Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Raddeanin A Improves the Therapeutic Effect of Osimertinib in NSCLC by Accelerating ROS/NLRP3-mediated Pyroptosis

Author(s): Liping Lin, Xuan Wu, Yuanxue Jiang, Xi Luo and Xiaolong Cao*

Volume 29, Issue 32, 2023

Published on: 13 October, 2023

Page: [2591 - 2600] Pages: 10

DOI: 10.2174/0113816128263069231010111347

Price: $65

Abstract

Background: Osimertinib (Osm) is the preferred treatment for non-small cell lung cancer (NSCLC) patients with the epidermal growth factor receptor (EGFR) T790M mutation. Nevertheless, the resistance of NSCLC cells to Osm will eventually develop, which remains the biggest obstacle to treating such diseases. Raddeanin A (RA) exhibits a potent anti-tumor effect on various types of cancer cells. In this study, we aimed to investigate whether RA suppresses NSCLC growth and increases the therapeutic effect of Osm.

Methods: The effects of RA on inhibiting NSCLC cell viability and proliferation were tested using cell counting kit 8 (CCK-8) and EdU assay. The roles of RA in improving the anti-tumor effect of Osm were tested with CCK-8 and colony formation assays. The roles of RA in regulating reactive oxygen species (ROS)/NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-mediated pyroptosis were assessed using quantitative real- time PCR (qRT-PCR) and western blotting analysis.

Results: RA treatment decreased A549 and H1975 cell viability in a dose- and time-dependent way. RA inhibited NSCLC cell proliferation and tumor growth in vivo. Mechanistically, RA induced ROS overgeneration and resulted in subsequent NLRP3-mediated pyroptosis. In particular, combination treatment with Osm and RA reduced cell viability and clonogenic growth capacity more efficiently than Osm mono treatment in A549 and H1975 cells. Combination treatment also promoted NLRP3-mediated pyroptosis more efficiently than Osm mono treatment.

Conclusion: RA inhibited the NSCLC growth and increased the anti-tumor role of Osm in NSCLC by facilitating ROS/NLRP3-mediated pyroptosis. These results suggested that combination therapy with RA and Osm might be an effective strategy to treat Osm-resistant NSCLC.

Keywords: Osimertinib, NSCLC, Raddeanin A, ROS, NLRP3, chemoresistance, pyroptosis.

« Previous
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Miller KD, Nogueira L, Devasia T, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin 2022; 72(5): 409-36.
[http://dx.doi.org/10.3322/caac.21731] [PMID: 35736631]
[3]
Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008; 83(5): 584-94.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[4]
Chen R, Manochakian R, James L, et al. Emerging therapeutic agents for advanced non-small cell lung cancer. J Hematol Oncol 2020; 13(1): 58.
[http://dx.doi.org/10.1186/s13045-020-00881-7] [PMID: 32448366]
[5]
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12(1): 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[6]
Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 2019; 121(9): 725-37.
[http://dx.doi.org/10.1038/s41416-019-0573-8] [PMID: 31564718]
[7]
Xu Y, Yan J, Zhou C, et al. Genomic characterisation of de novo EGFR copy number gain and its impact on the efficacy of first- line EGFR-tyrosine kinase inhibitors for EGFR mutated non-small cell lung cancer. Eur J Cancer 2023; 188: 81-9.
[http://dx.doi.org/10.1016/j.ejca.2023.04.009] [PMID: 37201385]
[8]
Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: Current therapies and new targeted treatments. Lancet 2017; 389(10066): 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[9]
Remon J, Steuer CE, Ramalingam SS, Felip E. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann Oncol 2018; 29(Suppl. 1): i20-7.
[http://dx.doi.org/10.1093/annonc/mdx704] [PMID: 29462255]
[10]
Fu K, Xie F, Wang F, Fu L. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance. J Hematol Oncol 2022; 15(1): 173.
[http://dx.doi.org/10.1186/s13045-022-01391-4] [PMID: 36482474]
[11]
Gomatou G, Syrigos N, Kotteas E. Osimertinib resistance: Molecular mechanisms and emerging treatment options. Cancers 2023; 15(3): 841.
[http://dx.doi.org/10.3390/cancers15030841] [PMID: 36765799]
[12]
Naz I, Ramchandani S, Khan MR, Yang MH, Ahn KS. Anticancer potential of raddeanin A, a natural triterpenoid isolated from Anemone raddeana regel. Molecules 2020; 25(5): 1035.
[http://dx.doi.org/10.3390/molecules25051035] [PMID: 32106609]
[13]
Yin M, Dong J, Sun C, et al. Raddeanin A enhances mitochondrial DNA-cGAS/STING axis-mediated antitumor immunity by targeting transactive responsive dna-binding protein 43. Adv Sci 2023; 10(13): 2206737.
[http://dx.doi.org/10.1002/advs.202206737] [PMID: 36876644]
[14]
Wang Y, Bao X, Zhao A, et al. Raddeanin A inhibits growth and induces apoptosis in human colorectal cancer through downregulating the Wnt/β-catenin and NF-κB signaling pathway. Life Sci 2018; 207: 532-49.
[http://dx.doi.org/10.1016/j.lfs.2018.06.035] [PMID: 29972765]
[15]
Li L, Chen M, Li G, Cai R. Raddeanin A induced apoptosis of non-small cell lung cancer cells by promoting ROS-mediated STAT3 inactivation. Tissue Cell 2021; 71: 101577.
[http://dx.doi.org/10.1016/j.tice.2021.101577] [PMID: 34146943]
[16]
Jin W, Lu S, Wang X, Shu Y, Shi H. Raddeanin A suppresses lung cancer cell proliferation via induction of apoptosis and increased production of ROS. Cell Mol Biol 2020; 66(7): 174-9.
[http://dx.doi.org/10.14715/cmb/2020.66.7.26] [PMID: 33287938]
[17]
Wang Z, Wang C, Zuo D, et al. Attenuation of STAT3 phosphorylation promotes apoptosis and chemosensitivity in human osteosarcoma induced by raddeanin A. Int J Biol Sci 2019; 15(3): 668-79.
[http://dx.doi.org/10.7150/ijbs.30168] [PMID: 30745853]
[18]
Li JN, Yu Y, Zhang YF, Li ZM, Cai GZ, Gong JY. Synergy of Raddeanin A and cisplatin induced therapeutic effect enhancement in human hepatocellular carcinoma. Biochem Biophys Res Commun 2017; 485(2): 335-41.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.079] [PMID: 28219642]
[19]
Guo SS, Wang Y, Fan QX. Raddeanin A promotes apoptosis and ameliorates 5-fluorouracil resistance in cholangiocarcinoma cells. World J Gastroenterol 2019; 25(26): 3380-91.
[http://dx.doi.org/10.3748/wjg.v25.i26.3380] [PMID: 31341363]
[20]
Ma B, Zhu J, Zhao A, et al. Raddeanin A, a natural triterpenoid saponin compound, exerts anticancer effect on human osteosarcoma via the ROS/JNK and NF-κB signal pathway. Toxicol Appl Pharmacol 2018; 353: 87-101.
[http://dx.doi.org/10.1016/j.taap.2018.05.025] [PMID: 29847772]
[21]
Peng F, Wang X, Shu M, et al. Raddeanin a suppresses glioblastoma growth by inducing ROS generation and subsequent JNK activation to promote cell apoptosis. Cell Physiol Biochem 2018; 47(3): 1108-21.
[http://dx.doi.org/10.1159/000490187] [PMID: 29843152]
[22]
Hao S, Cai D, Gou S, et al. Does each component of reactive oxygen species have a dual role in the tumor microenvironment? Curr Med Chem 2024.
[http://dx.doi.org/10.2174/0929867331666230719142202] [PMID: 37469162]
[23]
Pardo-Sánchez I, Ibañez-Molero S, García-Moreno D, Mulero V. Dual role of DUOX1-derived reactive oxygen species in melanoma. Antioxidants 2023; 12(3): 708.
[http://dx.doi.org/10.3390/antiox12030708] [PMID: 36978957]
[24]
Renaudin X. Reactive oxygen species and DNA damage response in cancer. Int Rev Cell Mol Biol 2021; 364: 139-61.
[http://dx.doi.org/10.1016/bs.ircmb.2021.04.001] [PMID: 34507782]
[25]
Su X, Shen Z, Yang Q, et al. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics 2019; 9(15): 4461-73.
[http://dx.doi.org/10.7150/thno.35219] [PMID: 31285773]
[26]
Wang Y, Qi H, Liu Y, et al. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021; 11(10): 4839-57.
[http://dx.doi.org/10.7150/thno.56747] [PMID: 33754031]
[27]
Wei X, Xie F, Zhou X, et al. Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 2022; 19(9): 971-92.
[http://dx.doi.org/10.1038/s41423-022-00905-x] [PMID: 35970871]
[28]
Rao Z, Zhu Y, Yang P, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics 2022; 12(9): 4310-29.
[http://dx.doi.org/10.7150/thno.71086] [PMID: 35673561]
[29]
Yuan R, Zhao W, Wang QQ, et al. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol Res 2021; 170: 105748.
[http://dx.doi.org/10.1016/j.phrs.2021.105748] [PMID: 34217831]
[30]
Tantipaiboonwong P, Chaiwangyen W, Suttajit M, et al. Molecular mechanism of antioxidant and anti-inflammatory effects of omega-3 fatty acids in perilla seed oil and rosmarinic acid rich fraction extracted from perilla seed meal on TNF-α induced A549 lung adenocarcinoma cells. Molecules 2021; 26(22): 6757.
[http://dx.doi.org/10.3390/molecules26226757] [PMID: 34833849]
[31]
Feng W, Xie Q, Liu S, et al. Krüppel-like factor 4 promotes c-Met amplification-mediated gefitinib resistance in non-small-cell lung cancer. Cancer Sci 2018; 109(6): 1775-86.
[http://dx.doi.org/10.1111/cas.13601] [PMID: 29624806]
[32]
Martí JM, Garcia-Diaz A, Delgado-Bellido D, et al. Selective modulation by PARP-1 of HIF-1α-recruitment to chromatin during hypoxia is required for tumor adaptation to hypoxic conditions. Redox Biol 2021; 41: 101885.
[http://dx.doi.org/10.1016/j.redox.2021.101885] [PMID: 33581682]
[33]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[34]
Chen Y, Li N, Wang J, et al. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer. Theranostics 2019; 9(1): 167-78.
[http://dx.doi.org/10.7150/thno.28033] [PMID: 30662560]
[35]
Mirzaei S, Hushmandi K, Zabolian A, Saleki H, Torabi SMR, Ranjbar A. Elucidating role of Reactive Oxygen Species (ROS) in cisplatin chemotherapy: A focus on molecular pathways and possible therapeutic strategies. Molecules 2021; 26(8): 2382.
[36]
Aggarwal V, Tuli H, Varol A, et al. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules 2019; 9(11): 735.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[37]
Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol 2022; 13: 1039241.
[http://dx.doi.org/10.3389/fimmu.2022.1039241] [PMID: 36389728]
[38]
Hu X, Shen Y, Zhao Y, et al. Epithelial aryl hydrocarbon receptor protects from mucus production by inhibiting ROS-triggered NLRP3 inflammasome in asthma. Front Immunol 2021; 12: 767508.
[http://dx.doi.org/10.3389/fimmu.2021.767508] [PMID: 34868022]
[39]
ArulJothi KN, Kumaran K, Senthil S, et al. Implications of reactive oxygen species in lung cancer and exploiting it for therapeutic interventions. Med Oncol 2022; 40(1): 43.
[http://dx.doi.org/10.1007/s12032-022-01900-y]
[40]
Soo RA, Han JY, Dafni U, et al. A randomised phase II study of osimertinib and bevacizumab versus osimertinib alone as second- line targeted treatment in advanced NSCLC with confirmed EGFR and acquired T790M mutations: The European Thoracic Oncology Platform (ETOP 10-16) BOOSTER trial. Ann Oncol 2022; 33(2): 181-92.
[http://dx.doi.org/10.1016/j.annonc.2021.11.010] [PMID: 34839016]
[41]
Ikeuchi H, Hirose T, Ikegami M, et al. Preclinical assessment of combination therapy of EGFR tyrosine kinase inhibitors in a highly heterogeneous tumor model. Oncogene 2022; 41(17): 2470-9.
[http://dx.doi.org/10.1038/s41388-022-02263-4] [PMID: 35304574]
[42]
Chen Z, Vallega KA, Chen H, Zhou J, Ramalingam SS, Sun SY. The natural product berberine synergizes with osimertinib preferentially against MET-amplified osimertinib-resistant lung cancer via direct MET inhibition. Pharmacol Res 2022; 175: 105998.
[http://dx.doi.org/10.1016/j.phrs.2021.105998] [PMID: 34826601]
[43]
Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell 2020; 38(2): 167-97.
[http://dx.doi.org/10.1016/j.ccell.2020.06.001] [PMID: 32649885]
[44]
Zhang Y, Du Y, Le W, Wang K, Kieffer N, Zhang J. Redox control of the survival of healthy and diseased cells. Antioxid Redox Signal 2011; 15(11): 2867-908.
[http://dx.doi.org/10.1089/ars.2010.3685] [PMID: 21457107]
[45]
Lluis JM, Buricchi F, Chiarugi P, Morales A, Fernandez-Checa JC. Dual role of mitochondrial reactive oxygen species in hypoxia signaling: Activation of nuclear factor-kappaB via c-SRC and oxidant-dependent cell death. Cancer Res 2007; 67(15): 7368-77.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0515] [PMID: 17671207]
[46]
Kontomanolis EN, Koutras A, Syllaios A, et al. Role of oncogenes and tumor-suppressor genes in carcinogenesis: A review. Anticancer Res 2020; 40(11): 6009-15.
[http://dx.doi.org/10.21873/anticanres.14622] [PMID: 33109539]
[47]
Perillo B, Di Donato M, Pezone A, et al. ROS in cancer therapy: The bright side of the moon. Exp Mol Med 2020; 52(2): 192-203.
[http://dx.doi.org/10.1038/s12276-020-0384-2] [PMID: 32060354]
[48]
Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991; 51(3): 794-8.
[PMID: 1846317]
[49]
Ishikawa K, Takenaga K, Akimoto M, et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 2008; 320(5876): 661-4.
[http://dx.doi.org/10.1126/science.1156906] [PMID: 18388260]
[50]
DeNicola GM, Karreth FA, Humpton TJ, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475(7354): 106-9.
[http://dx.doi.org/10.1038/nature10189] [PMID: 21734707]
[51]
Zhou B, Zhang J, Liu X, et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res 2018; 28(12): 1171-85.
[http://dx.doi.org/10.1038/s41422-018-0090-y] [PMID: 30287942]
[52]
Kuczler MD, Olseen AM, Pienta KJ, Amend SR. ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid cancer cells (PACCs). Prog Biophys Mol Biol 2021; 165: 3-7.
[http://dx.doi.org/10.1016/j.pbiomolbio.2021.05.002] [PMID: 33991583]
[53]
Schmid S, Li JJN, Leighl NB. Mechanisms of osimertinib resistance and emerging treatment options. Lung Cancer 2020; 147: 123-9.
[http://dx.doi.org/10.1016/j.lungcan.2020.07.014] [PMID: 32693293]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy