Cell 2022; 21(12): e13739.
[http://dx.doi.org/10.1111/acel.13739] [PMID: 36403077]
[28]
Vaz FM, Wanders RJA. Carnitine biosynthesis in mammals. Biochem J 2002; 361(3): 417-29.
[http://dx.doi.org/10.1042/bj3610417] [PMID: 11802770]
[29]
Leyrolle Q, Cserjesi R, Mulders MDGH, et al. Specific gut microbial, biological, and psychiatric profiling related to binge eating disorders: A cross-sectional study in obese patients. Clin Nutr 2021; 40(4): 2035-44.
[http://dx.doi.org/10.1016/j.clnu.2020.09.025] [PMID: 33023763]
[30]
Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science 1987; 235(4792): 1043-6.
[http://dx.doi.org/10.1126/science.3029864] [PMID: 3029864]
[31]
Holeček M. Role of impaired glycolysis in perturbations of amino acid metabolism in diabetes mellitus. Int J Mol Sci 2023; 24(2): 1724.
[http://dx.doi.org/10.3390/ijms24021724] [PMID: 36675238]
[32]
Zhuang T, Liu X, Wang W, et al. Dose-related urinary metabolic alterations of a combination of quercetin and resveratrol-treated high-fat diet fed rats. Front Pharmacol 2021; 12: 655563.
[http://dx.doi.org/10.3389/fphar.2021.655563] [PMID: 33935771]
[33]
Mohit , Tomar MS, Araniti F. et al. Identification of metabolic fingerprints in severe obstructive sleep apnea using gas chromatography-Mass spectrometry. Front Mol Biosci 2022; 9: 1026848.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy