Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Cortisol as a Target for Treating Mental Disorders: A Promising Avenue for Therapy

Author(s): Vijay K Patel, Aayush Vaishnaw, Ekta Shirbhate, Rakesh Kore, Vaibhav Singh, Ravichandran Veerasamy and Harish Rajak*

Volume 24, Issue 6, 2024

Published on: 10 October, 2023

Page: [588 - 600] Pages: 13

DOI: 10.2174/0113895575262104230928042150

Price: $65

Abstract

Cortisol, commonly known as the "stress hormone," plays a critical role in the body's response to stress. Elevated cortisol levels have been associated with various mental disorders, including anxiety, depression, and post-traumatic stress disorder. Consequently, researchers have explored cortisol modulation as a promising avenue for treating these conditions. However, the availability of research on cortisol as a therapeutic option for mental disorders is limited, and existing studies employ diverse methodologies and outcome measures. This review article aimed to provide insights into different treatment approaches, both pharmacological and non-pharmacological, which can effectively modulate cortisol levels. Pharmacological interventions involve the use of substances, such as somatostatin analogs, dopamine agonists, corticotropin-releasing hormone antagonists, and cortisol synthesis inhibitors. Additionally, non-pharmacological techniques, including cognitivebehavioral therapy, herbs and supplements, transcranial magnetic stimulation, lifestyle changes, and surgery, have been investigated to reduce cortisol levels. The emerging evidence suggests that cortisol modulation could be a promising treatment option for mental disorders. However, more research is needed to fully understand the effectiveness and safety of these therapies.

Keywords: Cortisol, mental disorders, anxiety, depression, pharmacological interventions, non-pharmacological interventions.

Graphical Abstract
[1]
Nijsten, K.; van der Minnen, L.M.; Dean, C.; Bais, J.M.J.; Ris-Stalpers, C.; van Eekelen, R.; Bremer, H.A.; van der Ham, D.P.; Heidema, W.M.; Huisjes, A.; Kleiverda, G.; Kuppens, S.M.; van Laar, J.O.E.H.; Langenveld, J.; van der Made, F.; Papatsonis, D.; Pelinck, M.J.; Pernet, P.J.; van Rheenen-Flach, L.; Rijnders, R.J.; Scheepers, H.C.J.; Vogelvang, T.; Mol, B.W.; Olff, M.; Roseboom, T.J.; Koot, M.H.; Grooten, I.J.; Painter, R.C. Depression, anxiety, and post-traumatic stress disorder symptoms after hyperemesis gravidarum: A prospective cohort study. J. Matern. Fetal Neonatal Med., 2022, 35(25), 10055-10063.
[http://dx.doi.org/10.1080/14767058.2022.2089550] [PMID: 35726837]
[2]
Junaedi, F.; Hanurawan, F.; Setiowati, A.J.; Ramli, M. Reducing the new inmates’ anxiety through rational emotive behavior therapy with patronage counseling technique. Emerg. Sci. J., 2022, 6(2), 306-321.
[http://dx.doi.org/10.28991/ESJ-2022-06-02-08]
[3]
Sankova, M.V.; Kytko, O.V.; Vasil’ev, Y.L.; Aleshkina, O.Y.; Diachkova, E.Y.; Darawsheh, H.M.; Kolsanov, A.V.; Dydykin, S.S. Medical students’ reactive anxiety as a quality criterion for distance learning during the sars-cov-2 pandemic. Emer. Sci. J., 2021, 5, 86-93.
[http://dx.doi.org/10.28991/esj-2021-SPER-07]
[4]
Lee, D.Y.; Kim, E.; Choi, M.H. Technical and clinical aspects of cortisol as a biochemical marker of chronic stress. BMB Rep., 2015, 48(4), 209-216.
[http://dx.doi.org/10.5483/BMBRep.2015.48.4.275] [PMID: 25560699]
[5]
Thau, L.; Gandhi, J.; Sharma, S. Physiology, Cortisol.StatPearls; StatPearls Publishing, StatPearls Publishing LLC: Treasure Island, FL, 2022.
[6]
Patel, V.K.; Shirbhate, E.; Patel, P.; Veerasamy, R.; Sharma, P.C.; Rajak, H. Corticosteroids for treatment of COVID-19: Effect, evidence, expectation and extent. Beni. Suef Univ. J. Basic Appl. Sci., 2021, 10(1), 78.
[http://dx.doi.org/10.1186/s43088-021-00165-0] [PMID: 34751250]
[7]
Anderson, N.B. Levels of analysis in health science. A framework for integrating sociobehavioral and biomedical research. Ann. N. Y. Acad. Sci., 1998, 840(1), 563-576.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb09595.x] [PMID: 9629283]
[8]
Whirledge, S.; Cidlowski, J.A. A role for glucocorticoids in stress-impaired reproduction: Beyond the hypothalamus and pituitary. Endocrinology, 2013, 154(12), 4450-4468.
[http://dx.doi.org/10.1210/en.2013-1652] [PMID: 24064362]
[9]
Dziurkowska, E.; Wesolowski, M. Cortisol as a biomarker of mental disorder severity. J. Clin. Med., 2021, 10(21), 5204.
[http://dx.doi.org/10.3390/jcm10215204] [PMID: 34768724]
[10]
Hasler, G. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians? World Psychiatry, 2010, 9(3), 155-161.
[http://dx.doi.org/10.1002/j.2051-5545.2010.tb00298.x] [PMID: 20975857]
[11]
Druzhkova, T.A.; Yakovlev, A.A.; Rider, F.K.; Zinchuk, M.S.; Guekht, A.B.; Gulyaeva, N.V. Elevated serum cortisol levels in patients with focal epilepsy, depression, and comorbid epilepsy and depression. Int. J. Mol. Sci., 2022, 23(18), 10414.
[http://dx.doi.org/10.3390/ijms231810414] [PMID: 36142325]
[12]
Kim, E.J.; Pellman, B.; Kim, J.J. Stress effects on the hippocampus: A critical review. Learn. Mem., 2015, 22(9), 411-416.
[http://dx.doi.org/10.1101/lm.037291.114] [PMID: 26286651]
[13]
Buckley, T.M.; Schatzberg, A.F. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: Normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J. Clin. Endocrinol. Metab., 2005, 90(5), 3106-3114.
[http://dx.doi.org/10.1210/jc.2004-1056] [PMID: 15728214]
[14]
Mitra, A.; Soman, B.; Gaitonde, R.; Singh, G.; Roy, A. Data science methods to develop decision support systems for real-time monitoring of COVID-19 outbreak. J. Human Earth Future, 2022, 3(2), 223-236.
[http://dx.doi.org/10.28991/HEF-2022-03-02-08]
[15]
McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav., 2003, 43(1), 2-15.
[http://dx.doi.org/10.1016/S0018-506X(02)00024-7] [PMID: 12614627]
[16]
Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 1992, 267(9), 1244-1252.
[http://dx.doi.org/10.1001/jama.1992.03480090092034] [PMID: 1538563]
[17]
McEwen, B.S. The neurobiology of stress: From serendipity to clinical relevance11Published on the World Wide Web on 22 November 2000. Brain Res., 2000, 886(1-2), 172-189.
[http://dx.doi.org/10.1016/S0006-8993(00)02950-4] [PMID: 11119695]
[18]
Kumar, U.; Singh, S. Role of somatostatin in the regulation of central and peripheral factors of satiety and obesity. Int. J. Mol. Sci., 2020, 21(7), 2568.
[http://dx.doi.org/10.3390/ijms21072568] [PMID: 32272767]
[19]
Song, Y.H.; Yoon, J.; Lee, S.H. The role of neuropeptide somatostatin in the brain and its application in treating neurological disorders. Exp. Mol. Med., 2021, 53(3), 328-338.
[http://dx.doi.org/10.1038/s12276-021-00580-4] [PMID: 33742131]
[20]
Lin, L.C.; Sibille, E. Reduced brain somatostatin in mood disorders: A common pathophysiological substrate and drug target? Front. Pharmacol., 2013, 4, 110.
[http://dx.doi.org/10.3389/fphar.2013.00110] [PMID: 24058344]
[21]
Engin, E.; Treit, D. Anxiolytic and antidepressant actions of somatostatin: The role of sst2 and sst3 receptors. Psychopharmacology (Berl.), 2009, 206(2), 281-289.
[http://dx.doi.org/10.1007/s00213-009-1605-5] [PMID: 19609508]
[22]
Patel, Y.C. Somatostatin and its receptor family. Front. Neuroendocrinol., 1999, 20(3), 157-198.
[http://dx.doi.org/10.1006/frne.1999.0183] [PMID: 10433861]
[23]
Hofland, L.J.; Lamberts, S.W.J.; Feelders, R.A. Role of somatostatin receptors in normal and tumoral pituitary corticotropic cells. Neuroendocrinology, 2010, 92(Suppl. 1), 11-16.
[http://dx.doi.org/10.1159/000314296] [PMID: 20829612]
[24]
Bo, Q.; Yang, F.; Li, Y.; Meng, X.; Zhang, H.; Zhou, Y.; Ling, S.; Sun, D.; Lv, P.; Liu, L.; Shi, P.; Tian, C. Structural insights into the activation of somatostatin receptor 2 by cyclic SST analogues. Cell Discov., 2022, 8(1), 47.
[http://dx.doi.org/10.1038/s41421-022-00405-2] [PMID: 35595746]
[25]
Gatto, F.; Barbieri, F.; Arvigo, M.; Thellung, S.; Amarù, J.; Albertelli, M.; Ferone, D.; Florio, T. Biological and biochemical basis of the differential efficacy of first and second generation somatostatin receptor ligands in neuroendocrine neoplasms. Int. J. Mol. Sci., 2019, 20(16), 3940.
[http://dx.doi.org/10.3390/ijms20163940] [PMID: 31412614]
[26]
Ben-Shlomo, A.; Melmed, S. Pasireotide--a somatostatin analog for the potential treatment of acromegaly, neuroendocrine tumors and Cushing’s disease. IDrugs, 2007, 10(12), 885-895.
[PMID: 18041687]
[27]
Rinke, A.; Müller, H.H.; Schade-Brittinger, C.; Klose, K.J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.F.; Bläker, M.; Harder, J.; Arnold, C.; Gress, T.; Arnold, R. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the PROMID Study Group. J. Clin. Oncol., 2009, 27(28), 4656-4663.
[http://dx.doi.org/10.1200/JCO.2009.22.8510] [PMID: 19704057]
[28]
Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; Rindi, G.; Langley, A.; Martinez, S.; Blumberg, J.; Ruszniewski, P. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med., 2014, 371(3), 224-233.
[http://dx.doi.org/10.1056/NEJMoa1316158] [PMID: 25014687]
[29]
Scheich, B.; Gaszner, B.; Kormos, V.; László, K.; Ádori, C.; Borbély, É.; Hajna, Z.; Tékus, V.; Bölcskei, K.; Ábrahám, I.; Pintér, E.; Szolcsányi, J.; Helyes, Z. Somatostatin receptor subtype 4 activation is involved in anxiety and depression-like behavior in mouse models. Neuropharmacology, 2016, 101, 204-215.
[http://dx.doi.org/10.1016/j.neuropharm.2015.09.021] [PMID: 26387439]
[30]
Adamcyzk, I.; Kúkeľová, D.; Just, S.; Giovannini, R.; Sigrist, H.; Amport, R.; Cuomo-Haymour, N.; Poggi, G.; Pryce, C.R. Somatostatin receptor 4 agonism normalizes stress-related excessive amygdala glutamate release and pavlovian aversion learning and memory in ro-dents. Biol. Psychiatry Glob. Open. Sci., 2022, 2(4), 470-479.
[31]
Gomes-Porras, M.; Cárdenas-Salas, J.; Álvarez-Escolá, C. Somatostatin analogs in clinical practice: A Review. Int. J. Mol. Sci., 2020, 21(5), 1682.
[http://dx.doi.org/10.3390/ijms21051682] [PMID: 32121432]
[32]
Vapreotide: BMY 41606, RC 160, Sanvar. Drugs R D., 2003, 4(5), 326-330.
[http://dx.doi.org/10.2165/00126839-200304050-00010] [PMID: 12952505]
[33]
Dimech, J.; Feniuk, W.; Humphrey, P.P.A. Antagonist effects of seglitide (MK 678) at somatostatin receptors in guinea-pig isolated right atria. Br. J. Pharmacol., 1993, 109(4), 898-899.
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb13703.x] [PMID: 8104651]
[34]
Juárez Olguín, H.; Calderón Guzmán, D.; Hernández García, E.; Barragán Mejía, G. The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid. Med. Cell. Longev., 2016, 2016, 1-13.
[http://dx.doi.org/10.1155/2016/9730467] [PMID: 26770661]
[35]
Bromberg-Martin, E.S.; Matsumoto, M.; Hikosaka, O. Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 2010, 68(5), 815-834.
[http://dx.doi.org/10.1016/j.neuron.2010.11.022] [PMID: 21144997]
[36]
Petrossians, P.; Thonnard, A.S.; Beckers, A. Medical treatment in Cushing’s syndrome: Dopamine agonists and cabergoline. Neuroendocrinology, 2010, 92(Suppl. 1), 116-119.
[http://dx.doi.org/10.1159/000317716] [PMID: 20829631]
[37]
Leentjens, A.F. The role of dopamine agonists in the treatment of depression in patients with Parkinson’s disease: A systematic review. Drugs, 2011, 71(3), 273-286.
[http://dx.doi.org/10.2165/11585380-000000000-00000] [PMID: 21319866]
[38]
Al-harbi, K.S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Prefer. Adherence, 2012, 6, 369-388.
[http://dx.doi.org/10.2147/PPA.S29716] [PMID: 22654508]
[39]
Zarrindast, M.R.; Khakpai, F. The Modulatory Role of Dopamine in Anxiety-like Behavior. Arch. Iran Med., 2015, 18(9), 591-603.
[PMID: 26317601]
[40]
Rektorová, I.; Rektor, I.; Bareš, M.; Dostál, V.; Ehler, E.; Fanfrdlová, Z.; Fiedler, J.; Klajblová, H.; Kulišt’ák, P.; Ressner, P.; Svátová, J.; Urbánek, K.; Velísková, J. Pramipexole and pergolide in the treatment of depression in Parkinson’s disease: A national multicentre prospective randomized study. Eur. J. Neurol., 2003, 10(4), 399-406.
[http://dx.doi.org/10.1046/j.1468-1331.2003.00612.x] [PMID: 12823492]
[41]
Benes, H.; Mattern, W.; Peglau, I.; Dreykluft, T.; Bergmann, L.; Hansen, C.; Kohnen, R.; Banik, N.; Schoen, S.W.; Hornyak, M. Ropinirole improves depressive symptoms and restless legs syndrome severity in RLS patients: A multicentre, randomized, placebo-controlled study. J. Neurol., 2011, 258(6), 1046-1054.
[http://dx.doi.org/10.1007/s00415-010-5879-7] [PMID: 21188406]
[42]
Naz, F.; Malik, A.; Riaz, M.; Mahmood, Q.; Mehmood, M.H.; Rasool, G.; Mahmood, Z.; Abbas, M. Bromocriptine therapy: Review of mechanism of action, safety and tolerability. Clin. Exp. Pharmacol. Physiol., 2022, 49(8), 903-922.
[http://dx.doi.org/10.1111/1440-1681.13678] [PMID: 35635035]
[43]
Hori, H.; Kunugi, H. Dopamine agonist-responsive depression. Psychogeriatr, 2013, 13(3), 189-195.
[44]
Franco-Chaves, J.A.; Mateus, C.F.; Luckenbaugh, D.A.; Martinez, P.E.; Mallinger, A.G.; Zarate, C.A., Jr Combining a dopamine agonist and selective serotonin reuptake inhibitor for the treatment of depression: A double-blind, randomized pilot study. J. Affect. Disord., 2013, 149(1-3), 319-325.
[http://dx.doi.org/10.1016/j.jad.2013.02.003] [PMID: 23517885]
[45]
Van Meter, A.R.; Perez-Rodriguez, M.M.; Braga, R.J.; Shanahan, M.; Hanna, L.; Malhotra, A.K.; Burdick, K.E. Pramipexole to improve cognition in bipolar disorder. J. Clin. Psychopharmacol., 2021, 41(4), 421-427.
[http://dx.doi.org/10.1097/JCP.0000000000001407] [PMID: 33956703]
[46]
Zoumakis, E.; Chrousos, G.P. Corticotropin-releasing hormone receptor antagonists: An update. Endocr. Dev., 2010, 17, 36-43.
[http://dx.doi.org/10.1159/000262526] [PMID: 19955754]
[47]
Reul, J.M.H.M.; Holsboer, F. On the role of corticotropin-releasing hormone receptors in anxiety and depression. Dialogues Clin. Neurosci., 2002, 4(1), 31-46.
[http://dx.doi.org/10.31887/DCNS.2002.4.1/jreul] [PMID: 22033745]
[48]
Ising, M.; Holsboer, F. CRH1 receptor antagonists for the treatment of depression and anxiety. Exp. Clin. Psychopharmacol., 2007, 15(6), 519-528.
[http://dx.doi.org/10.1037/1064-1297.15.6.519] [PMID: 18179304]
[49]
Zorrilla, E.P.; Koob, G.F. Progress in corticotropin-releasing factor-1 antagonist development. Drug Discov. Today, 2010, 15(9-10), 371-383.
[http://dx.doi.org/10.1016/j.drudis.2010.02.011] [PMID: 20206287]
[50]
Gilligan, P.J.; Robertson, D.W.; Zaczek, R. Corticotropin releasing factor (CRF) receptor modulators: Progress and opportunities for new therapeutic agents. J. Med. Chem., 2000, 43(9), 1641-1660.
[http://dx.doi.org/10.1021/jm990590f] [PMID: 10794681]
[51]
Torres-Reverón, A.; Rana, M.; Gorabi, V.; Rivera-Lopez, L.L.; Appleyard, C.B. Short treatment with antalarmin alters adrenal gland receptors in the rat model of endometriosis. PLoS One, 2020, 15(1), e0227456.
[http://dx.doi.org/10.1371/journal.pone.0227456] [PMID: 31935235]
[52]
Horn, T.L.; Harder, J.B.; Johnson, W.D.; Curry, P.T.; Parchment, R.E.; Morrissey, R.L.; Mellick, P.W.; Calis, K.A.; Gold, P.W.; Rice, K.C.; Contoreggi, C.; Charney, D.S.; Cizza, G.; Glaze, E.R.; Tomaszewski, J.E.; McCormick, D.L. Integration of in vivo and in vitro approaches to characterize the toxicity of Antalarmin, a corticotropin-releasing hormone receptor antagonist. Toxicology, 2008, 248(1), 8-17.
[http://dx.doi.org/10.1016/j.tox.2008.03.002] [PMID: 18423834]
[53]
Seymour, P.A.; Schmidt, A.W.; Schulz, D.W. The pharmacology of CP-154,526, a non-peptide antagonist of the CRH1 receptor: A review. CNS Drug Rev., 2003, 9(1), 57-96.
[http://dx.doi.org/10.1111/j.1527-3458.2003.tb00244.x] [PMID: 12595912]
[54]
Li, Y.W.; Fitzgerald, L.; Wong, H.; Lelas, S.; Zhang, G.; Lindner, M.D.; Wallace, T.; McElroy, J.; Lodge, N.J.; Gilligan, P.; Zaczek, R. The pharmacology of DMP696 and DMP904, non-peptidergic CRF1 receptor antagonists. CNS Drug Rev., 2005, 11(1), 21-52.
[http://dx.doi.org/10.1111/j.1527-3458.2005.tb00034.x] [PMID: 15867951]
[55]
Künzel, H.E.; Zobel, A.W.; Nickel, T.; Ackl, N.; Uhr, M.; Sonntag, A.; Ising, M.; Holsboer, F. Treatment of depression with the CRH-1-receptor antagonist R121919: Endocrine changes and side effects. J. Psychiatr. Res., 2003, 37(6), 525-533.
[http://dx.doi.org/10.1016/S0022-3956(03)00070-0] [PMID: 14563384]
[56]
Lu, N.Z.; Wardell, S.E.; Burnstein, K.L.; Defranco, D.; Fuller, P.J.; Giguere, V.; Hochberg, R.B.; McKay, L.; Renoir, J.M.; Weigel, N.L.; Wilson, E.M.; McDonnell, D.P.; Cidlowski, J.A. International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: Glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol. Rev., 2006, 58(4), 782-797.
[http://dx.doi.org/10.1124/pr.58.4.9] [PMID: 17132855]
[57]
Raglan, G.B.; Schmidt, L.A.; Schulkin, J. The role of glucocorticoids and corticotropin-releasing hormone regulation on anxiety symptoms and response to treatment. Endocr. Connect., 2017, 6(2), R1-R7.
[http://dx.doi.org/10.1530/EC-16-0100] [PMID: 28119322]
[58]
Chen, J.; Wang, Z.; Zhang, S.; Chu, S.; Mou, Z.; Chen, N. The effects of glucocorticoids on depressive and anxiety-like behaviors, mineralocorticoid receptor-dependent cell proliferation regulates anxiety-like behaviors. Behav. Brain Res., 2019, 362, 288-298.
[http://dx.doi.org/10.1016/j.bbr.2019.01.026] [PMID: 30654121]
[59]
Howland, R.H. Mifepristone as a therapeutic agent in psychiatry. J. Psychosoc. Nurs. Ment. Health Serv., 2013, 51(6), 11-14.
[http://dx.doi.org/10.3928/02793695-20130513-01] [PMID: 23814820]
[60]
Gosain, R.; Gage-Bouchard, E.; Ambrosone, C.; Repasky, E.; Gandhi, S. Stress reduction strategies in breast cancer: Review of pharmacologic and non-pharmacologic based strategies. Semin. Immunopathol., 2020, 42(6), 719-734.
[http://dx.doi.org/10.1007/s00281-020-00815-y] [PMID: 32948909]
[61]
Nguyen, E.T.; Streicher, J.; Berman, S.; Caldwell, J.L.; Ghisays, V.; Estrada, C.M.; Wulsin, A.C.; Solomon, M.B. A mixed glucocorticoid/mineralocorticoid receptor modulator dampens endocrine and hippocampal stress responsivity in male rats. Physiol. Behav., 2017, 178, 82-92.
[http://dx.doi.org/10.1016/j.physbeh.2017.01.020] [PMID: 28093219]
[62]
Gallagher, P.; Young, A.H. Mifepristone (RU-486) treatment for depression and psychosis: A review of the therapeutic implications. Neuropsychiatr. Dis. Treat., 2006, 2(1), 33-42.
[PMID: 19412444]
[63]
Sonino, N.; Fava, G.A. Psychiatric disorders associated with Cushing’s syndrome. Epidemiology, pathophysiology and treatment. CNS Drugs, 2001, 15(5), 361-373.
[http://dx.doi.org/10.2165/00023210-200115050-00003] [PMID: 11475942]
[64]
Holtzheimer, P.E.; Nemeroff, C.B. Novel targets for antidepressant therapies. Curr. Psychiatry Rep., 2008, 10(6), 465-473.
[http://dx.doi.org/10.1007/s11920-008-0075-5] [PMID: 18980729]
[65]
Lin, T.Y.; Hanna, J.; Ishak, W.W. Psychiatric symptoms in cushing’s syndrome: A systematic review. Innov. Clin. Neurosci., 2020, 17(1-3), 30-35.
[PMID: 32547845]
[66]
Al-Salama, Z.T. Metyrapone in Cushing’s syndrome: A profile of its use. Drugs Ther. Perspect., 2021, 37(9), 393-406.
[http://dx.doi.org/10.1007/s40267-021-00853-y]
[67]
Engelhardt, D.; Dörr, G.; Jaspers, C.; Knorr, D. Ketoconazole blocks cortisol secretion in man by inhibition of adrenal 11β-hydroxylase. Klin. Wochenschr., 1985, 63(13), 607-612.
[http://dx.doi.org/10.1007/BF01733014] [PMID: 2993735]
[68]
Brown, E.S.; Bobadilla, L.; Rush, A.J. Ketoconazole in bipolar patients with depressive symptoms: A case series and literature review. Bipolar Disord., 2001, 3(1), 23-29.
[http://dx.doi.org/10.1034/j.1399-5618.2001.030103.x] [PMID: 11256460]
[69]
Wolkowitz, O.M.; Reus, V.I.; Chan, T.; Manfredi, F.; Raum, W.; Johnson, R.; Canick, J. Antiglucocorticoid treatment of depression: Double-blind ketoconazole. Biol. Psychiatry, 1999, 45(8), 1070-1074.
[http://dx.doi.org/10.1016/S0006-3223(98)00267-4] [PMID: 10386195]
[70]
Eckstein, N.; Haas, B.; Hass, M.D.S.; Pfeifer, V. Systemic therapy of Cushing’s syndrome. Orphanet J. Rare Dis., 2014, 9(1), 122.
[http://dx.doi.org/10.1186/s13023-014-0122-8] [PMID: 25091295]
[71]
Pretorius, E. Corticosteroids, depression and the role of serotonin. Rev. Neurosci., 2004, 15(2), 109-116.
[http://dx.doi.org/10.1515/REVNEURO.2004.15.2.109] [PMID: 15202683]
[72]
Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 2000, 23(5), 477-501.
[http://dx.doi.org/10.1016/S0893-133X(00)00159-7] [PMID: 11027914]
[73]
Capuron, L.; Miller, A.H. Immune system to brain signaling: Neuropsychopharmacological implications. Pharmacol. Ther., 2011, 130(2), 226-238.
[http://dx.doi.org/10.1016/j.pharmthera.2011.01.014] [PMID: 21334376]
[74]
Latendresse, G.; Elmore, C.; Deneris, A. Selective serotonin reuptake inhibitors as first-line antidepressant therapy for perinatal depression. J. Midwifery Womens Health, 2017, 62(3), 317-328.
[http://dx.doi.org/10.1111/jmwh.12607] [PMID: 28485526]
[75]
Lochmann, D.; Richardson, T. Selective serotonin reuptake inhibitors. Handb. Exp. Pharmacol., 2018, 250, 135-144.
[http://dx.doi.org/10.1007/164_2018_172] [PMID: 30838457]
[76]
Chu, A.; Selective Serotonin Reuptake Inhibitors, W.R. StatPearls reasure Island; StatPearls Publishing: FL, 2022. https://www.ncbi.nlm.nih.gov/books/NBK554406/
[77]
Ferguson, J.M. SSRI antidepressant medications. Prim. Care Companion CNS Disord., 2001, 3(1), 22-27.
[http://dx.doi.org/10.4088/PCC.v03n0105] [PMID: 15014625]
[78]
Gibney, S.M.; Fagan, E.M.; Waldron, A.M.; O’Byrne, J.; Connor, T.J.; Harkin, A. Inhibition of stress-induced hepatic tryptophan 2,3-dioxygenase exhibits antidepressant activity in an animal model of depressive behaviour. Int. J. Neuropsychopharmacol., 2014, 17(6), 917-928.
[http://dx.doi.org/10.1017/S1461145713001673] [PMID: 24472498]
[79]
Menke, A. Is the HPA Axis as target for depression outdated, or is there a new hope? Front. Psychiatry, 2019, 10, 101.
[http://dx.doi.org/10.3389/fpsyt.2019.00101] [PMID: 30890970]
[80]
Qin, Y.; Wang, N.; Zhang, X.; Han, X.; Zhai, X.; Lu, Y. IDO and TDO as a potential therapeutic target in different types of depression. Metab. Brain Dis., 2018, 33(6), 1787-1800.
[http://dx.doi.org/10.1007/s11011-018-0290-7] [PMID: 30014175]
[81]
Gjerde, H.; Mørland, J.; Olsen, H. The antiglucocorticoid RU486 inhibits the ethanol-induced increase of tryptophan oxygenase. J. Steroid Biochem., 1985, 23(6), 1091-1092.
[http://dx.doi.org/10.1016/0022-4731(85)90074-3] [PMID: 4094416]
[82]
Wolkowitz, O.M.; Reus, V.I. Treatment of depression with antiglucocorticoid drugs. Psychosom. Med., 1999, 61(5), 698-711.
[http://dx.doi.org/10.1097/00006842-199909000-00011] [PMID: 10511017]
[83]
Pantouris, G.; Mowat, C.G. Antitumour agents as inhibitors of tryptophan 2,3-dioxygenase. Biochem. Biophys. Res. Commun., 2014, 443(1), 28-31.
[http://dx.doi.org/10.1016/j.bbrc.2013.11.037] [PMID: 24269239]
[84]
Perez-Pardo, P.; Grobben, Y.; Willemsen-Seegers, N.; Hartog, M.; Tutone, M.; Muller, M.; Adolfs, Y.; Pasterkamp, R.J.; Vu-Pham, D.; Doornmalen, A.M.; Cauter, F.; Wit, J.; Gerard Sterrenburg, J.; Uitdehaag, J.C.M.; Man, J.; Buijsman, R.C.; Zaman, G.J.R.; Kraneveld, A.D. Pharmacological validation of TDO as a target for Parkinson’s disease. FEBS J., 2021, 288(14), 4311-4331.
[http://dx.doi.org/10.1111/febs.15721] [PMID: 33471408]
[85]
Gregory, S.; Hill, D.; Grey, B.; Ketelbey, W.; Miller, T.; Muniz-Terrera, G.; Ritchie, C.W. 11β-hydroxysteroid dehydrogenase type 1 inhibitor use in human disease-a systematic review and narrative synthesis. Metabolism, 2020, 108, 154246.
[http://dx.doi.org/10.1016/j.metabol.2020.154246] [PMID: 32333937]
[86]
Wyrwoll, C.S.; Holmes, M.C.; Seckl, J.R. 11β-Hydroxysteroid dehydrogenases and the brain: From zero to hero, a decade of progress. Front. Neuroendocrinol., 2011, 32(3), 265-286.
[http://dx.doi.org/10.1016/j.yfrne.2010.12.001] [PMID: 21144857]
[87]
Scott, J.S.; Goldberg, F.W.; Turnbull, A.V. Medicinal chemistry of inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). J. Med. Chem., 2014, 57(11), 4466-4486.
[http://dx.doi.org/10.1021/jm4014746] [PMID: 24294985]
[88]
Hardy, R.S.; Botfield, H.; Markey, K.; Mitchell, J.L.; Alimajstorovic, Z.; Westgate, C.S.J.; Sagmeister, M.; Fairclough, R.J.; Ottridge, R.S.; Yiangou, A.; Storbeck, K.H.H.; Taylor, A.E.; Gilligan, L.C.; Arlt, W.; Stewart, P.M.; Tomlinson, J.W.; Mollan, S.P.; Lavery, G.G.; Sinclair, A.J. 11βHSD1 inhibition with AZD4017 improves lipid profiles and lean muscle mass in idiopathic intracranial hypertension. J. Clin. Endocrinol. Metab., 2021, 106(1), 174-187.
[http://dx.doi.org/10.1210/clinem/dgaa766] [PMID: 33098644]
[89]
Markey, K.A.; Ottridge, R.; Mitchell, J.L.; Rick, C.; Woolley, R.; Ives, N.; Nightingale, P.; Sinclair, A.J. Assessing the efficacy and safety of an 11β-hydroxysteroid dehydrogenase type 1 inhibitor (AZD4017) in the idiopathic intracranial hypertension drug trial, IIH:DT: Clinical methods and design for a phase II randomized controlled trial. JMIR Res. Protoc., 2017, 6(9), e181.
[http://dx.doi.org/10.2196/resprot.7806] [PMID: 28923789]
[90]
Colizzi, M.; Costa, R.; Pace, V.; Todarello, O. Hormonal treatment reduces psychobiological distress in gender identity disorder, independently of the attachment style. J. Sex. Med., 2013, 10(12), 3049-3058.
[http://dx.doi.org/10.1111/jsm.12155] [PMID: 23574768]
[91]
Vannuccini, S.; Clemenza, S.; Rossi, M.; Petraglia, F. Hormonal treatments for endometriosis: The endocrine background. Rev. Endocr. Metab. Disord., 2022, 23(3), 333-355.
[http://dx.doi.org/10.1007/s11154-021-09666-w] [PMID: 34405378]
[92]
Manigault, A.W.; Shorey, R.C.; Hamilton, K.; Scanlin, M.C.; Woody, A.; Figueroa, W.S.; France, C.R.; Zoccola, P.M. Cognitive behavioral therapy, mindfulness, and cortisol habituation: A randomized controlled trial. Psychoneuroendocrinology, 2019, 104, 276-285.
[http://dx.doi.org/10.1016/j.psyneuen.2019.03.009] [PMID: 30917336]
[93]
Hofmann, S.G.; Asnaani, A.; Vonk, I.J.J.; Sawyer, A.T.; Fang, A. The efficacy of cognitive behavioral therapy: A review of meta-analyses. Cognit. Ther. Res., 2012, 36(5), 427-440.
[http://dx.doi.org/10.1007/s10608-012-9476-1] [PMID: 23459093]
[94]
Kim, W.; Lim, S.K.; Chung, E.J.; Woo, J.M. The effect of cognitive behavior therapy-based psychotherapy applied in a forest environment on physiological changes and remission of major depressive disorder. Psychiatry Investig., 2009, 6(4), 245-254.
[http://dx.doi.org/10.4306/pi.2009.6.4.245] [PMID: 20140122]
[95]
Nakao, M.; Shirotsuki, K.; Sugaya, N. Cognitive–behavioral therapy for management of mental health and stress-related disorders: Recent advances in techniques and technologies. Biopsychosoc. Med., 2021, 15(1), 16.
[http://dx.doi.org/10.1186/s13030-021-00219-w] [PMID: 34602086]
[96]
Singh, N.; Bhalla, M.; De Jager, P.; Gilca, M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(5S)(Suppl.), 208-213.
[http://dx.doi.org/10.4314/ajtcam.v8i5S.9] [PMID: 22754076]
[97]
Li, Y.; Pham, V.; Bui, M.; Song, L.; Wu, C.; Walia, A.; Uchio, E.; Smith-Liu, F.; Zi, X. Rhodiola rosea L.: An herb with anti-stress, anti-aging, and immunostimulating properties for cancer chemoprevention. Curr. Pharmacol. Rep., 2017, 3(6), 384-395.
[http://dx.doi.org/10.1007/s40495-017-0106-1] [PMID: 30393593]
[98]
Cohen, M. Tulsi - Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med., 2014, 5(4), 251-259.
[http://dx.doi.org/10.4103/0975-9476.146554] [PMID: 25624701]
[99]
Starks, M.A.; Starks, S.L.; Kingsley, M.; Purpura, M.; Jäger, R. The effects of phosphatidylserine on endocrine response to moderate intensity exercise. J. Int. Soc. Sports Nutr., 2008, 5(1), 11.
[http://dx.doi.org/10.1186/1550-2783-5-11] [PMID: 18662395]
[100]
Pickering, G.; Mazur, A.; Trousselard, M.; Bienkowski, P.; Yaltsewa, N.; Amessou, M.; Noah, L.; Pouteau, E. Magnesium status and stress: The vicious circle concept revisited. Nutrients, 2020, 12(12), 3672.
[http://dx.doi.org/10.3390/nu12123672] [PMID: 33260549]
[101]
Claudino, A.M.; Van den Eynde, F.; Stahl, D.; Dew, T.; Andiappan, M.; Kalthoff, J.; Schmidt, U.; Campbell, I.C. Repetitive transcranial magnetic stimulation reduces cortisol concentrations in bulimic disorders. Psychol. Med., 2011, 41(6), 1329-1336.
[http://dx.doi.org/10.1017/S0033291710001881] [PMID: 20925970]
[102]
Evers, S.; Hengst, K.; Pecuch, P.W. The impact of repetitive transcranial magnetic stimulation on pituitary hormone levels and cortisol in healthy subjects. J. Affect. Disord., 2001, 66(1), 83-88.
[http://dx.doi.org/10.1016/S0165-0327(00)00289-5] [PMID: 11532537]
[103]
Saini, R.K.; Chail, A.; Bhat, P.S.; Srivastava, K.; Chauhan, V. Transcranial magnetic stimulation: A review of its evolution and current applications. Ind. Psychiatry J., 2018, 27(2), 172-180.
[http://dx.doi.org/10.4103/ipj.ipj_88_18] [PMID: 31359968]
[104]
Edinoff, A.N.; Hegefeld, T.L.; Petersen, M.; Patterson, J.C., II; Yossi, C.; Slizewski, J.; Osumi, A.; Cornett, E.M.; Kaye, A.; Kaye, J.S.; Javalkar, V.; Viswanath, O.; Urits, I.; Kaye, A.D. Transcranial magnetic stimulation for post-traumatic stress disorder. Front. Psychiatry, 2022, 13, 701348.
[http://dx.doi.org/10.3389/fpsyt.2022.701348] [PMID: 35711594]
[105]
Mahindru, A.; Patil, P.; Agrawal, V. Role of physical activity on mental health and well-being: A review. Cureus, 2023, 15(1), e33475.
[http://dx.doi.org/10.7759/cureus.33475] [PMID: 36756008]
[106]
Anderson, E.; Shivakumar, G. Effects of exercise and physical activity on anxiety. Front. Psychiatry, 2013, 4, 27.
[http://dx.doi.org/10.3389/fpsyt.2013.00027] [PMID: 23630504]
[107]
Caplin, A.; Chen, F.S.; Beauchamp, M.R.; Puterman, E. The effects of exercise intensity on the cortisol response to a subsequent acute psychosocial stressor. Psychoneuroendocrinology, 2021, 131, 105336.
[http://dx.doi.org/10.1016/j.psyneuen.2021.105336] [PMID: 34175558]
[108]
Childs, E.; de Wit, H. Regular exercise is associated with emotional resilience to acute stress in healthy adults. Front. Physiol., 2014, 5, 161.
[http://dx.doi.org/10.3389/fphys.2014.00161] [PMID: 24822048]
[109]
Mușină, A.; Huțanu, I.; Scripcariu, D.V.; Aniței, M.G.; Filip, B.; Hogea, M.; Radu, I.; Gavrilescu, M.M.; Panuță, A.; Buna-Arvinte, M.; Moraru, V.G.; Scripcariu, V. Surgical management of the adrenal gland tumors - single center experience. Acta Endocrinol., 2020, 16(2), 208-215.
[http://dx.doi.org/10.4183/aeb.2020.208] [PMID: 33029238]
[110]
Pivonello, R.; De Leo, M.; Cozzolino, A.; Colao, A. The treatment of cushing’s disease. Endocr. Rev., 2015, 36(4), 385-486.
[http://dx.doi.org/10.1210/er.2013-1048] [PMID: 26067718]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy