Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

The Function and Modification of Human Defensin 5

Author(s): Xin-Yue Chang, Meng-Wei Zhang, Lin-Jie Zhang* and Lian-Qin Chai*

Volume 30, Issue 10, 2023

Published on: 09 October, 2023

Page: [830 - 840] Pages: 11

DOI: 10.2174/0109298665252235230919071229

Price: $65

Abstract

The antibacterial and antiviral functions of human defensin 5 lay the foundation for its role as a core host protective component. In addition, HD5 also has the function of inhibiting tumor proliferation and immune regulation. However, everything has two sides; cytotoxic and proinflammatory properties may exist, while HD5 performs physiological functions. Accordingly, the modification and engineering of HD5 are particularly important. Therefore, this review summarizes the role of HD5 in various aspects of host defense, as well as modification of HD5 to ameliorate the biological activity, with a view to promoting the clinical use of HD5.

Keywords: HD5, bacterial infection, tumor generation, viral infection, immunity, modification.

[1]
Huttner, K.M.; Bevins, C.L. Antimicrobial peptides as mediators of epithelial host defense. Pediatr. Res., 1999, 45(6), 785-794.
[http://dx.doi.org/10.1203/00006450-199906000-00001] [PMID: 10367766]
[2]
Szyk, A.; Wu, Z.; Tucker, K.; Yang, D.; Lu, W.; Lubkowski, J. Crystal structures of human α-defensins HNP4, HD5, and HD6. Protein Sci., 2006, 15(12), 2749-2760.
[http://dx.doi.org/10.1110/ps.062336606] [PMID: 17088326]
[3]
Ghosh, D.; Porter, E.; Shen, B.; Lee, S.K.; Wilk, D.; Drazba, J.; Yadav, S.P.; Crabb, J.W.; Ganz, T.; Bevins, C.L. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat. Immunol., 2002, 3(6), 583-590.
[http://dx.doi.org/10.1038/ni797] [PMID: 12021776]
[4]
Frye, M.; Bargon, J.; Dauletbaev, N.; Weber, A.; Wagner, T.O.; Gropp, R. Expression of human alpha-defensin 5 (HD5) mRNA in nasal and bronchial epithelial cells. J. Clin. Pathol., 2000, 53(10), 770-773.
[http://dx.doi.org/10.1136/jcp.53.10.770] [PMID: 11064671]
[5]
Shen, B.; Porter, E.M.; Reynoso, E.; Shen, C.; Ghosh, D.; Connor, J.T.; Drazba, J.; Rho, H.K.; Gramlich, T.L.; Li, R.; Ormsby, A.H.; Sy, M.S.; Ganz, T.; Bevins, C.L. Human defensin 5 expression in intestinal metaplasia of the upper gastrointestinal tract. J. Clin. Pathol., 2005, 58(7), 687-694.
[http://dx.doi.org/10.1136/jcp.2004.022426] [PMID: 15976333]
[6]
Lehrer, R.I.; Lu, W. α-Defensins in human innate immunity. Immunol. Rev., 2012, 245(1), 84-112.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01082.x] [PMID: 22168415]
[7]
Bevins, C.L.; Salzman, N.H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol., 2011, 9(5), 356-368.
[http://dx.doi.org/10.1038/nrmicro2546] [PMID: 21423246]
[8]
Klotman, M.E.; Chang, T.L. Defensins in innate antiviral immunity. Nat. Rev. Immunol., 2006, 6(6), 447-456.
[http://dx.doi.org/10.1038/nri1860] [PMID: 16724099]
[9]
Holly, M.K.; Diaz, K.; Smith, J.G. Defensins in Viral Infection and Pathogenesis. Annu. Rev. Virol., 2017, 4(1), 369-391.
[http://dx.doi.org/10.1146/annurev-virology-101416-041734] [PMID: 28715972]
[10]
Elphick, D.; Liddell, S.; Mahida, Y.R. Impaired luminal processing of human defensin-5 in Crohn’s disease: persistence in a complex with chymotrypsinogen and trypsin. Am. J. Pathol., 2008, 172(3), 702-713.
[http://dx.doi.org/10.2353/ajpath.2008.070755] [PMID: 18258845]
[11]
Salzman, N.H.; Bevins, C.L. Dysbiosis-A consequence of Paneth cell dysfunction. Semin. Immunol., 2013, 25(5), 334-341.
[http://dx.doi.org/10.1016/j.smim.2013.09.006] [PMID: 24239045]
[12]
Courth, L.F.; Ostaff, M.J.; Mailänder-Sánchez, D.; Malek, N.P.; Stange, E.F.; Wehkamp, J. Crohn’s disease-derived monocytes fail to induce Paneth cell defensins. Proc. Natl. Acad. Sci. USA, 2015, 112(45), 14000-14005.
[http://dx.doi.org/10.1073/pnas.1510084112] [PMID: 26512113]
[13]
Beisner, J.; Teltschik, Z.; Ostaff, M.J.; Tiemessen, M.M.; Staal, F.J.T.; Wang, G.; Gersemann, M.; Perminow, G.; Vatn, M.H.; Schwab, M.; Stange, E.F.; Wehkamp, J. TCF-1-mediated Wnt signaling regulates Paneth cell innate immune defense effectors HD-5 and -6: implications for Crohn’s disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307(5), G487-G498.
[http://dx.doi.org/10.1152/ajpgi.00347.2013] [PMID: 24994854]
[14]
Bonen, D.K.; Ogura, Y.; Nicolae, D.L.; Inohara, N.; Saab, L.; Tanabe, T.; Chen, F.F.; Foster, S.J.; Duerr, R.H.; Brant, S.R.; Cho, J.H.; Nuñez, G. Crohn’s disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology, 2003, 124(1), 140-146.
[http://dx.doi.org/10.1053/gast.2003.50019] [PMID: 12512038]
[15]
Wehkamp, J.; Harder, J.; Weichenthal, M.; Schwab, M.; Schäffeler, E.; Schlee, M.; Herrlinger, K.R.; Stallmach, A.; Noack, F.; Fritz, P.; Schröder, J.M.; Bevins, C.L.; Fellermann, K.; Stange, E.F. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal -defensin expression. Gut, 2004, 53(11), 1658-1664.
[http://dx.doi.org/10.1136/gut.2003.032805] [PMID: 15479689]
[16]
Wehkamp, J.; Wang, G.; Kübler, I.; Nuding, S.; Gregorieff, A.; Schnabel, A.; Kays, R.J.; Fellermann, K.; Burk, O.; Schwab, M.; Clevers, H.; Bevins, C.L.; Stange, E.F. The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J. Immunol., 2007, 179(5), 3109-3118.
[http://dx.doi.org/10.4049/jimmunol.179.5.3109] [PMID: 17709525]
[17]
Furci, L.; Baldan, R.; Bianchini, V.; Trovato, A.; Ossi, C.; Cichero, P.; Cirillo, D.M. New role for human α-defensin 5 in the fight against hypervirulent Clostridium difficile strains. Infect. Immun., 2015, 83(3), 986-995.
[http://dx.doi.org/10.1128/IAI.02955-14] [PMID: 25547793]
[18]
Royer, S.; Paré, D. Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature, 2003, 422(6931), 518-522.
[http://dx.doi.org/10.1038/nature01530] [PMID: 12673250]
[19]
Wommack, A.J.; Robson, S.A.; Wanniarachchi, Y.A.; Wan, A.; Turner, C.J.; Wagner, G.; Nolan, E.M. NMR solution structure and condition-dependent oligomerization of the antimicrobial peptide human defensin 5. Biochemistry, 2012, 51(48), 9624-9637.
[http://dx.doi.org/10.1021/bi301255u] [PMID: 23163963]
[20]
Lehrer, R.I.; Jung, G.; Ruchala, P.; Andre, S.; Gabius, H.J.; Lu, W. Multivalent binding of carbohydrates by the human alpha-defensin, HD5. J. Immunol., 2009, 183(1), 480-490.
[http://dx.doi.org/10.4049/jimmunol.0900244] [PMID: 19542459]
[21]
Chairatana, P.; Niramitranon, J.; Pongprayoon, P. Dynamics of human defensin 5 (HD5) self-assembly in solution: Molecular simulations/insights. Comput. Biol. Chem., 2019, 83, 107091.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107091] [PMID: 31349122]
[22]
Selsted, M.E.; Ouellette, A.J. Mammalian defensins in the antimicrobial immune response. Nat. Immunol., 2005, 6(6), 551-557.
[http://dx.doi.org/10.1038/ni1206] [PMID: 15908936]
[23]
Rajabi, M.; Ericksen, B.; Wu, X.; de Leeuw, E.; Zhao, L.; Pazgier, M.; Lu, W. Functional determinants of human enteric α-defensin HD5: crucial role for hydrophobicity at dimer interface. J. Biol. Chem., 2012, 287(26), 21615-21627.
[http://dx.doi.org/10.1074/jbc.M112.367995] [PMID: 22573326]
[24]
de Leeuw, E.; Burks, S.R.; Li, X.; Kao, J.P.Y.; Lu, W. Structure-dependent functional properties of human defensin 5. FEBS Lett., 2007, 581(3), 515-520.
[http://dx.doi.org/10.1016/j.febslet.2006.12.036] [PMID: 17250830]
[25]
Wei, G.; de Leeuw, E.; Pazgier, M.; Yuan, W.; Zou, G.; Wang, J.; Ericksen, B.; Lu, W.Y.; Lehrer, R.I.; Lu, W. Through the looking glass, mechanistic insights from enantiomeric human defensins. J. Biol. Chem., 2009, 284(42), 29180-29192.
[http://dx.doi.org/10.1074/jbc.M109.018085] [PMID: 19640840]
[26]
Mathew, B.; Nagaraj, R. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs. Peptides, 2015, 71, 128-140.
[http://dx.doi.org/10.1016/j.peptides.2015.07.009] [PMID: 26206286]
[27]
Wang, C.; Shen, M.; Gohain, N.; Tolbert, W.D.; Chen, F.; Zhang, N.; Yang, K.; Wang, A.; Su, Y.; Cheng, T.; Zhao, J.; Pazgier, M.; Wang, J. Design of a potent antibiotic peptide based on the active region of human defensin 5. J. Med. Chem., 2015, 58(7), 3083-3093.
[http://dx.doi.org/10.1021/jm501824a] [PMID: 25782105]
[28]
Wang, C.; Shen, M.; Zhang, N.; Wang, S.; Xu, Y.; Chen, S.; Chen, F.; Yang, K.; He, T.; Wang, A.; Su, Y.; Cheng, T.; Zhao, J.; Wang, J. Reduction impairs the antibacterial activity but benefits the LPS neutralization ability of human enteric defensin 5. Sci. Rep., 2016, 6(1), 22875.
[http://dx.doi.org/10.1038/srep22875] [PMID: 26960718]
[29]
Chen, F.; Tang, Y.; Zheng, H.; Xu, Y.; Wang, J.; Wang, C. Roles of the conserved amino acid residues in reduced human defensin 5: Cysteine and arginine are indispensable for its antibacterial action and LPS neutralization. ChemMedChem, 2019, 14(15), 1457-1465.
[http://dx.doi.org/10.1002/cmdc.201900282] [PMID: 31290614]
[30]
Jung, S.W.; Lee, J.; Cho, A.E. Elucidating the bacterial membrane disruption mechanism of human α-defensin 5: A theoretical study. J. Phys. Chem. B, 2017, 121(4), 741-748.
[http://dx.doi.org/10.1021/acs.jpcb.6b11806] [PMID: 28067516]
[31]
Awang, T.; Pongprayoon, P. The adsorption of human defensin 5 on bacterial membranes: simulation studies. J. Mol. Model., 2018, 24(10), 273.
[http://dx.doi.org/10.1007/s00894-018-3812-7] [PMID: 30187138]
[32]
Awang, T.; Pongprayoon, P. The penetration of human defensin 5 (HD5) through bacterial outer membrane: simulation studies. J. Mol. Model., 2021, 27(10), 291.
[http://dx.doi.org/10.1007/s00894-021-04915-w] [PMID: 34546425]
[33]
Awang, T.; Chairatana, P.; Vijayan, R.; Pongprayoon, P. Evaluation of the binding mechanism of human defensin 5 in a bacterial membrane: A simulation study. Int. J. Mol. Sci., 2021, 22(22), 12401.
[http://dx.doi.org/10.3390/ijms222212401] [PMID: 34830284]
[34]
Ericksen, B.; Wu, Z.; Lu, W.; Lehrer, R.I. Antibacterial activity and specificity of the six human alpha-defensins. Antimicrob. Agents Chemother., 2005, 49(1), 269-275.
[http://dx.doi.org/10.1128/AAC.49.1.269-275.2005] [PMID: 15616305]
[35]
Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol., 2010, 2(5), a000414.
[http://dx.doi.org/10.1101/cshperspect.a000414] [PMID: 20452953]
[36]
Silhavy, T.J. Classic Spotlight: Gram-Negative Bacteria Have Two Membranes. J. Bacteriol., 2016, 198(2), 201.
[http://dx.doi.org/10.1128/JB.00599-15] [PMID: 26715373]
[37]
Riu, F.; Ruda, A.; Ibba, R.; Sestito, S.; Lupinu, I.; Piras, S.; Widmalm, G.; Carta, A. Antibiotics and carbohydrate-containing drugs targeting bacterial cell envelopes: An overview. Pharmaceuticals (Basel), 2022, 15(8), 942.
[http://dx.doi.org/10.3390/ph15080942] [PMID: 36015090]
[38]
de Leeuw, E.; Li, C.; Zeng, P.; Li, C.; Buin, M.D.; Lu, W.Y.; Breukink, E.; Lu, W. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett., 2010, 584(8), 1543-1548.
[http://dx.doi.org/10.1016/j.febslet.2010.03.004] [PMID: 20214904]
[39]
Schneider, T.; Kruse, T.; Wimmer, R.; Wiedemann, I.; Sass, V.; Pag, U.; Jansen, A.; Nielsen, A.K.; Mygind, P.H.; Raventós, D.S.; Neve, S.; Ravn, B.; Bonvin, A.M.J.J.; De Maria, L.; Andersen, A.S.; Gammelgaard, L.K.; Sahl, H.G.; Kristensen, H.H. Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science, 2010, 328(5982), 1168-1172.
[http://dx.doi.org/10.1126/science.1185723] [PMID: 20508130]
[40]
Münch, D.; Sahl, H.G. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria — Impact on binding and efficacy of antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2015, 1848(11)(11 Pt B), 3062-3071.
[http://dx.doi.org/10.1016/j.bbamem.2015.04.014] [PMID: 25934055]
[41]
Giesemann, T.; Guttenberg, G.; Aktories, K. Human alpha-defensins inhibit Clostridium difficile toxin B. Gastroenterology, 2008, 134(7), 2049-2058.
[http://dx.doi.org/10.1053/j.gastro.2008.03.008] [PMID: 18435932]
[42]
Fischer, S.; Ückert, A.K.; Landenberger, M.; Papatheodorou, P.; Hoffmann-Richter, C.; Mittler, A.K.; Ziener, U.; Hägele, M.; Schwan, C.; Müller, M.; Kleger, A.; Benz, R.; Popoff, M.R.; Aktories, K.; Barth, H. Human peptide α‐defensin‐1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT. FASEB J., 2020, 34(5), 6244-6261.
[http://dx.doi.org/10.1096/fj.201902816R] [PMID: 32190927]
[43]
Lehrer, R.I.; Jung, G.; Ruchala, P.; Wang, W.; Micewicz, E.D.; Waring, A.J.; Gillespie, E.J.; Bradley, K.A.; Ratner, A.J.; Rest, R.F.; Lu, W. Human alpha-defensins inhibit hemolysis mediated by cholesterol-dependent cytolysins. Infect. Immun., 2009, 77(9), 4028-4040.
[http://dx.doi.org/10.1128/IAI.00232-09] [PMID: 19581399]
[44]
Kling, C.; Pulliainen, A.T.; Barth, H.; Ernst, K. Human peptides α-defensin-1 and -5 inhibit pertussis toxin. Toxins (Basel), 2021, 13(7), 480.
[http://dx.doi.org/10.3390/toxins13070480] [PMID: 34357952]
[45]
Kudryashova, E.; Quintyn, R.; Seveau, S.; Lu, W.; Wysocki, V.H.; Kudryashov, D.S. Human defensins facilitate local unfolding of thermodynamically unstable regions of bacterial protein toxins. Immunity, 2014, 41(5), 709-721.
[http://dx.doi.org/10.1016/j.immuni.2014.10.018] [PMID: 25517613]
[46]
Pande, A.H.; Moe, D.; Jamnadas, M.; Tatulian, S.A.; Teter, K. The pertussis toxin S1 subunit is a thermally unstable protein susceptible to degradation by the 20S proteasome. Biochemistry, 2006, 45(46), 13734-13740.
[http://dx.doi.org/10.1021/bi061175+] [PMID: 17105192]
[47]
Xu, D.; Liao, C.; Zhang, B.; Tolbert, W.D.; He, W.; Dai, Z.; Zhang, W.; Yuan, W.; Pazgier, M.; Liu, J.; Yu, J.; Sansonetti, P.J.; Bevins, C.L.; Shao, Y.; Lu, W. Human enteric α-defensin 5 promotes shigella infection by enhancing bacterial adhesion and invasion. Immunity, 2018, 48(6), 1233-1244.e6.
[http://dx.doi.org/10.1016/j.immuni.2018.04.014] [PMID: 29858013]
[48]
Murphy, A.G.; Maloy, K.J. Defens-IN! Human α-defensin 5 acts as an unwitting double agent to promote shigella infection. Immunity, 2018, 48(6), 1070-1072.
[http://dx.doi.org/10.1016/j.immuni.2018.05.015] [PMID: 29924970]
[49]
Xu, D.; Liao, C.; Xiao, J.; Fang, K.; Zhang, W.; Yuan, W.; Lu, W. Human enteric defensin 5 promotes shigella infection of macrophages. Infect. Immun., 2019, 88(1), e00769-e19.
[http://dx.doi.org/10.1128/IAI.00769-19] [PMID: 31611271]
[50]
Shukla, P.K.; Meena, A.S.; Rao, V.; Rao, R.G.; Balazs, L.; Rao, R. Human defensin-5 blocks ethanol and colitis-induced dysbiosis, tight junction disruption and inflammation in mouse intestine. Sci. Rep., 2018, 8(1), 16241.
[http://dx.doi.org/10.1038/s41598-018-34263-4] [PMID: 30389960]
[51]
Buck, C.B.; Day, P.M.; Thompson, C.D.; Lubkowski, J.; Lu, W.; Lowy, D.R.; Schiller, J.T. Human α-defensins block papillomavirus infection. Proc. Natl. Acad. Sci. USA, 2006, 103(5), 1516-1521.
[http://dx.doi.org/10.1073/pnas.0508033103] [PMID: 16432216]
[52]
Zins, S.R.; Nelson, C.D.S.; Maginnis, M.S.; Banerjee, R.; O’Hara, B.A.; Atwood, W.J. The human alpha defensin HD5 neutralizes JC polyomavirus infection by reducing endoplasmic reticulum traffic and stabilizing the viral capsid. J. Virol., 2014, 88(2), 948-960.
[http://dx.doi.org/10.1128/JVI.02766-13] [PMID: 24198413]
[53]
Dugan, A.S.; Maginnis, M.S.; Jordan, J.A.; Gasparovic, M.L.; Manley, K.; Page, R.; Williams, G.; Porter, E.; O’Hara, B.A.; Atwood, W.J. Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J. Biol. Chem., 2008, 283(45), 31125-31132.
[http://dx.doi.org/10.1074/jbc.M805902200] [PMID: 18782756]
[54]
Elphick, G.F.; Querbes, W.; Jordan, J.A.; Gee, G.V.; Eash, S.; Manley, K.; Dugan, A.; Stanifer, M.; Bhatnagar, A.; Kroeze, W.K.; Roth, B.L.; Atwood, W.J. The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science, 2004, 306(5700), 1380-1383.
[http://dx.doi.org/10.1126/science.1103492] [PMID: 15550673]
[55]
Neu, U.; Maginnis, M.S.; Palma, A.S.; Ströh, L.J.; Nelson, C.D.S.; Feizi, T.; Atwood, W.J.; Stehle, T. Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host Microbe, 2010, 8(4), 309-319.
[http://dx.doi.org/10.1016/j.chom.2010.09.004] [PMID: 20951965]
[56]
Gee, G.V.; Dugan, A.S.; Tsomaia, N.; Mierke, D.F.; Atwood, W.J. The role of sialic acid in human polyomavirus infections. Glycoconj. J., 2006, 23(1-2), 19-26.
[http://dx.doi.org/10.1007/s10719-006-5434-z] [PMID: 16575519]
[57]
Wiens, M.E.; Smith, J.G. Alpha-defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection. J. Virol., 2015, 89(5), 2866-2874.
[http://dx.doi.org/10.1128/JVI.02901-14] [PMID: 25540379]
[58]
Smith, J.G.; Silvestry, M.; Lindert, S.; Lu, W.; Nemerow, G.R.; Stewart, P.L. Insight into the mechanisms of adenovirus capsid disassembly from studies of defensin neutralization. PLoS Pathog., 2010, 6(6), e1000959.
[http://dx.doi.org/10.1371/journal.ppat.1000959] [PMID: 20585634]
[59]
Flatt, J.W.; Kim, R.; Smith, J.G.; Nemerow, G.R.; Stewart, P.L. An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PLoS One, 2013, 8(4), e61571.
[http://dx.doi.org/10.1371/journal.pone.0061571] [PMID: 23620768]
[60]
Smith, J.G.; Nemerow, G.R. Mechanism of adenovirus neutralization by Human alpha-defensins. Cell Host Microbe, 2008, 3(1), 11-19.
[http://dx.doi.org/10.1016/j.chom.2007.12.001] [PMID: 18191790]
[61]
Tartaglia, L.J.; Badamchi-Zadeh, A.; Abbink, P.; Blass, E.; Aid, M.; Gebre, M.S.; Li, Z.; Pastores, K.C.; Trott, S.; Gupte, S.; Larocca, R.A.; Barouch, D.H. Alpha-defensin 5 differentially modulates adenovirus vaccine vectors from different serotypes in vivo. PLoS Pathog., 2019, 15(12), e1008180.
[http://dx.doi.org/10.1371/journal.ppat.1008180] [PMID: 31841560]
[62]
Nguyen, E.K.; Nemerow, G.R.; Smith, J.G. Direct evidence from single-cell analysis that human α-defensins block adenovirus uncoating to neutralize infection. J. Virol., 2010, 84(8), 4041-4049.
[http://dx.doi.org/10.1128/JVI.02471-09] [PMID: 20130047]
[63]
Hazrati, E.; Galen, B.; Lu, W.; Wang, W.; Ouyang, Y.; Keller, M.J.; Lehrer, R.I.; Herold, B.C. Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J. Immunol., 2006, 177(12), 8658-8666.
[http://dx.doi.org/10.4049/jimmunol.177.12.8658] [PMID: 17142766]
[64]
Böffert, R.; Businger, R.; Preiß, H.; Ehmann, D.; Truffault, V.; Simon, C.; Ruetalo, N.; Hamprecht, K.; Müller, P.; Wehkamp, J.; Schindler, M. The human α-defensin-derived peptide HD5(1-9) inhibits cellular attachment and entry of human cytomegalovirus. Antiviral Res., 2020, 177, 104779.
[http://dx.doi.org/10.1016/j.antiviral.2020.104779] [PMID: 32209394]
[65]
Li, D.; Chen, P.; Shi, T.; Mehmood, A.; Qiu, J. HD5 and LL-37 Inhibit SARS-CoV and SARS-CoV-2 Binding to human ACE2 by molecular simulation. Interdiscip. Sci., 2021, 13(4), 766-777.
[http://dx.doi.org/10.1007/s12539-021-00462-3] [PMID: 34363600]
[66]
Xu, C.; Wang, A.; Marin, M.; Honnen, W.; Ramasamy, S.; Porter, E.; Subbian, S.; Pinter, A.; Melikyan, G.B.; Lu, W.; Chang, T.L. Human Defensins Inhibit SARS-CoV-2 Infection by Blocking Viral Entry. Viruses, 2021, 13(7), 1246.
[http://dx.doi.org/10.3390/v13071246] [PMID: 34206990]
[67]
Niv, Y. Defensin 5 for prevention of SARS-CoV-2 invasion and Covid-19 disease. Med. Hypotheses, 2020, 143, 110244.
[http://dx.doi.org/10.1016/j.mehy.2020.110244] [PMID: 33017910]
[68]
Solanki, S.S.; Singh, P.; Kashyap, P.; Sansi, M.S.; Ali, S.A. Promising role of defensins peptides as therapeutics to combat against viral infection. Microb. Pathog., 2021, 2021, 155.
[http://dx.doi.org/10.1016/j.micpath.2021.104930]
[69]
Wang, C.; Wang, S.; Li, D.; Wei, D.Q.; Zhao, J.; Wang, J. Human intestinal defensin 5 inhibits SARS-CoV-2 invasion by cloaking ACE2. Gastroenterology, 2020, 159(3), 1145-1147.e4.
[http://dx.doi.org/10.1053/j.gastro.2020.05.015] [PMID: 32437749]
[70]
Rapista, A.; Ding, J.; Benito, B.; Lo, Y.T.; Neiditch, M.B.; Lu, W.; Chang, T.L. Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment. Retrovirology, 2011, 8(1), 45.
[http://dx.doi.org/10.1186/1742-4690-8-45] [PMID: 21672195]
[71]
Ding, J.; Rapista, A.; Teleshova, N.; Lu, W.; Klotman, M.E.; Chang, T.L. Mucosal human defensins 5 and 6 antagonize the anti-HIV activity of candidate polyanion microbicides. J. Innate Immun., 2011, 3(2), 208-212.
[http://dx.doi.org/10.1159/000322355] [PMID: 21160168]
[72]
Valere, K.; Lu, W.; Chang, T. Key determinants of human α-defensin 5 and 6 for enhancement of HIV infectivity. Viruses, 2017, 9(9), 244.
[http://dx.doi.org/10.3390/v9090244] [PMID: 28850095]
[73]
Wu, Z.; Ding, Z.; Cheng, B.; Cui, Z. The inhibitory effect of human DEFA5 in growth of gastric cancer by targeting BMI1. Cancer Sci., 2021, 112(3), 1075-1083.
[http://dx.doi.org/10.1111/cas.14827] [PMID: 33503272]
[74]
Brodrick, B.; Vidrich, A.; Porter, E.; Bradley, L.; Buzan, J.M.; Cohn, S.M. Fibroblast growth factor receptor-3 (FGFR-3) regulates expression of paneth cell lineage-specific genes in intestinal epithelial cells through both TCF4/beta-catenin-dependent and -independent signaling pathways. J. Biol. Chem., 2011, 286(21), 18515-18525.
[http://dx.doi.org/10.1074/jbc.M111.229252] [PMID: 21388956]
[75]
Vragniau, C.; Hübner, J.M.; Beidler, P.; Gil, S.; Saydaminova, K.; Lu, Z.Z.; Yumul, R.; Wang, H.; Richter, M.; Sova, P.; Drescher, C.; Fender, P.; Lieber, A. Studies on the interaction of tumor-derived hd5 alpha defensins with adenoviruses and implications for oncolytic adenovirus therapy. J. Virol., 2017, 91(6), e02030-e16.
[http://dx.doi.org/10.1128/JVI.02030-16] [PMID: 28077642]
[76]
Panjeta, A.; Preet, S. Anticancer potential of human intestinal defensin 5 against 1, 2-dimethylhydrazine dihydrochloride induced colon cancer: A therapeutic approach. Peptides, 2020, 126, 170263.
[http://dx.doi.org/10.1016/j.peptides.2020.170263] [PMID: 31981594]
[77]
Qiao, Q.; Bai, R.; Song, W.; Gao, H.; Zhang, M.; Lu, J.; Hong, M.; Zhang, X.; Sun, P.; Zhang, Q.; Zhao, P. Human α-defensin 5 suppressed colon cancer growth by targeting PI3K pathway. Exp. Cell Res., 2021, 407(2), 112809.
[http://dx.doi.org/10.1016/j.yexcr.2021.112809] [PMID: 34487729]
[78]
Nomura, Y.; Tanabe, H.; Moriichi, K.; Igawa, S.; Ando, K.; Ueno, N.; Kashima, S.; Tominaga, M.; Goto, T.; Inaba, Y.; Ito, T.; Ishida-Yamamoto, A.; Fujiya, M.; Kohgo, Y. Reduction of E-cadherin by human defensin-5 in esophageal squamous cells. Biochem. Biophys. Res. Commun., 2013, 439(1), 71-77.
[http://dx.doi.org/10.1016/j.bbrc.2013.08.026] [PMID: 23958301]
[79]
Egawa, N.; Egawa, K.; Griffin, H.; Doorbar, J. Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses, 2015, 7(7), 3863-3890.
[http://dx.doi.org/10.3390/v7072802] [PMID: 26193301]
[80]
Hubert, P.; Herman, L.; Roncarati, P.; Maillard, C.; Renoux, V.; Demoulin, S.; Erpicum, C.; Foidart, J.M.; Boniver, J.; Noël, A.; Delvenne, P.; Herfs, M. Altered α -defensin 5 expression in cervical squamocolumnar junction: implication in the formation of a viral/tumour-permissive microenvironment. J. Pathol., 2014, 234(4), 464-477.
[http://dx.doi.org/10.1002/path.4435] [PMID: 25196670]
[81]
Russell, S.J.; Peng, K.W.; Bell, J.C. Oncolytic virotherapy. Nat. Biotechnol., 2012, 30(7), 658-670.
[http://dx.doi.org/10.1038/nbt.2287] [PMID: 22781695]
[82]
Grigat, J.; Soruri, A.; Forssmann, U.; Riggert, J.; Zwirner, J. Chemoattraction of macrophages, T lymphocytes, and mast cells is evolutionarily conserved within the human alpha-defensin family. J. Immunol., 2007, 179(6), 3958-3965.
[http://dx.doi.org/10.4049/jimmunol.179.6.3958] [PMID: 17785833]
[83]
Lu, W.; de Leeuw, E. Pro-inflammatory and pro-apoptotic properties of Human Defensin 5. Biochem. Biophys. Res. Commun., 2013, 436(3), 557-562.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.015] [PMID: 23770364]
[84]
Zhao, A.; Lu, W.; de Leeuw, E. Functional synergism of Human Defensin 5 and Human Defensin 6. Biochem. Biophys. Res. Commun., 2015, 467(4), 967-972.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.035] [PMID: 26474700]
[85]
Biswas, A.; Liu, Y.J.; Hao, L.; Mizoguchi, A.; Salzman, N.H.; Bevins, C.L.; Kobayashi, K.S. Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14739-14744.
[http://dx.doi.org/10.1073/pnas.1003363107] [PMID: 20679225]
[86]
Shi, J.; Aono, S.; Lu, W.; Ouellette, A.J.; Hu, X.; Ji, Y.; Wang, L.; Lenz, S.; van Ginkel, F.W.; Liles, M.; Dykstra, C.; Morrison, E.E.; Elson, C.O. A novel role for defensins in intestinal homeostasis: regulation of IL-1beta secretion. J. Immunol., 2007, 179(2), 1245-1253.
[http://dx.doi.org/10.4049/jimmunol.179.2.1245] [PMID: 17617617]
[87]
Salzman, N.H. Paneth cell defensins and the regulation of the microbiome. Gut Microbes, 2010, 1(6), 401-406.
[http://dx.doi.org/10.4161/gmic.1.6.14076] [PMID: 21468224]
[88]
Salzman, N.H.; Hung, K.; Haribhai, D.; Chu, H.; Karlsson-Sjöberg, J.; Amir, E.; Teggatz, P.; Barman, M.; Hayward, M.; Eastwood, D.; Stoel, M.; Zhou, Y.; Sodergren, E.; Weinstock, G.M.; Bevins, C.L.; Williams, C.B.; Bos, N.A. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol., 2010, 11(1), 76-82.
[http://dx.doi.org/10.1038/ni.1825] [PMID: 19855381]
[89]
Xie, Z.; Feng, J.; Yang, W.; Xiang, F.; Yang, F.; Zhao, Y.; Cao, Z.; Li, W.; Chen, Z.; Wu, Y. Human α‐defensins are immune‐related Kv1.3 channel inhibitors: new support for their roles in adaptive immunity. FASEB J., 2015, 29(10), 4324-4333.
[http://dx.doi.org/10.1096/fj.15-274787] [PMID: 26148969]
[90]
Li, X.; Saravanan, R.; Kwak, S.K.; Leong, S.S.J. Biomolecular engineering of a human beta defensin model for increased salt resistance. Chem. Eng. Sci., 2013, 95, 128-137.
[http://dx.doi.org/10.1016/j.ces.2013.02.063]
[91]
López-Cano, A.; Martínez-Miguel, M.; Guasch, J.; Ratera, I.; Arís, A.; Garcia-Fruitós, E. Exploring the impact of the recombinant Escherichia coli strain on defensins antimicrobial activity: BL21 versus Origami strain. Microb. Cell Fact., 2022, 21(1), 77.
[http://dx.doi.org/10.1186/s12934-022-01803-7] [PMID: 35527241]
[92]
Roca-Pinilla, R.; López-Cano, A.; Saubi, C.; Garcia-Fruitós, E.; Arís, A. A new generation of recombinant polypeptides combines multiple protein domains for effective antimicrobial activity. Microb. Cell Fact., 2020, 19(1), 122.
[http://dx.doi.org/10.1186/s12934-020-01380-7] [PMID: 32503648]
[93]
Ehmann, D.; Wendler, J.; Koeninger, L.; Larsen, I.S.; Klag, T.; Berger, J.; Marette, A.; Schaller, M.; Stange, E.F.; Malek, N.P.; Jensen, B.A.H.; Wehkamp, J. Paneth cell α-defensins HD-5 and HD-6 display differential degradation into active antimicrobial fragments. Proc. Natl. Acad. Sci. USA, 2019, 116(9), 3746-3751.
[http://dx.doi.org/10.1073/pnas.1817376116] [PMID: 30808760]
[94]
Luo, G.; Zhang, J.; Wang, H.; Sun, Y.; Cheng, B.; Xu, Z.; Zhang, Y.; Li, H.; Lu, W.; Nemeth, E.; Ganz, T.; Fang, X. Human defensin-inspired discovery of peptidomimetic antibiotics. Proc. Natl. Acad. Sci. USA, 2022, 119(10), e2117283119.
[http://dx.doi.org/10.1073/pnas.2117283119] [PMID: 35238683]
[95]
Lei, R.; Hou, J.; Chen, Q.; Yuan, W.; Cheng, B.; Sun, Y.; Jin, Y.; Ge, L.; Ben-Sasson, S.A.; Chen, J.; Wang, H.; Lu, W.; Fang, X. Self-assembling myristoylated human α-defensin 5 as a next-generation nanobiotics potentiates therapeutic efficacy in bacterial infection. ACS Nano, 2018, 12(6), 5284-5296.
[http://dx.doi.org/10.1021/acsnano.7b09109] [PMID: 29856606]
[96]
Luo, G.; Sun, Y.; Zhang, J.; Xu, Z.; Lu, W.; Wang, H.; Zhang, Y.; Li, H.; Mao, Z.; Ye, S.; Cheng, B.; Fang, X. Nanodefensin-encased hydrogel with dual bactericidal and pro-regenerative functions for advanced wound therapy. Theranostics, 2021, 11(8), 3642-3660.
[http://dx.doi.org/10.7150/thno.53089] [PMID: 33664853]
[97]
Zhao, G.; Chen, Y.; He, Y.; Chen, F.; Gong, Y.; Chen, S.; Xu, Y.; Su, Y.; Wang, C.; Wang, J. Succinylated casein-coated peptide-mesoporous silica nanoparticles as an antibiotic against intestinal bacterial infection. Biomater. Sci., 2019, 7(6), 2440-2451.
[http://dx.doi.org/10.1039/C9BM00003H] [PMID: 30939184]
[98]
Wehkamp, J.; Schmid, M.; Fellermann, K.; Stange, E.F. Defensin deficiency, intestinal microbes, and the clinical phenotypes of Crohn’s disease. J. Leukoc. Biol., 2004, 77(4), 460-465.
[http://dx.doi.org/10.1189/jlb.0904543] [PMID: 15618294]
[99]
Hodin, C.M.; Verdam, F.J.; Grootjans, J.; Rensen, S.S.; Verheyen, F.K.; Dejong, C.H.C.; Buurman, W.A.; Greve, J.W.; Lenaerts, K. Reduced Paneth cell antimicrobial protein levels correlate with activation of the unfolded protein response in the gut of obese individuals. J. Pathol., 2011, 225(2), 276-284.
[http://dx.doi.org/10.1002/path.2917] [PMID: 21630271]
[100]
Shimizu, Y.; Nakamura, K.; Kikuchi, M.; Ukawa, S.; Nakamura, K.; Okada, E.; Imae, A.; Nakagawa, T.; Yamamura, R.; Tamakoshi, A.; Ayabe, T. Lower human defensin 5 in elderly people compared to middle-aged is associated with differences in the intestinal microbiota composition: the DOSANCO Health Study. Geroscience, 2022, 44(2), 997-1009.
[http://dx.doi.org/10.1007/s11357-021-00398-y] [PMID: 34105106]
[101]
Su, X.; Jin, M.; Xu, C.; Gao, Y.; Yang, Y.; Qi, H.; Zhang, Q.; Yang, X.; Ya, W.; Zhang, Y.; Yang, R. FABP4 in Paneth cells regulates antimicrobial protein expression to reprogram gut microbiota. Gut Microbes, 2022, 14(1), 2139978.
[http://dx.doi.org/10.1080/19490976.2022.2139978] [PMID: 36519446]
[102]
Larsen, I.S.; Fritzen, A.M.; Carl, C.S.; Agerholm, M.; Damgaard, M.T.F.; Holm, J.B.; Marette, A.; Nordkild, P.; Kiens, B.; Kristiansen, K.; Wehkamp, J.; Jensen, B.A.H. Human Paneth cell α-defensin-5 treatment reverses dyslipidemia and improves glucoregulatory capacity in diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab., 2019, 317(1), E42-E52.
[http://dx.doi.org/10.1152/ajpendo.00019.2019] [PMID: 30860877]
[103]
Li, J.; Li, X.; Song, J.; Yan, B.; Rock, S.A.; Jia, J.; Liu, J.; Wang, C.; Weiss, T.; Weiss, H.L.; Gao, T.; Alam, A.; Evers, B.M. Absence of neurotensin attenuates intestinal dysbiosis and inflammation by maintaining Mmp7/α‐defensin axis in diet‐induced obese mice. FASEB J., 2020, 34(6), 8596-8610.
[http://dx.doi.org/10.1096/fj.201902374RR] [PMID: 32359121]
[104]
Su, D.; Nie, Y.; Zhu, A.; Chen, Z.; Wu, P.; Zhang, L.; Luo, M.; Sun, Q.; Cai, L.; Lai, Y.; Xiao, Z.; Duan, Z.; Zheng, S.; Wu, G.; Hu, R.; Tsukamoto, H.; Lugea, A.; Liu, Z.; Pandol, S.J.; Han, Y.P.; Vitamin, D. Vitamin D signaling through induction of paneth cell defensins maintains gut microbiota and improves metabolic disorders and hepatic steatosis in animal models. Front. Physiol., 2016, 7, 498.
[http://dx.doi.org/10.3389/fphys.2016.00498] [PMID: 27895587]
[105]
Alkaissi, L.Y.; Winberg, M.E.; Heil, S.D.S.; Haapaniemi, S.; Myrelid, P.; Stange, E.F.; Söderholm, J.D.; Keita, Å.V. Antagonism of adherent invasive E. coli LF82 with human α-defensin 5 in the follicle-associated epithelium of patients with ileal Crohn’s disease. Inflamm. Bowel Dis., 2021, 27(7), 1116-1127.
[http://dx.doi.org/10.1093/ibd/izaa315] [PMID: 33336693]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy