Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Antioxidant and Hepatoprotective Effects of L-Glu and NAC against CCl4-induced Oxidative Damage in Rats. Biochemical and Histopathological Evaluation

Author(s): Nataliya Salyha* and Yuriy Salyha

Volume 20, Issue 1, 2024

Published on: 04 October, 2023

Page: [40 - 50] Pages: 11

DOI: 10.2174/0115734080257975230922050816

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The imbalance between free radical formation and antioxidant defence leads to the development of oxidative stress. The search for substances that would mitigate or prevent the effects of oxidative stress remains relevant.

Objective: Our goal was to compare the antioxidant and mitigation effects of L-glutamic acid (LGlu) and N-acetylcysteine (NAC) alone or in combination using a battery of biomarkers of oxidative stress such as reduced glutathione (GSH) superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione transferase (GST) and lipid peroxidation, determined as a content of lipid hydroperoxides (LOOH) and thiobarbituric acid reactive substances (TBARS). Histopathological examination of the liver was also performed.

Methods: Experimental rats were divided into five experimental groups. Exp.1: was treated with CCl4 only, Exp. 2: was treated with CCl4/L-Glu, Exp. 3: was treated with CCl4/Glu/NAC. Exp. 4: was treated with CCl4/NAC, Control 5: served as the control rats.

Results: These findings suggest that the CCl4 leads to oxidative stress by depleting the antioxidant enzyme activities and increasing peroxidation products. The studied biochemical parameters were altered by the introduction of CCl4, which was normalised (to one degree or another) by L-Glu, LGlu/ NAC and NAC treatment.

Conclusion: The most remarkable protective effect was observed in groups of rats that were treated with L-Glu only. This conclusion was confirmed by histopathological findings which showed less severe hepatocellular necrosis, fibrosis and inflammation in CCl4/L- Glu and CCl4/L-Glu/NAC treated group, compared to the CCl4 group.

Keywords: Oxidative stress, antioxidant system, free radicals, L-Glu, NAC, xenobiotics.

Graphical Abstract
[1]
Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem 2017; 86(1): 715-48.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[2]
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015; 97: 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[3]
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010; 4(8): 118-26.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[4]
Li S, Tan HY, Wang N, et al. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 2015; 16(11): 26087-124.
[http://dx.doi.org/10.3390/ijms161125942] [PMID: 26540040]
[5]
Cichoż-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol 2014; 20(25): 8082-91.
[http://dx.doi.org/10.3748/wjg.v20.i25.8082] [PMID: 25009380]
[6]
Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: Antioxidant properties dedicated to nanotechnologies. Antioxidants 2018; 7(5): 62.
[http://dx.doi.org/10.3390/antiox7050062] [PMID: 29702624]
[7]
Lu SC. Glutathione synthesis. Biochim Biophys Acta, Gen Subj 2013; 1830(5): 3143-53.
[http://dx.doi.org/10.1016/j.bbagen.2012.09.008] [PMID: 22995213]
[8]
Rosalovsky VP. Effect of 5-day exposure of vitamin A and E on status of red blood cell antioxidant system and hematological parameters of rats intoxicated by chlorpyrifos. Anim Biol Leiden Neth 2017; 19(2): 106-14.
[http://dx.doi.org/10.15407/animbiol19.02.106]
[9]
Marí M, Morales A, Colell A, García-Ruiz C, Kaplowitz N, Fernández-Checa JC. Mitochondrial glutathione: Features, regulation and role in disease. Biochim Biophys Acta, Gen Subj 2013; 1830(5): 3317-28.
[http://dx.doi.org/10.1016/j.bbagen.2012.10.018] [PMID: 23123815]
[10]
Ribas V, García-Ruiz C, Fernández-Checa JC. Glutathione and mitochondria. Front Pharmacol 2014; 5: 151.
[http://dx.doi.org/10.3389/fphar.2014.00151] [PMID: 25024695]
[11]
Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol 2015; 4: 180-3.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[12]
Aoyama K, Nakaki T. Glutathione in cellular redox homeostasis: Association with the excitatory amino acid carrier 1 (EAAC1). Molecules 2015; 20(5): 8742-58.
[http://dx.doi.org/10.3390/molecules20058742] [PMID: 26007177]
[13]
Commandeur JN, Stijntjes GJ, Vermeulen NP. Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol Rev 1995; 47(2): 271-330.
[PMID: 7568330]
[14]
Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. bchm 2009; 390(3): 191-214.
[15]
Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in glutathione content in liver diseases: An update. Antioxidants 2021; 10(3): 364.
[http://dx.doi.org/10.3390/antiox10030364] [PMID: 33670839]
[16]
Reed MC, Thomas RL, Pavisic J, James SJ, Ulrich CM, Nijhout HF. A mathematical model of glutathione metabolism. Theor Biol Med Model 2008; 5(1): 8.
[http://dx.doi.org/10.1186/1742-4682-5-8] [PMID: 18442411]
[17]
Salyha NO. Effects of L-glutamic acid and pyridoxine on glutathione depletion and lipid peroxidation generated by epinephrine-induced stress in rats. Ukr Biochem J 2018; 90(4): 102-10.
[http://dx.doi.org/10.15407/ubj90.04.102]
[18]
McGill MR, Jaeschke H. Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis 2019; 1865(5): 1031-9.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.037] [PMID: 31007174]
[19]
Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease – A practical approach for translational re-search. J Hepatol 2020; 73(2): 423-40.
[http://dx.doi.org/10.1016/j.jhep.2020.04.011] [PMID: 32330604]
[20]
Alkinani KB, Ali EMM, Al-Shaikh TM, et al. Hepatoprotective effects of (−) epicatechin in CCl4-induced toxicity model are mediated via modulation of oxidative stress markers in rats. Evid Based Complement Alternat Med 2021; 2021: 1-12.
[http://dx.doi.org/10.1155/2021/4655150] [PMID: 34976093]
[21]
Zhou Y, Peng C, Zhou Z, Huang K. Ketoconazole pretreatment ameliorates carbon tetrachloride-induced acute liver injury in rats by sup-pressing inflammation and oxidative stress. J Toxicol Sci 2019; 44(6): 405-14.
[http://dx.doi.org/10.2131/jts.44.405] [PMID: 31168027]
[22]
Ren X, Xin LT, Zhang MQ, et al. Hepatoprotective effects of a traditional Chinese medicine formula against carbon tetrachloride-induced hepatotoxicity in vivo and in vitro. Biomed Pharmacother 2019; 117: 109190.
[http://dx.doi.org/10.1016/j.biopha.2019.109190] [PMID: 31387170]
[23]
Wang W, Jiang L, Ren Y, Shen M, Xie J. Characterizations and hepatoprotective effect of polysaccharides from Mesona blumes against tetrachloride-induced acute liver injury in mice. Int J Biol Macromol 2019; 124: 788-95.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.260] [PMID: 30502438]
[24]
Ernst L, Zieglowski L, Schulz M, et al. Severity assessment in mice subjected to carbon tetrachloride. Sci Rep 2020; 10(1): 15790.
[http://dx.doi.org/10.1038/s41598-020-72801-1] [PMID: 32978437]
[25]
Deniz GY, Laloglu E, Koc K, Geyikoglu F. Hepatoprotective potential of Ferula communis extract for carbon tetrachloride induced hepato-toxicity and oxidative damage in rats. Biotech Histochem 2019; 94(5): 334-40.
[http://dx.doi.org/10.1080/10520295.2019.1566831] [PMID: 30712392]
[26]
Ustuner D, Colak E, Dincer M, et al. Posttreatment effects of olea europaea L. leaf extract on carbon tetrachloride-induced liver injury and oxidative stress in rats. J Med Food 2018; 21(9): 899-904.
[http://dx.doi.org/10.1089/jmf.2017.0143] [PMID: 29648970]
[27]
Dutta S, Chakraborty AK, Dey P, et al. Chaudhuri amelioration of CCl4 induced liver injury in swiss albino mice by antioxidant rich leaf extract of Croton bonplandianus Baill. PLoS One 2018; 13(4): 1-30.
[28]
Li R, Zhang P, Li C, Yang W, Yin Y, Tao K. Tert-butylhydroquinone mitigates carbon tetrachloride induced hepatic injury in mice. Int J Med Sci 2020; 17(14): 2095-103.
[http://dx.doi.org/10.7150/ijms.45842] [PMID: 32922170]
[29]
Mohammed M. Nephroprotective effect of zingerone against CCl4-induced renal toxicity in swiss albino mice: Molecular mechanism. Oxid Med Cell Longev 2018; 2018: 2474831.
[30]
Wu G, Lupton JR, Turner ND, Fang Y-Z, Yang S. Glutathione metabolism and its implications for health. J Nutr 2004; 134(3): 489-92.
[http://dx.doi.org/10.1093/jn/134.3.489] [PMID: 14988435]
[31]
Grucza K, Chołbiński P, Kwiatkowska D, Szutowski M. Effects of supplementation with glutathione and its precursors on athlete perfor-mance. Biomed J Sci Tech Res 2019; 12(4): 9434-41.
[32]
Michlin M, Argaev-Frenkel L, Weinstein-Fudim L, Ornoy A, Rosenzweig T. Maternal N-acetyl cysteine intake improved glucose tolerance in obese mice offspring. Int J Mol Sci 2020; 21(6): 1981.
[http://dx.doi.org/10.3390/ijms21061981] [PMID: 32183232]
[33]
Mahmoud SM, Abdel Moneim AE, Qayed MM, El-Yamany NA. Potential role of N-acetylcysteine on chlorpyrifos-induced neurotoxicity in rats. Environ Sci Pollut Res Int 2019; 26(20): 20731-41.
[http://dx.doi.org/10.1007/s11356-019-05366-w] [PMID: 31104238]
[34]
Liu Y, Yao W, Xu J, et al. The anti-inflammatory effects of acetaminophen and N -acetylcysteine through suppression of the NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes. Innate Immun 2015; 21(6): 587-97.
[http://dx.doi.org/10.1177/1753425914566205] [PMID: 25575547]
[35]
Lee SI, Kang KS. N-acetylcysteine modulates lipopolysaccharide-induced intestinal dysfunction. Sci Rep 2019; 9(1): 1004.
[http://dx.doi.org/10.1038/s41598-018-37296-x] [PMID: 30700808]
[36]
Sadegh Soltan-Sharifi M, Mojtahedzadeh M, Najafi A, et al. Improvement by N-acetylcysteine of acute respiratory distress syndrome through increasing intracellular glutathione, and extracellular thiol molecules and anti-oxidant power: evidence for underlying toxicological mechanisms. Hum Exp Toxicol 2007; 26(9): 697-703.
[http://dx.doi.org/10.1177/0960327107083452] [PMID: 17984140]
[37]
Cynober L. Metabolism of dietary glutamate in adults. Ann Nutr Metab 2018; 73(5) (Suppl. 5): 5-14.
[http://dx.doi.org/10.1159/000494776] [PMID: 30508813]
[38]
Hou Y, Wu G. l-Glutamate nutrition and metabolism in swine. Amino Acids 2018; 50(11): 1497-510.
[http://dx.doi.org/10.1007/s00726-018-2634-3] [PMID: 30116978]
[39]
Salyha NO. Effect of glutamic acid and cysteine on oxidative stress markers in rats. Ukr Biochem J 2020; 92(6): 165-72.
[http://dx.doi.org/10.15407/ubj92.06.165]
[40]
Holeček M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr Metab 2018; 15(1): 33.
[http://dx.doi.org/10.1186/s12986-018-0271-1] [PMID: 29755574]
[41]
Magi S, Piccirillo S, Amoroso S. The dual face of glutamate: From a neurotoxin to a potential survival factor—metabolic implications in health and disease. Cell Mol Life Sci 2019; 76(8): 1473-88.
[http://dx.doi.org/10.1007/s00018-018-3002-x] [PMID: 30599069]
[42]
Albarracin SL, Baldeon ME, Sangronis E, Petruschina AC, Reyes FGR. L-glutamate: A key amino acid for senory and metabolic functions. Arch Latinoam Nutr 2016; 66(2): 101-12.
[PMID: 29737666]
[43]
Yoo HC, Yu YC, Sung Y, Han JM. Glutamine reliance in cell metabolism. Exp Mol Med 2020; 52(9): 1496-516.
[http://dx.doi.org/10.1038/s12276-020-00504-8] [PMID: 32943735]
[44]
Ballester M, Sentandreu E, Luongo G, et al. Glutamine/glutamate metabolism rewiring in reprogrammed human hepatocyte-like cells. Sci Rep 2019; 9(1): 17978.
[45]
Tomé D. Te roles of dietary glutamate in the intestine. Ann Nutr Metab 2018; 73(5) (Suppl. 5): 15-20.
[http://dx.doi.org/10.1159/000494777] [PMID: 30508814]
[46]
Walker MC, van der Donk WA. The many roles of glutamate in metabolism. J Ind Microbiol Biotechnol 2016; 43(2-3): 419-30.
[http://dx.doi.org/10.1007/s10295-015-1665-y] [PMID: 26323613]
[47]
Xue H, Field CJ. New role of glutamate as an immunoregulator via glutamate receptors and transporters. Front Biosci 2011; S3(1): 1007-20.
[http://dx.doi.org/10.2741/205] [PMID: 21622250]
[48]
Salyha N, Salyha Y. Protective role of l-glutamic acid and l-cysteine in mitigation the chlorpyrifos-induced oxidative stress in rats. Environ Toxicol Pharmacol 2018; 64: 155-63.
[http://dx.doi.org/10.1016/j.etap.2018.10.010] [PMID: 30412861]
[49]
Tabassum S, Ahmad S, Madiha S, et al. Free l-glutamate-induced modulation in oxidative and neurochemical profile contributes to enhancement in locomotor and memory performance in male rats. Sci Rep 2020; 10(1): 11206.
[http://dx.doi.org/10.1038/s41598-020-68041-y] [PMID: 32641780]
[50]
Young VR, Ajami AM. Glutamate: an amino acid of particular distinction. J Nutr 2000; 130(4) (Suppl.): 892S-900S.
[http://dx.doi.org/10.1093/jn/130.4.892S] [PMID: 10736349]
[51]
Liu G, Wu X, Jia G, et al. Effects of glutamine against oxidative stress in the metabolome of rats—new insight. RSC Advances 2016; 6(78): 74515-24.
[http://dx.doi.org/10.1039/C6RA14469A]
[52]
Windle EM. Glutamine supplementation in critical illness: Evidence, recommendations, and implications for clinical practice in burn care. J Burn Care Res 2006; 27(6): 764-72.
[http://dx.doi.org/10.1097/01.BCR.0000245417.47510.9C] [PMID: 17091069]
[53]
Zabot GP, Carvalhal GF, Marroni NP, et al. Glutamine prevents oxidative stress in a model of portal hypertension. World J Gastroenterol 2017; 23(25): 4529-37.
[http://dx.doi.org/10.3748/wjg.v23.i25.4529] [PMID: 28740341]
[54]
Schemitt EG, Colares JR, Hartmann RM, et al. Effect of glutamine on oxidative stress and infammation in a rat model of fulminant hepatic failure. Nutr Hosp 2016; 33: 92.
[55]
Schemitt EG, Hartmann RM, Colares JR, et al. Protective action of glutamine in rats with severe acute liver failure. World J Hepatol 2019; 11(3): 273-86.
[http://dx.doi.org/10.4254/wjh.v11.i3.273] [PMID: 30967905]
[56]
Chen S, Xia Y, Zhu G, et al. Glutamine supplementation improves intestinal cell proliferation and stem cell differentiation in weanling mice. Food Nutr Res 2018; 62(0): 62.
[http://dx.doi.org/10.29219/fnr.v62.1439] [PMID: 30083086]
[57]
Deneke SM, Steiger V, Fanburg BL. Effect of hyperoxia on glutathione levels and glutamic acid uptake in endothelial cells. J Appl Physiol 1987; 63(5): 1966-71.
[http://dx.doi.org/10.1152/jappl.1987.63.5.1966] [PMID: 2891677]
[58]
Garlick PJ. Assessment of the safety of glutamine and other amino acids. J Nutr 2001; 131(9) (Suppl.): 2556S-61S.
[http://dx.doi.org/10.1093/jn/131.9.2556S] [PMID: 11533313]
[59]
Leikin JB, McFee RB, Kerscher R. Handbook of nuclear, biological, and chemical agent exposures. CRC Press 2007.
[http://dx.doi.org/10.1201/b14264]
[60]
Salyha NO. L-glutamic acid effect on changes in biochemical parameters of rats intoxicated by carbon tetrachloride. Anim Biol Leiden Neth 2021; 23(1): 18-22.
[http://dx.doi.org/10.15407/animbiol23.01.018]
[61]
Jegatheeswaran S, Siriwardena AK. Experimental and clinical evidence for modification of hepatic ischaemia–reperfusion injury by N-acetylcysteine during major liver surgery. HPB 2011; 13(2): 71-8.
[http://dx.doi.org/10.1111/j.1477-2574.2010.00263.x] [PMID: 21241423]
[62]
Lopes-Rocha A, Bezerra TO, Zanotto R, Lages Nascimento I, Rodrigues A, Salum C. The antioxidant N-Acetyl-L-cysteine restores the behavioral deficits in a neurodevelopmental model of schizophrenia through a mechanism that involves nitric oxide. Front Pharmacol 2022; 13: 924955.
[http://dx.doi.org/10.3389/fphar.2022.924955] [PMID: 35903343]
[63]
Oliveira Filho LD, Saad KR, Saad PF, Koike MK, Silva SM, Montero EF. Effect of N-acetylcysteine in hearts of rats submitted to con-trolled hemorrhagic shock. Rev Bras Cir Cardiovasc 2015; 30(2): 173-81.
[PMID: 26107448]
[64]
Salyha NO. Activity of the glutathione system of antioxidant defense in rats under the action of L-glutamic acid. Ukr Biochem J 2013; 85(4): 40-7.
[65]
Rosalovsky VP, Grabovska SV, Salyha YT. Changes in glutathione system and lipid peroxidation in rat blood during the first hour after chlorpyrifos exposure. Ukr Biochem J 2015; 87(5): 124-32.
[http://dx.doi.org/10.15407/ubj87.05.124] [PMID: 26717603]
[66]
Ferreira T, Rasband W. ImageJ User Guide. New York: National Institute of Health 2012.
[67]
Teschke R. Liver injury by carbon tetrachloride intoxication in 16 patients treated with forced ventilation to accelerate toxin removal via the lungs: A clinical report. Toxics 2018; 6(2): 25.
[http://dx.doi.org/10.3390/toxics6020025] [PMID: 29702608]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy