Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Purinergic Signaling and its Role in the Stem Cell Differentiation

Author(s): Sumera Zaib*, Areeba and Imtiaz Khan*

Volume 24, Issue 8, 2024

Published on: 11 October, 2023

Page: [863 - 883] Pages: 21

DOI: 10.2174/0113895575261206231003151416

Price: $65

Open Access Journals Promotions 2
Abstract

Purinergic signaling is a mechanism in which extracellular purines and pyrimidines interact with specialized cell surface receptors known as purinergic receptors. These receptors are divided into two families of P1 and P2 receptors, each responding to different nucleosides and nucleotides. P1 receptors are activated by adenosine, while P2 receptors are activated by pyrimidine and purines. P2X receptors are ligand-gated ion channels, including seven subunits (P2X1-7). However, P2Y receptors are the G-protein coupled receptors comprising eight subtypes (P2Y1/2/4/6/11/12/13/14). The disorder in purinergic signaling leads to various health-related issues and diseases. In various aspects, it influences the activity of non-neuronal cells and neurons. The molecular mechanism of purinergic signaling provides insight into treating various human diseases. On the contrary, stem cells have been investigated for therapeutic applications. Purinergic signaling has shown promising effect in stem cell engraftment. The immune system promotes the autocrine and paracrine mechanisms and releases the significant factors essential for successful stem cell therapy. Each subtype of purinergic receptor exerts a beneficial effect on the damaged tissue. The most common effect caused by purinergic signaling is the proliferation and differentiation that treat different health-related conditions.

Keywords: Adult stem cells, ligand-gated ion channels, proliferation, purinergic antagonists, purinergic receptors, stem cell differentiation.

« Previous
Graphical Abstract
[1]
Burnstock, G. Purinergic receptors. J. Theor. Biol., 1976, 62(2), 491-503.
[http://dx.doi.org/10.1016/0022-5193(76)90133-8] [PMID: 994531]
[2]
Burnstock, G.; Kennedy, C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen. Pharmacol., 1985, 16(5), 433-440.
[http://dx.doi.org/10.1016/0306-3623(85)90001-1] [PMID: 2996968]
[3]
Burnstock, G. Purine and pyrimidine receptors. Cell. Mol. Life Sci., 2007, 64(12), 1471-1483.
[http://dx.doi.org/10.1007/s00018-007-6497-0] [PMID: 17375261]
[4]
Nicke, A.; Bäumert, H.G.; Rettinger, J.; Eichele, A.; Lambrecht, G.; Mutschler, E.; Schmalzing, G. P2X1 and P2X3 receptors form stable trimers: A novel structural motif of ligand-gated ion channels. EMBO J., 1998, 17(11), 3016-3028.
[http://dx.doi.org/10.1093/emboj/17.11.3016] [PMID: 9606184]
[5]
Burnstock, G.A. A basis for distinguishing two types of purinergic receptor.Cell Membrane Receptors for Drugs and Hormone: A Multidisciplinary Approach; Straub, R.W.; Bolis, L., Eds.; Department of Anatomy and Embryology, University College London: England, 1978, pp. 107-118.
[6]
Burnstock, G. A unifying purinergic hypothesis for the initiation of pain. Lancet, 1996, 347(9015), 1604-1605.
[http://dx.doi.org/10.1016/S0140-6736(96)91082-X] [PMID: 8667873]
[7]
Burnstock, G. Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J. Anat., 1999, 194(3), 335-342.
[http://dx.doi.org/10.1046/j.1469-7580.1999.19430335.x] [PMID: 10386771]
[8]
Burnstock, G.; Verkhratsky, A. Evolutionary origins of the purinergic signalling system. Acta Physiol., 2009, 195(4), 415-447.
[http://dx.doi.org/10.1111/j.1748-1716.2009.01957.x] [PMID: 19222398]
[9]
Khalafalla, M.G.; Woods, L.T.; Jasmer, K.J.; Forti, K.M.; Camden, J.M.; Jensen, J.L.; Limesand, K.H.; Galtung, H.K.; Weisman, G.A. P2 receptors as therapeutic targets in the salivary gland: From physiology to dysfunction. Front. Pharmacol., 2020, 11, 222.
[http://dx.doi.org/10.3389/fphar.2020.00222] [PMID: 32231563]
[10]
Burnstock, G.; Knight, G.E. Cellular distribution and functions of P2 receptor subtypes in different systems. Int. Rev. Cytol., 2004, 240, 31-304.
[http://dx.doi.org/10.1016/S0074-7696(04)40002-3] [PMID: 15548415]
[11]
Burnstock, G.; Warland, J.J.I. A pharmacological study of the rabbit saphenous artery in vitro: A vessel with a large purinergic contractile response to sympathetic nerve stimulation. Br. J. Pharmacol., 1987, 90(1), 111-120.
[http://dx.doi.org/10.1111/j.1476-5381.1987.tb16830.x] [PMID: 3814914]
[12]
Burnstock, G. Purinergic signalling. Br. J. Pharmacol., 2006, 147(S1)(1), S172-S181.
[http://dx.doi.org/10.1038/sj.bjp.0706429] [PMID: 16402102]
[13]
Burnstock, G. Purinergic signaling and vascular cell proliferation and death. Arterioscler. Thromb. Vasc. Biol., 2002, 22(3), 364-373.
[http://dx.doi.org/10.1161/hq0302.105360] [PMID: 11884276]
[14]
Burnstock, G. Dual control of vascular tone and remodelling by ATP released from nerves and endothelial cells. Pharmacol. Rep., 2008, 60(1), 12-20.
[PMID: 18276981]
[15]
Burnstock, G. The Erasmus lecture 2012, academia Europaea. The concept of cotransmission: Focus on ATP as a cotransmitter and its significance in health and disease. Eur. Rev., 2014, 22(1), 1-17.
[http://dx.doi.org/10.1017/S1062798713000586]
[16]
Erlinge, D.; Burnstock, G. P2 receptors in cardiovascular regulation and disease. Purinergic Signal., 2008, 4(1), 1-20.
[http://dx.doi.org/10.1007/s11302-007-9078-7] [PMID: 18368530]
[17]
Bodin, P.; Burnstock, G. Purinergic signalling: ATP release. Neurochem. Res., 2001, 26(8/9), 959-969.
[http://dx.doi.org/10.1023/A:1012388618693] [PMID: 11699948]
[18]
Burnstock, G.; Knight, G.E. Cell culture: Complications due to mechanical release of ATP and activation of purinoceptors. Cell Tissue Res., 2017, 370(1), 1-11.
[http://dx.doi.org/10.1007/s00441-017-2618-8] [PMID: 28434079]
[19]
Moriyama, Y.; Hiasa, M.; Sakamoto, S.; Omote, H.; Nomura, M. Vesicular nucleotide transporter (VNUT): Appearance of an actress on the stage of purinergic signaling. Purinergic Signal., 2017, 13(3), 387-404.
[http://dx.doi.org/10.1007/s11302-017-9568-1] [PMID: 28616712]
[20]
Dahl, G. ATP release through pannexon channels. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, 370(1672), 20140191.
[http://dx.doi.org/10.1098/rstb.2014.0191] [PMID: 26009770]
[21]
Lazarowski, E.R.; Sesma, J.I.; Seminario-Vidal, L.; Kreda, S.M. Molecular mechanisms of purine and pyrimidine nucleotide release. Adv. Pharmacol., 2011, 61, 221-261.
[http://dx.doi.org/10.1016/B978-0-12-385526-8.00008-4] [PMID: 21586361]
[22]
Bigdeli, N.; Andersson, M.; Strehl, R.; Emanuelsson, K.; Kilmare, E.; Hyllner, J.; Lindahl, A. Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. J. Biotechnol., 2008, 133(1), 146-153.
[http://dx.doi.org/10.1016/j.jbiotec.2007.08.045] [PMID: 17935814]
[23]
Yamanaka, S.; Li, J.; Kania, G.; Elliott, S.; Wersto, R.P.; Van Eyk, J.; Wobus, A.M.; Boheler, K.R. Pluripotency of embryonic stem cells. Cell Tissue Res., 2008, 331(1), 5-22.
[http://dx.doi.org/10.1007/s00441-007-0520-5] [PMID: 18026755]
[24]
Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448(7151), 313-317.
[http://dx.doi.org/10.1038/nature05934] [PMID: 17554338]
[25]
Woltjen, K.; Michael, I.P.; Mohseni, P.; Desai, R.; Mileikovsky, M.; Hämäläinen, R.; Cowling, R.; Wang, W.; Liu, P.; Gertsenstein, M.; Kaji, K.; Sung, H.K.; Nagy, A. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 2009, 458(7239), 766-770.
[http://dx.doi.org/10.1038/nature07863] [PMID: 19252478]
[26]
Saha, K.; Jaenisch, R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell, 2009, 5(6), 584-595.
[http://dx.doi.org/10.1016/j.stem.2009.11.009] [PMID: 19951687]
[27]
Bradley, A.; Evans, M.; Kaufman, M.H.; Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 1984, 309(5965), 255-256.
[http://dx.doi.org/10.1038/309255a0] [PMID: 6717601]
[28]
Jacob, H.J.; Lazar, J.; Dwinell, M.R.; Moreno, C.; Geurts, A.M. Gene targeting in the rat: Advances and opportunities. Trends Genet., 2010, 26(12), 510-518.
[http://dx.doi.org/10.1016/j.tig.2010.08.006] [PMID: 20869786]
[29]
Johansson, B.; Halldner, L.; Dunwiddie, T.V.; Masino, S.A.; Poelchen, W.; Giménez-Llort, L.; Escorihuela, R.M.; Fernández-Teruel, A.; Wiesenfeld-Hallin, Z.; Xu, X.J.; Hårdemark, A.; Betsholtz, C.; Herlenius, E.; Fredholm, B.B. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A 1 receptor. Proc. Natl. Acad. Sci., 2001, 98(16), 9407-9412.
[http://dx.doi.org/10.1073/pnas.161292398] [PMID: 11470917]
[30]
Huin, V.; Dhaenens, C.M.; Homa, M.; Carvalho, K.; Buée, L.; Sablonnière, B. Neurogenetics of the human adenosine receptor genes: Genetic structures and involvement in brain diseases. J. Caffeine Adenosine Res., 2019, 9(3), 73-88.
[http://dx.doi.org/10.1089/caff.2019.0011]
[31]
Zhao, Z.; Shang, X.; Chen, Y.; Zheng, Y.; Huang, W.; Jiang, H.; Lv, Q.; Kong, D.; Jiang, Y.; Liu, P. Bacteria elevate extracellular adenosine to exploit host signaling for blood-brain barrier disruption. Virulence, 2020, 11(1), 980-994.
[http://dx.doi.org/10.1080/21505594.2020.1797352] [PMID: 32772676]
[32]
Kim, M.; Chen, S.W.C.; Park, S.W.; Kim, M.; D’Agati, V.D.; Yang, J.; Lee, H.T. Kidney-specific reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout mice reduces renal ischemia–reperfusion injury. Kidney Int., 2009, 75(8), 809-823.
[http://dx.doi.org/10.1038/ki.2008.699] [PMID: 19190680]
[33]
Zucchi, R.; Cerniway, R.J.; Ronca-Testoni, S.; Morrison, R.R.; Ronca, G.; Matherne, G.P. Effect of cardiac A1 adenosine receptor overexpression on sarcoplasmic reticulum function. Cardiovasc. Res., 2002, 53(2), 326-333.
[http://dx.doi.org/10.1016/S0008-6363(01)00471-0] [PMID: 11827682]
[34]
Schweda, F.; Segerer, F.; Castrop, H.; Schnermann, J.; Kurtz, A. Blood pressure-dependent inhibition of Renin secretion requires A1 adenosine receptors. Hypertension, 2005, 46(4), 780-786.
[http://dx.doi.org/10.1161/01.HYP.0000183963.07801.65] [PMID: 16172432]
[35]
Koeppen, M.; Eckle, T.; Eltzschig, H.K. Selective deletion of the A1 adenosine receptor abolishes heart-rate slowing effects of intravascular adenosine in vivo. PLoS One, 2009, 4(8), e6784.
[http://dx.doi.org/10.1371/journal.pone.0006784] [PMID: 19707555]
[36]
Kochanek, P.M.; Vagni, V.A.; Janesko, K.L.; Washington, C.B.; Crumrine, P.K.; Garman, R.H.; Jenkins, L.W.; Clark, R.S.B.; Homanics, G.E.; Dixon, C.E.; Schnermann, J.; Jackson, E.K. Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J. Cereb. Blood Flow Metab., 2006, 26(4), 565-575.
[http://dx.doi.org/10.1038/sj.jcbfm.9600218] [PMID: 16121125]
[37]
Deb, P.K.; Deka, S.; Borah, P.; Abed, S.N.; Klotz, K.N. Medicinal chemistry and therapeutic potential of agonists, antagonists and allosteric modulators of A1 adenosine receptor: current status and perspectives. Curr. Pharm. Des., 2019, 25(25), 2697-2715.
[http://dx.doi.org/10.2174/1381612825666190716100509] [PMID: 31333094]
[38]
Chen, J.F.; Huang, Z.; Ma, J.; Zhu, J.; Moratalla, R.; Standaert, D.; Moskowitz, M.A.; Fink, J.S.; Schwarzschild, M.A. A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J. Neurosci., 1999, 19(21), 9192-9200.
[http://dx.doi.org/10.1523/JNEUROSCI.19-21-09192.1999] [PMID: 10531422]
[39]
Boknik, P.; Drzewiecki, K.; Eskandar, J.; Gergs, U.; Grote-Wessels, S.; Fabritz, L.; Kirchhof, P.; Müller, F.U.; Stümpel, F.; Schmitz, W.; Zimmermann, N.; Kirchhefer, U.; Neumann, J. Phenotyping of mice with heart specific overexpression of A2A-adenosine receptors: Evidence for cardioprotective effects of A2A-adenosine receptors. Front. Pharmacol., 2018, 9, 13.
[http://dx.doi.org/10.3389/fphar.2018.00013] [PMID: 29403384]
[40]
Chan, T.O.; Funakoshi, H.; Song, J.; Zhang, X.Q.; Wang, J.; Chung, P.H.; DeGeorge, B.R., Jr; Li, X.; Zhang, J.; Herrmann, D.E.; Diamond, M.; Hamad, E.; Houser, S.R.; Koch, W.J.; Cheung, J.Y.; Feldman, A.M. Cardiac-restricted overexpression of the A(2A)-adenosine receptor in FVB mice transiently increases contractile performance and rescues the heart failure phenotype in mice overexpressing the A(1)-adenosine receptor. Clin. Transl. Sci., 2008, 1(2), 126-133.
[http://dx.doi.org/10.1111/j.1752-8062.2008.00027.x] [PMID: 20354569]
[41]
Giménez-Llort, L.; Schiffmann, S.N.; Shmidt, T.; Canela, L.; Camón, L.; Wassholm, M.; Canals, M.; Terasmaa, A.; Fernández-Teruel, A.; Tobeña, A.; Popova, E.; Ferré, S.; Agnati, L.; Ciruela, F.; Martínez, E.; Scheel-Kruger, J.; Lluis, C.; Franco, R.; Fuxe, K.; Bader, M. Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol. Learn. Mem., 2007, 87(1), 42-56.
[http://dx.doi.org/10.1016/j.nlm.2006.05.004] [PMID: 16824773]
[42]
Domenici, M.R.; Chiodi, V.; Averna, M.; Armida, M.; Pèzzola, A.; Pepponi, R.; Ferrante, A.; Bader, M.; Fuxe, K.; Popoli, P. Neuronal adenosine A2A receptor overexpression is neuroprotective towards 3-nitropropionic acid-induced striatal toxicity: A rat model of Huntington’s disease. Purinergic Signal., 2018, 14(3), 235-243.
[http://dx.doi.org/10.1007/s11302-018-9609-4] [PMID: 29770921]
[43]
Johnston-Cox, H.; Koupenova, M.; Yang, D.; Corkey, B.; Gokce, N.; Farb, M.G.; LeBrasseur, N.; Ravid, K. The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS One, 2012, 7(7), e40584.
[http://dx.doi.org/10.1371/journal.pone.0040584] [PMID: 22848385]
[44]
Eisenstein, A.; Carroll, S.H.; Johnston-Cox, H.; Farb, M.; Gokce, N.; Ravid, K. An adenosine receptor-Krüppel-like factor 4 protein axis inhibits adipogenesis. J. Biol. Chem., 2014, 289(30), 21071-21081.
[http://dx.doi.org/10.1074/jbc.M114.566406] [PMID: 24928509]
[45]
Koupenova, M.; Johnston-Cox, H.; Vezeridis, A.; Gavras, H.; Yang, D.; Zannis, V.; Ravid, K. A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation, 2012, 125(2), 354-363.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.057596] [PMID: 22144568]
[46]
Belikoff, B.G.; Hatfield, S.; Georgiev, P.; Ohta, A.; Lukashev, D.; Buras, J.A.; Remick, D.G.; Sitkovsky, M. A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice. J. Immunol., 2011, 186(4), 2444-2453.
[http://dx.doi.org/10.4049/jimmunol.1001567] [PMID: 21242513]
[47]
Peixoto, IMP Potential of adenosine-system-based therapies in the treatment of neuroimmune disorders; Institute of Biomedical Sciences Abel Salazar : U. Porto, 2012.
[48]
Zhong, H.; Shlykov, S.G.; Molina, J.G.; Sanborn, B.M.; Jacobson, M.A.; Tilley, S.L.; Blackburn, M.R. Activation of murine lung mast cells by the adenosine A3 receptor. J. Immunol., 2003, 171(1), 338-345.
[http://dx.doi.org/10.4049/jimmunol.171.1.338] [PMID: 12817016]
[49]
Harrison, G.; Cerniway, R.J.; Peart, J.; Berr, S.S.; Ashton, K.; Regan, S.; Paul Matherne, G.; Headrick, J.P. Effects of A3 adenosine receptor activation and gene knock-out in ischemic-reperfused mouse heart. Cardiovasc. Res., 2002, 53(1), 147-155.
[http://dx.doi.org/10.1016/S0008-6363(01)00424-2] [PMID: 11744023]
[50]
Cerniway, R.J.; Yang, Z.; Jacobson, M.A.; Linden, J.; Matherne, G.P. Targeted deletion of A 3 adenosine receptors improves tolerance to ischemia-reperfusion injury in mouse myocardium. Am. J. Physiol. Heart Circ. Physiol., 2001, 281(4), H1751-H1758.
[http://dx.doi.org/10.1152/ajpheart.2001.281.4.H1751] [PMID: 11557567]
[51]
Lee, H.T.; Ota-Setlik, A.; Xu, H.; D’Agati, V.D.; Jacobson, M.A.; Emala, C.W. A 3 adenosine receptor knockout mice are protected against ischemia- and myoglobinuria-induced renal failure. Am. J. Physiol. Renal Physiol., 2003, 284(2), F267-F273.
[http://dx.doi.org/10.1152/ajprenal.00271.2002] [PMID: 12388399]
[52]
Yang, T.; Zollbrecht, C.; Winerdal, M.E.; Zhuge, Z.; Zhang, X.M.; Terrando, N.; Checa, A.; Sällström, J.; Wheelock, C.E.; Winqvist, O.; Harris, R.A.; Larsson, E.; Persson, A.E.G.; Fredholm, B.B.; Carlström, M. Genetic abrogation of adenosine A3 receptor prevents uninephrectomy and high salt-induced hypertension. J. Am. Heart Assoc., 2016, 5(7), e003868.
[http://dx.doi.org/10.1161/JAHA.116.003868] [PMID: 27431647]
[53]
Hofer, M.; Pospíšil, M.; Dušek, L.; Hoferová, Z.; Komůrková, D. Lack of adenosine A3 receptors causes defects in mouse peripheral blood parameters. Purinergic Signal., 2014, 10(3), 509-514.
[http://dx.doi.org/10.1007/s11302-014-9412-9] [PMID: 24763970]
[54]
Little, J.W.; Ford, A.; Symons-Liguori, A.M.; Chen, Z.; Janes, K.; Doyle, T.; Xie, J.; Luongo, L.; Tosh, D.K.; Maione, S.; Bannister, K.; Dickenson, A.H.; Vanderah, T.W.; Porreca, F.; Jacobson, K.A.; Salvemini, D. Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states. Brain, 2015, 138(1), 28-35.
[http://dx.doi.org/10.1093/brain/awu330] [PMID: 25414036]
[55]
Lecut, C.; Frederix, K.; Johnson, D.M.; Deroanne, C.; Thiry, M.; Faccinetto, C.; Marée, R.; Evans, R.J.; Volders, P.G.A.; Bours, V.; Oury, C. P2X1 ion channels promote neutrophil chemotaxis through Rho kinase activation. J. Immunol., 2009, 183(4), 2801-2809.
[http://dx.doi.org/10.4049/jimmunol.0804007] [PMID: 19635923]
[56]
Lecut, C.; Faccinetto, C.; Delierneux, C.; van OERLE, R.; Spronk, H.M.H.; Evans, R.J.; El Benna, J.; Bours, V.; Oury, C. ATP‐gated P2X1 ion channels protect against endotoxemia by dampening neutrophil activation. J. Thromb. Haemost., 2012, 10(3), 453-465.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04606.x] [PMID: 22212928]
[57]
Burst, V.R.; Gillis, M.; Pütsch, F.; Herzog, R.; Fischer, J.H.; Heid, P.; Müller-Ehmsen, J.; Schenk, K.; Fries, J.W.U.; Baldamus, C.A.; Benzing, T. Poor cell survival limits the beneficial impact of mesenchymal stem cell transplantation on acute kidney injury. Nephron, Exp. Nephrol., 2009, 114(3), e107-e116.
[http://dx.doi.org/10.1159/000262318] [PMID: 19955830]
[58]
Chandrasekaran, B.; Samarneh, S.; Jaber, A.M.Y.; Kassab, G.; Agrawal, N. Therapeutic potentials of A2B adenosine receptor ligands: Current status and perspectives. Curr. Pharm. Des., 2019, 25(25), 2741-2771.
[http://dx.doi.org/10.2174/1381612825666190717105834] [PMID: 31333084]
[59]
Cockayne, D.A.; Hamilton, S.G.; Zhu, Q.M.; Dunn, P.M.; Zhong, Y.; Novakovic, S.; Malmberg, A.B.; Cain, G.; Berson, A.; Kassotakis, L.; Hedley, L.; Lachnit, W.G.; Burnstock, G.; McMahon, S.B.; Ford, A.P.D.W. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature, 2000, 407(6807), 1011-1015.
[http://dx.doi.org/10.1038/35039519] [PMID: 11069181]
[60]
Burnstock, G. Purine and purinergic receptors. Brain Neurosci. Adv., 2018, 2.
[http://dx.doi.org/10.1177/2398212818817494] [PMID: 32166165]
[61]
Calvert, J.A.; Evans, R.J. Heterogeneity of P2X receptors in sympathetic neurons: Contribution of neuronal P2X1 receptors revealed using knockout mice. Mol. Pharmacol., 2004, 65(1), 139-148.
[http://dx.doi.org/10.1124/mol.65.1.139] [PMID: 14722245]
[62]
Caseley, E.; Muench, S.; Roger, S.; Mao, H.J.; Baldwin, S.; Jiang, L.H. Non-synonymous single nucleotide polymorphisms in the P2X receptor genes: Association with diseases, impact on receptor functions and potential use as diagnosis biomarkers. Int. J. Mol. Sci., 2014, 15(8), 13344-13371.
[http://dx.doi.org/10.3390/ijms150813344] [PMID: 25079442]
[63]
Tchernookova, B.K.; Heer, C.; Young, M.; Swygart, D.; Kaufman, R.; Gongwer, M.; Shepherd, L.; Caringal, H.; Jacoby, J.; Kreitzer, M.A.; Malchow, R.P. Activation of retinal glial (Müller) cells by extracellular ATP induces pronounced increases in extracellular H+ flux. PLoS One, 2018, 13(2), e0190893.
[http://dx.doi.org/10.1371/journal.pone.0190893] [PMID: 29466379]
[64]
Harden, T.K. Nucleotide receptor P2Y14. the alliance for cellular signaling. A002814, 2014.
[65]
Sclafani, A.; Ackroff, K. Maltodextrin and fat preference deficits in “taste-blind” P2X2/P2X3 knockout mice. Chem. Senses, 2014, 39(6), 507-514.
[http://dx.doi.org/10.1093/chemse/bju019] [PMID: 24833134]
[66]
Baxter, A.W.; Choi, S.J.; Sim, J.A.; North, R.A. Role of P2X4 receptors in synaptic strengthening in mouse CA1 hippocampal neurons. Eur. J. Neurosci., 2011, 34(2), 213-220.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07763.x] [PMID: 21749490]
[67]
Wyatt, L.R.; Finn, D.A.; Khoja, S.; Yardley, M.M.; Asatryan, L.; Alkana, R.L.; Davies, D.L. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice. Neurochem. Res., 2014, 39(6), 1127-1139.
[http://dx.doi.org/10.1007/s11064-014-1271-9] [PMID: 24671605]
[68]
Orriss, I.R.; Key, M.L.; Brandao-Burch, A.; Patel, J.J.; Burnstock, G.; Arnett, T.R. The regulation of osteoblast function and bone mineralisation by extracellular nucleotides: The role of p2x receptors. Bone, 2012, 51(3), 389-400.
[http://dx.doi.org/10.1016/j.bone.2012.06.013] [PMID: 22749889]
[69]
Ashraf, W.; Manzoor, S.; Ashraf, J.; Ahmed, Q.L.; Khalid, M.; Tariq, M.; Imran, M.; Aziz, H. Transcript analysis of P2X receptors in PBMCs of chronic HCV patients: An insight into antiviral treatment response and HCV-induced pathogenesis. Viral Immunol., 2013, 26(5), 343-350.
[http://dx.doi.org/10.1089/vim.2013.0044] [PMID: 24116708]
[70]
de Baaij, J.H.F.; Kompatscher, A.; Viering, D.H.H.M.; Bos, C.; Bindels, R.J.M.; Hoenderop, J.G.J. P2X6 knockout mice exhibit normal electrolyte homeostasis. PLoS One, 2016, 11(6), e0156803.
[http://dx.doi.org/10.1371/journal.pone.0156803] [PMID: 27254077]
[71]
Yan, Z.; Khadra, A.; Li, S.; Tomić, M.; Sherman, A.; Stojilkovic, S.S. Experimental characterization and mathematical modeling of P2X7 receptor channel gating. J. Neurosci., 2010, 30(42), 14213-14224.
[http://dx.doi.org/10.1523/JNEUROSCI.2390-10.2010] [PMID: 20962242]
[72]
Di Virgilio, F.; Dal Ben, D.; Sarti, A.C.; Giuliani, A.L.; Falzoni, S. The P2X7 receptor in infection and inflammation. Immunity, 2017, 47(1), 15-31.
[http://dx.doi.org/10.1016/j.immuni.2017.06.020] [PMID: 28723547]
[73]
Di Virgilio, F.; Schmalzing, G.; Markwardt, F. The elusive P2X7 macropore. Trends Cell Biol., 2018, 28(5), 392-404.
[http://dx.doi.org/10.1016/j.tcb.2018.01.005] [PMID: 29439897]
[74]
Chessell, I.P.; Hatcher, J.P.; Bountra, C.; Michel, A.D.; Hughes, J.P.; Green, P.; Egerton, J.; Murfin, M.; Richardson, J.; Peck, W.L.; Grahames, C.B.A.; Casula, M.A.; Yiangou, Y.; Birch, R.; Anand, P.; Buell, G.N. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain, 2005, 114(3), 386-396.
[http://dx.doi.org/10.1016/j.pain.2005.01.002] [PMID: 15777864]
[75]
Nicke, A.; Kuan, Y.H.; Masin, M.; Rettinger, J.; Marquez-Klaka, B.; Bender, O.; Górecki, D.C.; Murrell-Lagnado, R.D.; Soto, F. A functional P2X7 splice variant with an alternative transmembrane domain 1 escapes gene inactivation in P2X7 knock-out mice. J. Biol. Chem., 2009, 284(38), 25813-25822.
[http://dx.doi.org/10.1074/jbc.M109.033134] [PMID: 19546214]
[76]
Ke, H.Z.; Qi, H.; Weidema, A.F.; Zhang, Q.; Panupinthu, N.; Crawford, D.T.; Grasser, W.A.; Paralkar, V.M.; Li, M.; Audoly, L.P.; Gabel, C.A.; Jee, W.S.S.; Dixon, S.J.; Sims, S.M.; Thompson, D.D. Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol. Endocrinol., 2003, 17(7), 1356-1367.
[http://dx.doi.org/10.1210/me.2003-0021] [PMID: 12677010]
[77]
Gil, V.; Martínez-Cutillas, M.; Mañé, N.; Martín, M.T.; Jiménez, M.; Gallego, D. P2Y 1 knockout mice lack purinergic neuromuscular transmission in the antrum and cecum. Neurogastroenterol. Motil., 2013, 25(3), e170-e182.
[http://dx.doi.org/10.1111/nmo.12060] [PMID: 23323764]
[78]
Homolya, L.; Watt, W.C.; Lazarowski, E.R.; Koller, B.H.; Boucher, R.C. Nucleotide-regulated calcium signaling in lung fibroblasts and epithelial cells from normal and P2Y(2) receptor (-/-) mice. J. Biol. Chem., 1999, 274(37), 26454-26460.
[http://dx.doi.org/10.1074/jbc.274.37.26454] [PMID: 10473605]
[79]
Matos, J.E.; Robaye, B.; Boeynaems, J.M.; Beauwens, R.; Leipziger, J.K. + secretion activated by luminal P2Y 2 and P2Y 4 receptors in mouse colon. J. Physiol., 2005, 564(1), 269-279.
[http://dx.doi.org/10.1113/jphysiol.2004.080002] [PMID: 15718265]
[80]
Placet, M.; Arguin, G.; Molle, C.M.; Babeu, J.P.; Jones, C.; Carrier, J.C.; Robaye, B.; Geha, S.; Boudreau, F.; Gendron, F.P. The G protein-coupled P2Y6 receptor promotes colorectal cancer tumorigenesis by inhibiting apoptosis. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(5), 1539-1551.
[http://dx.doi.org/10.1016/j.bbadis.2018.02.008] [PMID: 29454075]
[81]
Liverani, E.; Rico, M.C.; Yaratha, L.; Tsygankov, A.Y.; Kilpatrick, L.E.; Kunapuli, S.P. LPS-induced systemic inflammation is more severe in P2Y12 null mice. J. Leukoc. Biol., 2013, 95(2), 313-323.
[http://dx.doi.org/10.1189/jlb.1012518] [PMID: 24142066]
[82]
Fabre, A.C.; Malaval, C.; Ben Addi, A.; Verdier, C.; Pons, V.; Serhan, N.; Lichtenstein, L.; Combes, G.; Huby, T.; Briand, F.; Collet, X.; Nijstad, N.; Tietge, U.J.F.; Robaye, B.; Perret, B.; Boeynaems, J-M.; Martinez, L.O. P2Y13 receptor is critical for reverse cholesterol transport. Hepatology, 2010, 52(4), 1477-1483.
[http://dx.doi.org/10.1002/hep.23897]
[83]
Wang, N.; Robaye, B.; Gossiel, F.; Boeynaems, J.M.; Gartland, A. The P2Y 13 receptor regulates phosphate metabolism and FGF‐23 secretion with effects on skeletal development. FASEB J., 2014, 28(5), 2249-2259.
[http://dx.doi.org/10.1096/fj.13-243626] [PMID: 24487286]
[84]
Calloni, R.; Cordero, E.A.A.; Henriques, J.A.P.; Bonatto, D. Reviewing and updating the major molecular markers for stem cells. Stem Cells Dev., 2013, 22(9), 1455-1476.
[http://dx.doi.org/10.1089/scd.2012.0637] [PMID: 23336433]
[85]
Bassil, A.K.; Bourdu, S.; Townson, K.A.; Wheeldon, A.; Jarvie, E.M.; Zebda, N.; Abuin, A.; Grau, E.; Livi, G.P.; Punter, L.; Latcham, J.; Grimes, A.M.; Hurp, D.P.; Downham, K.M.; Sanger, G.J.; Winchester, W.J.; Morrison, A.D.; Moore, G.B.T. UDP-glucose modulates gastric function through P2Y 14 receptor-dependent and -independent mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296(4), G923-G930.
[http://dx.doi.org/10.1152/ajpgi.90363.2008] [PMID: 19164486]
[86]
Meister, J.; Le Duc, D.; Ricken, A.; Burkhardt, R.; Thiery, J.; Pfannkuche, H.; Polte, T.; Grosse, J.; Schöneberg, T.; Schulz, A. The G protein-coupled receptor P2Y14 influences insulin release and smooth muscle function in mice. J. Biol. Chem., 2014, 289(34), 23353-23366.
[http://dx.doi.org/10.1074/jbc.M114.580803] [PMID: 24993824]
[87]
Kaebisch, C.; Schipper, D.; Babczyk, P.; Tobiasch, E. The role of purinergic receptors in stem cell differentiation. Comput. Struct. Biotechnol. J., 2015, 13, 75-84.
[http://dx.doi.org/10.1016/j.csbj.2014.11.003] [PMID: 26900431]
[88]
Burnstock, G.; Ulrich, H. Purinergic signaling in embryonic and stem cell development. Cell. Mol. Life Sci., 2011, 68(8), 1369-1394.
[http://dx.doi.org/10.1007/s00018-010-0614-1] [PMID: 21222015]
[89]
Heo, J.S.; Han, H.J. ATP stimulates mouse embryonic stem cell proliferation via protein kinase C, phosphatidylinositol 3-kinase/Akt, and mitogen-activated protein kinase signaling pathways. Stem Cells, 2006, 24(12), 2637-2648.
[http://dx.doi.org/10.1634/stemcells.2005-0588] [PMID: 16916926]
[90]
Zhang, F.; Citra, F.; Wang, D.A. Prospects of induced pluripotent stem cell technology in regenerative medicine. Tissue Eng. Part B Rev., 2011, 17(2), 115-124.
[http://dx.doi.org/10.1089/ten.teb.2010.0549] [PMID: 21210760]
[91]
Mastrangelo, L.; Kim, J.E.; Miyanohara, A.; Kang, T.H.; Friedmann, T. Purinergic signaling in human pluripotent stem cells is regulated by the housekeeping gene encoding hypoxanthine guanine phosphoribosyltransferase. Proc. Natl. Acad. Sci., 2012, 109(9), 3377-3382.
[http://dx.doi.org/10.1073/pnas.1118067109] [PMID: 22331909]
[92]
Vermeulen, L.; Sprick, M.R.; Kemper, K.; Stassi, G.; Medema, J.P. Cancer stem cells: Old concepts, new insights. Cell Death Differ., 2008, 15(6), 947-958.
[http://dx.doi.org/10.1038/cdd.2008.20] [PMID: 18259194]
[93]
Vermeulen, L.; Todaro, M.; de Sousa Mello, F.; Sprick, M.R.; Kemper, K.; Perez Alea, M.; Richel, D.J.; Stassi, G.; Medema, J.P. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl. Acad. Sci., 2008, 105(36), 13427-13432.
[http://dx.doi.org/10.1073/pnas.0805706105] [PMID: 18765800]
[94]
ElShamy, W.M.; Duhé, R.J. Overview: Cellular plasticity, cancer stem cells and metastasis. Cancer Lett., 2013, 341(1), 2-8.
[http://dx.doi.org/10.1016/j.canlet.2013.06.020] [PMID: 23796691]
[95]
Podberezin, M.; Wen, J.; Chang, C.C.J. Cancer stem cells: A review of potential clinical applications. Arch. Pathol. Lab. Med., 2013, 137(8), 1111-1116.
[http://dx.doi.org/10.5858/arpa.2012-0494-RA] [PMID: 23153183]
[96]
O’Connor, M.L.; Xiang, D.; Shigdar, S.; Macdonald, J.; Li, Y.; Wang, T.; Pu, C.; Wang, Z.; Qiao, L.; Duan, W. Cancer stem cells: A contentious hypothesis now moving forward. Cancer Lett., 2014, 344(2), 180-187.
[http://dx.doi.org/10.1016/j.canlet.2013.11.012] [PMID: 24333726]
[97]
Ledur, P.F.; Villodre, E.S.; Paulus, R.; Cruz, L.A.; Flores, D.G.; Lenz, G. Extracellular ATP reduces tumor sphere growth and cancer stem cell population in glioblastoma cells. Purinergic Signal., 2012, 8(1), 39-48.
[http://dx.doi.org/10.1007/s11302-011-9252-9] [PMID: 21818572]
[98]
da Silva, R.L.; Resende, R.R.; Ulrich, H. Genomic Physiology: Alternative splicing of P2X6 receptors in developing mouse brain and during in vitro neuronal differentiation. Exp. Physiol., 2007, 92(1), 139-145.
[http://dx.doi.org/10.1113/expphysiol.2006.921304] [PMID: 17259301]
[99]
Hombach-Klonisch, S.; Panigrahi, S.; Rashedi, I.; Seifert, A.; Alberti, E.; Pocar, P.; Kurpisz, M.; Schulze-Osthoff, K.; Mackiewicz, A.; Los, M. Adult stem cells and their trans-differentiation potential—perspectives and therapeutic applications. J. Mol. Med., 2008, 86(12), 1301-1314.
[http://dx.doi.org/10.1007/s00109-008-0383-6] [PMID: 18629466]
[100]
Zhang, Y.; Tobiasch, E. The role of purinergic receptors in stem cells and their consecutive tissues.Adult progenitor cell standardization; Di Nardo, P., Ed.; River Publisher: Aalborg, 2011, pp. 73-92.
[101]
Paredes-Gamero, E.J.; Nogueira-Pedro, A.; Miranda, A.; Justo, G.Z. Hematopoietic modulators as potential agents for the treatment of leukemia. Front. Biosci., 2013, E5(1), 130-140.
[http://dx.doi.org/10.2741/E602] [PMID: 23276976]
[102]
Casati, A.; Frascoli, M.; Traggiai, E.; Proietti, M.; Schenk, U.; Grassi, F. Cell-autonomous regulation of hematopoietic stem cell cycling activity by ATP. Cell Death Differ., 2011, 18(3), 396-404.
[http://dx.doi.org/10.1038/cdd.2010.107] [PMID: 20798687]
[103]
Kazakova, R.R.; Mustafin, I.G.; Mavludov, T.I.; Kiyasov, A.P.; Ziganshin, A.U. Expression of P2X receptor subtypes on CD34+ cells and c-kit+ cells of human umbilical blood. Bull. Exp. Biol. Med., 2011, 151(1), 33-37.
[http://dx.doi.org/10.1007/s10517-011-1253-8] [PMID: 22442797]
[104]
Cho, J.; Yusuf, R.; Kook, S.; Attar, E.; Lee, D.; Park, B.; Cheng, T.; Scadden, D.T.; Lee, B.C. Purinergic P2Y14 receptor modulates stress-induced hematopoietic stem/progenitor cell senescence. J. Clin. Invest., 2014, 124(7), 3159-3171.
[http://dx.doi.org/10.1172/JCI61636] [PMID: 24937426]
[105]
Dupin, E.; Coelho-Aguiar, J.M. Isolation and differentiation properties of neural crest stem cells. Cytometry A, 2013, 83A(1), 38-47.
[http://dx.doi.org/10.1002/cyto.a.22098] [PMID: 22837061]
[106]
Hauser, S.; Widera, D.; Qunneis, F.; Müller, J.; Zander, C.; Greiner, J.; Strauss, C.; Lüningschrör, P.; Heimann, P.; Schwarze, H.; Ebmeyer, J.; Sudhoff, H.; Araúzo-Bravo, M.J.; Greber, B.; Zaehres, H.; Schöler, H.; Kaltschmidt, C.; Kaltschmidt, B. Isolation of novel multipotent neural crest-derived stem cells from adult human inferior turbinate. Stem Cells Dev., 2012, 21(5), 742-756.
[http://dx.doi.org/10.1089/scd.2011.0419] [PMID: 22128806]
[107]
Pelaez, D.; Huang, C.Y.C.; Cheung, H.S. Isolation of pluripotent neural crest-derived stem cells from adult human tissues by connexin-43 enrichment. Stem Cells Dev., 2013, 22(21), 2906-2914.
[http://dx.doi.org/10.1089/scd.2013.0090] [PMID: 23750535]
[108]
Park, T.I.H.; Monzo, H.; Mee, E.W.; Bergin, P.S.; Teoh, H.H.; Montgomery, J.M.; Faull, R.L.M.; Curtis, M.A.; Dragunow, M. Adult human brain neural progenitor cells (NPCs) and fibroblast-like cells have similar properties in vitro but only NPCs differentiate into neurons. PLoS One, 2012, 7(6), e37742.
[http://dx.doi.org/10.1371/journal.pone.0037742] [PMID: 22675489]
[109]
Grimm, I.; Ullsperger, S.N.; Zimmermann, H. Nucleotides and epidermal growth factor induce parallel cytoskeletal rearrangements and migration in cultured adult murine neural stem cells. Acta Physiol., 2010, 199(2), 181-189.
[http://dx.doi.org/10.1111/j.1748-1716.2010.02092.x] [PMID: 20121711]
[110]
Pansky, A.; Roitzheim, B.; Tobiasch, E. Differentiation potential of adult human mesenchymal stem cells. Clin. Lab., 2007, 53(1-2), 81-84.
[PMID: 17323830]
[111]
Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, 8(4), 315-317.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[112]
Scarfì, S. Purinergic receptors and nucleotide processing ectoenzymes: Their roles in regulating mesenchymal stem cell functions. World J. Stem Cells, 2014, 6(2), 153-162.
[http://dx.doi.org/10.4252/wjsc.v6.i2.153] [PMID: 24772242]
[113]
Iser, I.C.; Bracco, P.A.; Gonçalves, C.E.I.; Zanin, R.F.; Nardi, N.B.; Lenz, G.; Battastini, A.M.O.; Wink, M.R. Mesenchymal stem cells from different murine tissues have differential capacity to metabolize extracellular nucleotides. J. Cell. Biochem., 2014, 115(10), 1673-1682.
[http://dx.doi.org/10.1002/jcb.24830] [PMID: 24802095]
[114]
Scholze, N.J.; Zippel, N.; Müller, C.A.; Pansky, A.; Tobiasch, E. P2X and P2Y receptors in human mesenchymal stem cell differentiation. Tissue Eng. Part A, 2009, 15, 698.
[115]
Maffey, A.; Storini, C.; Diceglie, C.; Martelli, C.; Sironi, L.; Calzarossa, C.; Tonna, N.; Lovchik, R.; Delamarche, E.; Ottobrini, L.; Bianco, F. Mesenchymal stem cells from tumor microenvironment favour breast cancer stem cell proliferation, cancerogenic and metastatic potential, via ionotropic purinergic signalling. Sci. Rep., 2017, 7(1), 13162.
[http://dx.doi.org/10.1038/s41598-017-13460-7] [PMID: 29030596]
[116]
Jiang, L.H.; Hao, Y.; Mousawi, F.; Peng, H.; Yang, X. Expression of P2 purinergic receptors in mesenchymal stem cells and their roles in extracellular nucleotide regulation of cell functions. J. Cell. Physiol., 2017, 232(2), 287-297.
[http://dx.doi.org/10.1002/jcp.25484] [PMID: 27403750]
[117]
Broekman, M.L.; Maas, S.L.N.; Abels, E.R.; Mempel, T.R.; Krichevsky, A.M.; Breakefield, X.O. Multidimensional communication in the microenvirons of glioblastoma. Nat. Rev. Neurol., 2018, 14(8), 482-495.
[http://dx.doi.org/10.1038/s41582-018-0025-8] [PMID: 29985475]
[118]
Cavaliere, F.; Donno, C.; D’Ambrosi, N. Purinergic signaling: A common pathway for neural and mesenchymal stem cell maintenance and differentiation. Front. Cell. Neurosci., 2015, 9, 211.
[http://dx.doi.org/10.3389/fncel.2015.00211] [PMID: 26082684]
[119]
Lohman, A.W.; Billaud, M.; Isakson, B.E. Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc. Res., 2012, 95(3), 269-280.
[http://dx.doi.org/10.1093/cvr/cvs187] [PMID: 22678409]
[120]
Volonté, C.; D’Ambrosi, N. Membrane compartments and purinergic signalling: The purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters. FEBS J., 2009, 276(2), 318-329.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06793.x] [PMID: 19076212]
[121]
Trounson, A.; Thakar, R.G.; Lomax, G.; Gibbons, D. Clinical trials for stem cell therapies. BMC Med., 2011, 9(1), 52.
[http://dx.doi.org/10.1186/1741-7015-9-52] [PMID: 21569277]
[122]
Lodi, D.; Iannitti, T.; Palmieri, B. Stem cells in clinical practice: Applications and warnings. J. Exp. Clin. Cancer Res., 2011, 30(1), 9.
[http://dx.doi.org/10.1186/1756-9966-30-9] [PMID: 21241480]
[123]
Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391), 1145-1147.
[http://dx.doi.org/10.1126/science.282.5391.1145] [PMID: 9804556]
[124]
Pelacho, B.; Mazo, M.; Gavira, J.J.; Prósper, F. Adult stem cells: From new cell sources to changes in methodology. J. Cardiovasc. Transl. Res., 2011, 4(2), 154-160.
[http://dx.doi.org/10.1007/s12265-010-9245-z] [PMID: 21125433]
[125]
Yamanaka, S.; Blau, H.M. Nuclear reprogramming to a pluripotent state by three approaches. Nature, 2010, 465(7299), 704-712.
[http://dx.doi.org/10.1038/nature09229] [PMID: 20535199]
[126]
Passier, R.; van Laake, L.W.; Mummery, C.L. Stem-cell-based therapy and lessons from the heart. Nature, 2008, 453(7193), 322-329.
[http://dx.doi.org/10.1038/nature07040] [PMID: 18480813]
[127]
Dambrot, C.; Passier, R.; Atsma, D.; Mummery, C.L. Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models. Biochem. J., 2011, 434(1), 25-35.
[http://dx.doi.org/10.1042/BJ20101707] [PMID: 21269276]
[128]
Rodrigues, R.J.; Marques, J.M.; Cunha, R.A. Purinergic signalling and brain development. Semin. Cell Dev. Biol., 2019, 95, 34-41.
[http://dx.doi.org/10.1016/j.semcdb.2018.12.001] [PMID: 30529149]
[129]
Hofstetter, C.P.; Holmström, N.A.V.; Lilja, J.A.; Schweinhardt, P.; Hao, J.; Spenger, C.; Wiesenfeld-Hallin, Z.; Kurpad, S.N.; Frisén, J.; Olson, L. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat. Neurosci., 2005, 8(3), 346-353.
[http://dx.doi.org/10.1038/nn1405] [PMID: 15711542]
[130]
Uemura, R.; Xu, M.; Ahmad, N.; Ashraf, M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res., 2006, 98(11), 1414-1421.
[http://dx.doi.org/10.1161/01.RES.0000225952.61196.39] [PMID: 16690882]
[131]
Khakh, B.S.; Alan North, R. P2X receptors as cell-surface ATP sensors in health and disease. Nature, 2006, 442(7102), 527-532.
[http://dx.doi.org/10.1038/nature04886] [PMID: 16885977]
[132]
Junger, W.G. Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol., 2011, 11(3), 201-212.
[http://dx.doi.org/10.1038/nri2938] [PMID: 21331080]
[133]
Masoodifar, M.; Hajihashemi, S.; Pazhoohan, S.; Nazemi, S.; Mojadadi, M.S. Effect of the conditioned medium of mesenchymal stem cells on the expression levels of P2X4 and P2X7 purinergic receptors in the spinal cord of rats with neuropathic pain. Purinergic signal., 2021, 17(1), 143-150.
[134]
Surprenant, A.; North, R.A. Signaling at purinergic P2X receptors. Annu. Rev. Physiol., 2009, 71(1), 333-359.
[http://dx.doi.org/10.1146/annurev.physiol.70.113006.100630] [PMID: 18851707]
[135]
Carroll, W.A.; Donnelly-Roberts, D.; Jarvis, M.F. Selective P2X7 receptor antagonists for chronic inflammation and pain. Purinergic Signal., 2009, 5(1), 63-73.
[http://dx.doi.org/10.1007/s11302-008-9110-6] [PMID: 18568426]
[136]
Sak, K.; Boeynaems, J.M.; Everaus, H. Involvement of P2Y receptors in the differentiation of haematopoietic cells. J. Leukoc. Biol., 2003, 73(4), 442-447.
[http://dx.doi.org/10.1189/jlb.1102561] [PMID: 12660218]
[137]
Lemoli, R.M.; Ferrari, D.; Fogli, M.; Rossi, L.; Pizzirani, C.; Forchap, S.; Chiozzi, P.; Vaselli, D.; Bertolini, F.; Foutz, T.; Aluigi, M.; Baccarani, M.; Di Virgilio, F. Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo. Blood, 2004, 104(6), 1662-1670.
[http://dx.doi.org/10.1182/blood-2004-03-0834] [PMID: 15161674]
[138]
Rossi, L.; Manfredini, R.; Bertolini, F.; Ferrari, D.; Fogli, M.; Zini, R.; Salati, S.; Salvestrini, V.; Gulinelli, S.; Adinolfi, E.; Ferrari, S.; Di Virgilio, F.; Baccarani, M.; Lemoli, R.M. The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood, 2007, 109(2), 533-542.
[http://dx.doi.org/10.1182/blood-2006-01-035634] [PMID: 17008551]
[139]
Coppi, E.; Pugliese, A.M.; Urbani, S.; Melani, A.; Cerbai, E.; Mazzanti, B.; Bosi, A.; Saccardi, R.; Pedata, F. ATP modulates cell proliferation and elicits two different electrophysiological responses in human mesenchymal stem cells. Stem Cells, 2007, 25(7), 1840-1849.
[http://dx.doi.org/10.1634/stemcells.2006-0669] [PMID: 17446563]
[140]
Delarasse, C.; Gonnord, P.; Galante, M.; Auger, R.; Daniel, H.; Motta, I.; Kanellopoulos, J.M. Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. J. Neurochem., 2009, 109(3), 846-857.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06008.x] [PMID: 19250337]
[141]
Robson, S.C.; Sévigny, J.; Zimmermann, H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal., 2006, 2(2), 409-430.
[http://dx.doi.org/10.1007/s11302-006-9003-5] [PMID: 18404480]
[142]
Zhao, H.; Chen, Y.; Feng, H. P2X7 receptor-associated programmed cell death in the pathophysiology of hemorrhagic stroke. Curr. Neuropharmacol., 2018, 16(9), 1282-1295.
[http://dx.doi.org/10.2174/1570159X16666180516094500] [PMID: 29766811]
[143]
Shukla, V.; Zimmermann, H.; Wang, L.; Kettenmann, H.; Raab, S.; Hammer, K.; Sévigny, J.; Robson, S.C.; Braun, N. Functional expression of the ecto-ATPase NTPDase2 and of nucleotide receptors by neuronal progenitor cells in the adult murine hippocampus. J. Neurosci. Res., 2005, 80(5), 600-610.
[http://dx.doi.org/10.1002/jnr.20508] [PMID: 15884037]
[144]
Braun, N.; Sévigny, J.; Mishra, S.K.; Robson, S.C.; Barth, S.W.; Gerstberger, R.; Hammer, K.; Zimmermann, H. Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur. J. Neurosci., 2003, 17(7), 1355-1364.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02567.x] [PMID: 12713638]
[145]
Mishra, S.K.; Braun, N.; Shukla, V.; Füllgrabe, M.; Schomerus, C.; Korf, H.W.; Gachet, C.; Ikehara, Y.; Sévigny, J.; Robson, S.C.; Zimmermann, H. Extracellular nucleotide signaling in adult neural stem cells: Synergism with growth factor-mediated cellular proliferation. Development, 2006, 133(4), 675-684.
[http://dx.doi.org/10.1242/dev.02233] [PMID: 16436623]
[146]
Kermer, V.; Ritter, M.; Albuquerque, B.; Leib, C.; Stanke, M.; Zimmermann, H. Knockdown of tissue nonspecific alkaline phosphatase impairs neural stem cell proliferation and differentiation. Neurosci. Lett., 2010, 485(3), 208-211.
[http://dx.doi.org/10.1016/j.neulet.2010.09.013] [PMID: 20849921]
[147]
Langer, D.; Ikehara, Y.; Takebayashi, H.; Hawkes, R.; Zimmermann, H. The ectonucleotidases alkaline phosphatase and nucleoside triphosphate diphosphohydrolase 2 are associated with subsets of progenitor cell populations in the mouse embryonic, postnatal and adult neurogenic zones. Neuroscience, 2007, 150(4), 863-879.
[http://dx.doi.org/10.1016/j.neuroscience.2007.07.064] [PMID: 18031938]
[148]
Lin, J.H.C.; Takano, T.; Arcuino, G.; Wang, X.; Hu, F.; Darzynkiewicz, Z.; Nunes, M.; Goldman, S.A.; Nedergaard, M. Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev. Biol., 2007, 302(1), 356-366.
[http://dx.doi.org/10.1016/j.ydbio.2006.09.017] [PMID: 17188262]
[149]
Xie, X.; Sun, A.; Huang, Z.; Zhu, W.; Wang, S.; Zou, Y.; Ge, J. Another possible cell source for cardiac regenerative medicine: Reprogramming adult fibroblasts to cardiomyocytes and endothelial progenitor cells. Med. Hypotheses, 2011, 76(3), 365-367.
[http://dx.doi.org/10.1016/j.mehy.2010.10.041] [PMID: 21087827]
[150]
Martinez, E.C.; Kofidis, T. Adult stem cells for cardiac tissue engineering. J. Mol. Cell. Cardiol., 2011, 50(2), 312-319.
[http://dx.doi.org/10.1016/j.yjmcc.2010.08.009] [PMID: 20709074]
[151]
Beltrami, A.P.; Barlucchi, L.; Torella, D.; Baker, M.; Limana, F.; Chimenti, S.; Kasahara, H.; Rota, M.; Musso, E.; Urbanek, K.; Leri, A.; Kajstura, J.; Nadal-Ginard, B.; Anversa, P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 2003, 114(6), 763-776.
[http://dx.doi.org/10.1016/S0092-8674(03)00687-1] [PMID: 14505575]
[152]
Su, W.F.; Wu, F.; Jin, Z.H.; Gu, Y.; Chen, Y.T.; Fei, Y.; Chen, H.; Wang, Y.X.; Xing, L.Y.; Zhao, Y.Y.; Yuan, Y.; Tang, X.; Chen, G. Overexpression of P2X4 receptor in Schwann cells promotes motor and sensory functional recovery and remyelination via BDNF secretion after nerve injury. Glia, 2019, 67(1), 78-90.
[http://dx.doi.org/10.1002/glia.23527] [PMID: 30306657]
[153]
Martin, C.M.; Meeson, A.P.; Robertson, S.M.; Hawke, T.J.; Richardson, J.A.; Bates, S.; Goetsch, S.C.; Gallardo, T.D.; Garry, D.J. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol., 2004, 265(1), 262-275.
[http://dx.doi.org/10.1016/j.ydbio.2003.09.028] [PMID: 14697368]
[154]
Oh, H.; Bradfute, S.B.; Gallardo, T.D.; Nakamura, T.; Gaussin, V.; Mishina, Y.; Pocius, J.; Michael, L.H.; Behringer, R.R.; Garry, D.J.; Entman, M.L.; Schneider, M.D. Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci., 2003, 100(21), 12313-12318.
[http://dx.doi.org/10.1073/pnas.2132126100] [PMID: 14530411]
[155]
Hsieh, P.C.H.; Segers, V.F.M.; Davis, M.E.; MacGillivray, C.; Gannon, J.; Molkentin, J.D.; Robbins, J.; Lee, R.T. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med., 2007, 13(8), 970-974.
[http://dx.doi.org/10.1038/nm1618] [PMID: 17660827]
[156]
Huang, Z.; Xie, N.; Illes, P.; Di Virgilio, F.; Ulrich, H.; Semyanov, A.; Verkhratsky, A.; Sperlagh, B.; Yu, S.G.; Huang, C.; Tang, Y. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct. Target. Ther., 2021, 6(1), 162.
[http://dx.doi.org/10.1038/s41392-021-00553-z] [PMID: 33907179]
[157]
Lee, B.C.; Cheng, T.; Adams, G.B.; Attar, E.C.; Miura, N.; Lee, S.B.; Saito, Y.; Olszak, I.; Dombkowski, D.; Olson, D.P.; Hancock, J.; Choi, P.S.; Haber, D.A.; Luster, A.D.; Scadden, D.T. P2Y-like receptor, GPR105 (P2Y 14), identifies and mediates chemotaxis of bone-marrowhematopoietic stem cells. Genes Dev., 2003, 17(13), 1592-1604.
[http://dx.doi.org/10.1101/gad.1071503] [PMID: 12842911]
[158]
Headrick, J.P.; Hack, B.; Ashton, K.J. Acute adenosinergic cardioprotection in ischemic-reperfused hearts. Am. J. Physiol. Heart Circ. Physiol., 2003, 285(5), H1797-H1818.
[http://dx.doi.org/10.1152/ajpheart.00407.2003] [PMID: 14561676]
[159]
Burnstock, G.; Pelleg, A. Cardiac purinergic signalling in health and disease. Purinergic Signal., 2015, 11(1), 1-46.
[http://dx.doi.org/10.1007/s11302-014-9436-1] [PMID: 25527177]
[160]
Millart, H.; Alouane, L.; Oszust, F.; Chevallier, S.; Robinet, A. Involvement of P2Y receptors in pyridoxal-5′-phosphate-induced cardiac preconditioning. Fundam. Clin. Pharmacol., 2009, 23(3), 279-292.
[http://dx.doi.org/10.1111/j.1472-8206.2009.00677.x] [PMID: 19453760]
[161]
Procopio, M.C.; Lauro, R.; Nasso, C.; Carerj, S.; Squadrito, F.; Bitto, A.; Di Bella, G.; Micari, A.; Irrera, N.; Costa, F. Role of adenosine and purinergic receptors in myocardial infarction: Focus on different signal transduction pathways. Biomedicines, 2021, 9(2), 204.
[http://dx.doi.org/10.3390/biomedicines9020204] [PMID: 33670488]
[162]
Nishijima, S.; Sugaya, K.; Miyazato, M.; Kadekawa, K.; Oshiro, Y.; Uchida, A.; Hokama, S.; Ogawa, Y. Restoration of bladder contraction by bone marrow transplantation in rats with underactive bladder. Biomed. Res., 2007, 28(5), 275-280.
[http://dx.doi.org/10.2220/biomedres.28.275] [PMID: 18000341]
[163]
Huang, Y.C.; Shindel, A.W.; Ning, H.; Lin, G.; Harraz, A.M.; Wang, G.; Garcia, M.; Lue, T.F.; Lin, C.S. Adipose derived stem cells ameliorate hyperlipidemia associated detrusor overactivity in a rat model. J. Urol., 2010, 183(3), 1232-1240.
[http://dx.doi.org/10.1016/j.juro.2009.11.012] [PMID: 20096880]
[164]
De Coppi, P.; Callegari, A.; Chiavegato, A.; Gasparotto, L.; Piccoli, M.; Taiani, J.; Pozzobon, M.; Boldrin, L.; Okabe, M.; Cozzi, E.; Atala, A.; Gamba, P.; Sartore, S. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J. Urol., 2007, 177(1), 369-376.
[http://dx.doi.org/10.1016/j.juro.2006.09.103] [PMID: 17162093]
[165]
Burnstock, G.; Novak, I. Purinergic signalling and diabetes. Purinergic Signal., 2013, 9(3), 307-324.
[http://dx.doi.org/10.1007/s11302-013-9359-2] [PMID: 23546842]
[166]
Zhao, Z.; Kapoian, T.; Shepard, M.; Lianos, E.A. Adenosine-induced apoptosis in glomerular mesangial cells. Kidney Int., 2002, 61(4), 1276-1285.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00256.x] [PMID: 11918734]
[167]
Vonend, O.; Turner, C.M.; Chan, C.M.; Loesch, A.; Dell’Anna, G.C.; Srai, K.S.; Burnstock, G.; Unwin, R.J. Glomerular expression of the ATP-sensitive P2X receptor in diabetic and hypertensive rat models. KI, 2004, 66, 157-166.
[168]
Burnstock, G. Purinergic signalling and neurological diseases: An update. CNS.Neurol. Disord.Drug. Targ., 2017, 16(3), 257-265.
[169]
Yan, M.H.; Wang, X.; Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med., 2013, 62, 90-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.014] [PMID: 23200807]
[170]
Gui, Y.; Liu, H.; Zhang, L.; Lv, W.; Hu, X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget, 2015, 6(35), 37043-37053.
[http://dx.doi.org/10.18632/oncotarget.6158] [PMID: 26497684]
[171]
Valasani, K.R.; Chaney, M.O.; Day, V.W.; ShiDu Yan, S. Acetylcholinesterase inhibitors: Structure based design, synthesis, pharmacophore modeling, and virtual screening. J. Chem. Inf. Model., 2013, 53(8), 2033-2046.
[http://dx.doi.org/10.1021/ci400196z] [PMID: 23777291]
[172]
Sveinbjornsdottir, S. The clinical symptoms of Parkinson’s disease. J. Neurochem., 2016, 139(1), 318-324.
[http://dx.doi.org/10.1111/jnc.13691] [PMID: 27401947]
[173]
Burnstock, G. Purinergic signalling and disorders of the central nervous system. Nat. Rev. Drug Discov., 2008, 7(7), 575-590.
[http://dx.doi.org/10.1038/nrd2605] [PMID: 18591979]
[174]
Trujillo, C.A.; Schwindt, T.T.; Martins, A.H.; Alves, J.M.; Mello, L.E.; Ulrich, H. Novel perspectives of neural stem cell differentiation: From neurotransmitters to therapeutics. Cytometry A, 2009, 75A(1), 38-53.
[http://dx.doi.org/10.1002/cyto.a.20666] [PMID: 18988295]
[175]
Morley, J.F.; Hurtig, H.I. Current understanding and management of Parkinson disease: Five new things. Neurology, 2010, 75(18, Supplement 1)(1), S9-S15.
[http://dx.doi.org/10.1212/WNL.0b013e3181fb3628] [PMID: 21041778]
[176]
Jun, D.J.; Kim, K.T. Poster Session 2: Neurobiology; ATP-mediated necrotic volume increase (NVI) in substantia nigra dopaminergic neuron. Proc. Spring Conf. Soc. Biochem. Mol. Biol., 2004, 252-252.
[177]
Tóth, A.; Antal, Z.; Bereczki, D.; Sperlágh, B. Purinergic signalling in Parkinson’s disease: A multi-target system to combat neurodegeneration. Neurochem. Res., 2019, 44(10), 2413-2422.
[http://dx.doi.org/10.1007/s11064-019-02798-1] [PMID: 31054067]
[178]
Heine, C.; Wegner, A.; Grosche, J.; Allgaier, C.; Illes, P.; Franke, H. P2 receptor expression in the dopaminergic system of the rat brain during development. Neuroscience, 2007, 149(1), 165-181.
[http://dx.doi.org/10.1016/j.neuroscience.2007.07.015] [PMID: 17869006]
[179]
Scheibler, P.; Pesic, M.; Franke, H.; Reinhardt, R.; Wirkner, K.; Illes, P.; Nörenberg, W. P2X 2 and P2Y 1 immunofluorescence in rat neostriatal medium-spiny projection neurones and cholinergic interneurones is not linked to respective purinergic receptor function. Br. J. Pharmacol., 2004, 143(1), 119-131.
[http://dx.doi.org/10.1038/sj.bjp.0705916] [PMID: 15345659]
[180]
Zona, C.; Marchetti, C.; Volontè, C.; Mercuri, N.B.; Bernardi, G. Effect of P2 purinoceptor antagonists on kainate-induced currents in rat cultured neurons. Brain Res., 2000, 882(1-2), 26-35.
[http://dx.doi.org/10.1016/S0006-8993(00)02781-5] [PMID: 11056181]
[181]
Krügel, U.; Kittner, H.; Illes, P. Adenosine 5′-triphosphate-induced dopamine release in the rat nucleus accumbens in vivo. Neurosci. Lett., 1999, 265(1), 49-52.
[http://dx.doi.org/10.1016/S0304-3940(99)00206-2] [PMID: 10327203]
[182]
Krügel, U.; Kittner, H.; Franke, H.; Illes, P. Accelerated functional recovery after neuronal injury by P2 receptor blockade. Eur. J. Pharmacol., 2001, 420(2-3), R3-R4.
[http://dx.doi.org/10.1016/S0014-2999(01)01001-9] [PMID: 11408042]
[183]
Gaspard, N.; Vanderhaeghen, P. From stem cells to neural networks: Recent advances and perspectives for neurodevelopmental disorders. Dev. Med. Child Neurol., 2011, 53(1), 13-17.
[http://dx.doi.org/10.1111/j.1469-8749.2010.03827.x] [PMID: 21087236]
[184]
Milosevic, J.; Brandt, A.; Roemuss, U.; Arnold, A.; Wegner, F.; Schwarz, S.C.; Storch, A.; Zimmermann, H.; Schwarz, J. Uracil nucleotides stimulate human neural precursor cell proliferation and dopaminergic differentiation: involvement of MEK/ERK signalling. J. Neurochem., 2006, 99(3), 913-923.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04132.x] [PMID: 17076658]
[185]
Ralevic, V.; Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev., 1998, 50(3), 413-492.
[PMID: 9755289]
[186]
Morelli, M.; Di Paolo, T.; Wardas, J.; Calon, F.; Xiao, D.; Schwarzschild, M.A. Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog. Neurobiol., 2007, 83(5), 293-309.
[http://dx.doi.org/10.1016/j.pneurobio.2007.07.001] [PMID: 17826884]
[187]
Haughey, N.J.; Mattson, M.P. Alzheimer’s amyloid beta-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes. Neuromolecular Med., 2003, 3(3), 173-180.
[http://dx.doi.org/10.1385/NMM:3:3:173] [PMID: 12835512]
[188]
Thathiah, A.; De Strooper, B. The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat. Rev. Neurosci., 2011, 12(2), 73-87.
[http://dx.doi.org/10.1038/nrn2977] [PMID: 21248787]
[189]
Zhang, Y.X.; Yamashita, H.; Ohshita, T.; Sawamoto, N.; Nakamura, S. ATP increases extracellular dopamine level through stimulation of P2Y purinoceptors in the rat striatum. Brain Res., 1995, 691(1-2), 205-212.
[http://dx.doi.org/10.1016/0006-8993(95)00676-H] [PMID: 8590054]
[190]
Franke, H.; Illes, P. Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol. Ther., 2006, 109(3), 297-324.
[http://dx.doi.org/10.1016/j.pharmthera.2005.06.002] [PMID: 16102837]
[191]
Sanz, J.M.; Chiozzi, P.; Ferrari, D.; Colaianna, M.; Idzko, M.; Falzoni, S.; Fellin, R.; Trabace, L.; Di Virgilio, F. Activation of microglia by amyloid beta requires P2X7 receptor expression. J. Immunol., 2009, 182(7), 4378-4385.
[http://dx.doi.org/10.4049/jimmunol.0803612] [PMID: 19299738]
[192]
McLarnon, J.G.; Ryu, J.K.; Walker, D.G.; Choi, H.B. Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J. Neuropathol. Exp. Neurol., 2006, 65(11), 1090-1097.
[http://dx.doi.org/10.1097/01.jnen.0000240470.97295.d3] [PMID: 17086106]
[193]
Rampe, D.; Wang, L.; Ringheim, G.E. P2X7 receptor modulation of β-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J. Neuroimmunol., 2004, 147(1-2), 56-61.
[http://dx.doi.org/10.1016/j.jneuroim.2003.10.014] [PMID: 14741428]
[194]
Majumder, P.; Trujillo, C.A.; Lopes, C.G.; Resende, R.R.; Gomes, K.N.; Yuahasi, K.K.; Britto, L.R.G.; Ulrich, H. New insights into purinergic receptor signaling in neuronal differentiation, neuroprotection, and brain disorders. Purinergic Signal., 2007, 3(4), 317-331.
[http://dx.doi.org/10.1007/s11302-007-9074-y] [PMID: 18404445]
[195]
Haughey, N.J.; Nath, A.; Chan, S.L.; Borchard, A.C.; Rao, M.S.; Mattson, M.P. Disruption of neurogenesis by amyloid β-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J. Neurochem., 2002, 83(6), 1509-1524.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01267.x] [PMID: 12472904]
[196]
Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer’s disease. Lancet, 2011, 377(9770), 1019-1031.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[197]
Resende, R.R.; Majumder, P.; Gomes, K.N.; Britto, L.R.G.; Ulrich, H. P19 embryonal carcinoma cells as in vitro model for studying purinergic receptor expression and modulation of N-methyl-daspartate–glutamate and acetylcholine receptors during neuronal differentiation. Neuroscience, 2007, 146(3), 1169-1181.
[http://dx.doi.org/10.1016/j.neuroscience.2007.02.041] [PMID: 17418494]
[198]
Lindvall, O.; Kokaia, Z. Stem cells in human neurodegenerative disorders: Time for clinical translation? J. Clin. Invest., 2010, 120(1), 29-40.
[http://dx.doi.org/10.1172/JCI40543] [PMID: 20051634]
[199]
Ryu, J.K.; Cho, T.; Wang, Y.T.; McLarnon, J.G. Neural progenitor cells attenuate inflammatory reactivity and neuronal loss in an animal model of inflamed AD brain. J. Neuroinflammation, 2009, 6(1), 39.
[http://dx.doi.org/10.1186/1742-2094-6-39] [PMID: 20030829]
[200]
Chuang, T.T. Neurogenesis in mouse models of Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(10), 872-880.
[http://dx.doi.org/10.1016/j.bbadis.2009.12.008] [PMID: 20056145]
[201]
Glaser, T.; Cappellari, A.R.; Pillat, M.M.; Iser, I.C.; Wink, M.R.; Battastini, A.M.O.; Ulrich, H. Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signal., 2012, 8(3), 523-537.
[http://dx.doi.org/10.1007/s11302-011-9282-3] [PMID: 22143354]
[202]
Doná, F.; Ulrich, H.; Persike, D.S.; Conceição, I.M.; Blini, J.P.; Cavalheiro, E.A.; Fernandes, M.J.S. Alteration of purinergic P2X4 and P2X7 receptor expression in rats with temporal-lobe epilepsy induced by pilocarpine. Epilepsy Res., 2009, 83(2-3), 157-167.
[http://dx.doi.org/10.1016/j.eplepsyres.2008.10.008] [PMID: 19084381]
[203]
Burnstock, G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev., 2007, 87(2), 659-797.
[http://dx.doi.org/10.1152/physrev.00043.2006] [PMID: 17429044]
[204]
Ciccarelli, R.; Ballerini, P.; Sabatino, G.; Rathbone, M.P.; D’Onofrio, M.; Caciagli, F.; Di Iorio, P. Involvement of astrocytes in purine‐mediated reparative processes in the brain. Int. J. Dev. Neurosci., 2001, 19(4), 395-414.
[http://dx.doi.org/10.1016/S0736-5748(00)00084-8] [PMID: 11378300]
[205]
Chu, K.; Kim, M.; Jung, K.H.; Jeon, D.; Lee, S.T.; Kim, J.; Jeong, S.W.; Kim, S.U.; Lee, S.K.; Shin, H.S.; Roh, J.K. Human neural stem cell transplantation reduces spontaneous recurrent seizures following pilocarpine-induced status epilepticus in adult rats. Brain Res., 2004, 1023(2), 213-221.
[http://dx.doi.org/10.1016/j.brainres.2004.07.045] [PMID: 15374747]
[206]
Güttinger, M.; Fedele, D.; Koch, P.; Padrun, V.; Pralong, W.F.; Brüstle, O.; Boison, D. Suppression of kindled seizures by paracrine adenosine release from stem cell-derived brain implants. Epilepsia, 2005, 46(8), 1162-1169.
[http://dx.doi.org/10.1111/j.1528-1167.2005.61804.x] [PMID: 16060924]
[207]
Franke, H.; Günther, A.; Grosche, J.; Schmidt, R.; Rossner, S.; Reinhardt, R.; Faber-Zuschratter, H.; Schneider, D.; Illes, P. P2X7 receptor expression after ischemia in the cerebral cortex of rats. J. Neuropathol. Exp. Neurol., 2004, 63(7), 686-699.
[http://dx.doi.org/10.1093/jnen/63.7.686] [PMID: 15290894]
[208]
Abbracchio, M.P.; Burnstock, G.; Verkhratsky, A.; Zimmermann, H. Purinergic signalling in the nervous system: An overview. Trends Neurosci., 2009, 32(1), 19-29.
[http://dx.doi.org/10.1016/j.tins.2008.10.001] [PMID: 19008000]
[209]
Ceruti, S.; Villa, G.; Genovese, T.; Mazzon, E.; Longhi, R.; Rosa, P.; Bramanti, P.; Cuzzocrea, S.; Abbracchio, M.P. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury. Brain, 2009, 132(8), 2206-2218.
[http://dx.doi.org/10.1093/brain/awp147] [PMID: 19528093]
[210]
Cunha, R.A. Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade. Purinergic Signal., 2005, 1(2), 111-134.
[http://dx.doi.org/10.1007/s11302-005-0649-1] [PMID: 18404497]
[211]
Nedeljkovic, N.; Bjelobaba, I.; Subasic, S.; Lavrnja, I.; Pekovic, S.; Stojkov, D.; Vjestica, A.; Rakic, L.; Stojiljkovic, M. Up-regulation of ectonucleotidase activity after cortical stab injury in rats. Cell Biol. Int., 2006, 30(6), 541-546.
[http://dx.doi.org/10.1016/j.cellbi.2006.03.001] [PMID: 16672190]
[212]
Burnstock, G. An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology, 2016, 104, 4-17.
[http://dx.doi.org/10.1016/j.neuropharm.2015.05.031] [PMID: 26056033]
[213]
Kanitakis, J. Anatomy, histology and immunohistochemistry of normal human skin. Eur. J. Dermatol., 2002, 12(4), 390-399.
[PMID: 12095893]
[214]
Fujishita, K.; Koizumi, S.; Inoue, K. Upregulation of P2Y2 receptors by retinoids in normal human epidermal keratinocytes. Purinergic Signal., 2006, 2(3), 491-498.
[http://dx.doi.org/10.1007/s11302-005-7331-5] [PMID: 18404486]
[215]
Holzer, A.M.; Granstein, R.D. Role of extracellular adenosine triphosphate in human skin. J. Cutan. Med. Surg., 2004, 8(2), 90-96.
[http://dx.doi.org/10.1177/120347540400800203] [PMID: 15129319]
[216]
Greig, A.V.H.; James, S.E.; McGrouther, D.A.; Terenghi, G.; Burnstock, G. Purinergic receptor expression in the regenerating epidermis in a rat model of normal and delayed wound healing. Exp. Dermatol., 2003, 12(6), 860-871.
[http://dx.doi.org/10.1111/j.0906-6705.2003.00110.x] [PMID: 14714568]
[217]
Greig, A.V.H.; Linge, C.; Cambrey, A.; Burnstock, G. Purinergic receptors are part of a signaling system for keratinocyte proliferation, differentiation, and apoptosis in human fetal epidermis. J. Invest. Dermatol., 2003, 121(5), 1145-1149.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12567.x] [PMID: 14708618]
[218]
Inoue, K.; Denda, M.; Tozaki, H.; Fujishita, K.; Koizumi, S.; Inoue, K. Characterization of multiple P2X receptors in cultured normal human epidermal keratinocytes. J. Invest. Dermatol., 2005, 124(4), 756-763.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23683.x] [PMID: 15816834]
[219]
Burnstock, G.; Verkhratsky, A. Long-term (trophic) purinergic signalling: Purinoceptors control cell proliferation, differentiation and death. Cell Death Dis., 2010, 1(1), e9.
[http://dx.doi.org/10.1038/cddis.2009.11] [PMID: 21364628]
[220]
Volonté, C.; Amadio, S.; D’Ambrosi, N.; Colpi, M.; Burnstock, G. P2 receptor web: Complexity and fine-tuning. Pharmacol. Ther., 2006, 112(1), 264-280.
[http://dx.doi.org/10.1016/j.pharmthera.2005.04.012] [PMID: 16780954]
[221]
Snyder, J.C.; Teisanu, R.M.; Stripp, B.R. Endogenous lung stem cells and contribution to disease. J. Pathol., 2009, 217(2), 254-264.
[http://dx.doi.org/10.1002/path.2473] [PMID: 19039828]
[222]
Chistiakov, D.A. Endogenous and exogenous stem cells: A role in lung repair and use in airway tissue engineering and transplantation. J. Biomed. Sci., 2010, 17(1), 92.
[http://dx.doi.org/10.1186/1423-0127-17-92] [PMID: 21138559]
[223]
Sueblinvong, V.; Weiss, D.J. Stem cells and cell therapy approaches in lung biology and diseases. Transl. Res., 2010, 156(3), 188-205.
[http://dx.doi.org/10.1016/j.trsl.2010.06.007] [PMID: 20801416]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy