Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Therapeutic Effect of Natural Compounds on Osteoporosis through Ferroptosis

Author(s): Yong Zhang, Zechao Qu, Yiwei Zhao, Bo Zhang, Yining Gong, Xiaohui Wang, Xiangcheng Gao, Dong Wang and Liang Yan*

Volume 31, Issue 18, 2024

Published on: 04 October, 2023

Page: [2629 - 2648] Pages: 20

DOI: 10.2174/0109298673258420230919103405

open access plus

Open Access Journals Promotions 2
Abstract

Ferroptosis is a newly discovered non-apoptotic cell death whose key is lipid peroxidation. It has been reported that ferroptosis is involved in the occurrence and development of tumors and nervous system and musculoskeletal diseases. Cellular ferroptosis contributes to the imbalance of bone homeostasis and is involved in the development of osteoporosis; however, the detailed mechanism of which is still unclear though it may provide a new direction for anti-osteoporosis. The current drugs used in the treatment of osteoporosis, such as bisphosphonates and teriparatide, have many side effects, increasing people's search for natural compounds to treat osteoporosis. This review paper briefly summarizes the current research regarding the mechanisms of ferroptosis and natural anti-osteoporosis compounds targeting its pathway.

Keywords: Ferroptosis, osteoporosis, lipid peroxidation, natural compound, therapeutic effect, osteoblasts.

[1]
Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet, 2019, 393(10169), 364-376.
[http://dx.doi.org/10.1016/S0140-6736(18)32112-3] [PMID: 30696576]
[2]
Johnston, C.B.; Dagar, M. Osteoporosis in older adults. Med. Clin. North Am., 2020, 104(5), 873-884.
[http://dx.doi.org/10.1016/j.mcna.2020.06.004] [PMID: 32773051]
[3]
Ensrud, K.E.; Crandall, C.J. Osteoporosis. Ann. Intern. Med., 2017, 167(3), ITC17-ITC32.
[http://dx.doi.org/10.7326/AITC201708010] [PMID: 28761958]
[4]
Liu, P.; Wang, W.; Li, Z.; Li, Y.; Yu, X.; Tu, J.; Zhang, Z. Ferroptosis: A new regulatory mechanism in osteoporosis. Oxid. Med. Cell. Longev., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/2634431] [PMID: 35082963]
[5]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[6]
Che, J.; Yang, J.; Zhao, B.; Zhang, G.; Wang, L.; Peng, S.; Shang, P. The effect of abnormal iron metabolism on osteoporosis. Biol. Trace Elem. Res., 2020, 195(2), 353-365.
[http://dx.doi.org/10.1007/s12011-019-01867-4] [PMID: 31473898]
[7]
Verron, E.; Bouler, J.M. Is bisphosphonate therapy compromised by the emergence of adverse bone disorders? Drug Discov. Today, 2014, 19(3), 312-319.
[http://dx.doi.org/10.1016/j.drudis.2013.08.010] [PMID: 23974069]
[8]
Li, R.; Zhang, J.; Zhou, Y.; Gao, Q.; Wang, R.; Fu, Y.; Zheng, L.; Yu, H. Transcriptome investigation and in vitro verification of curcumin-induced HO-1 as a feature of ferroptosis in breast cancer cells. Oxid. Med. Cell. Longev., 2020, 2020, 1-18.
[http://dx.doi.org/10.1155/2020/3469840] [PMID: 33294119]
[9]
Jing, X.; Du, T.; Chen, K.; Guo, J.; Xiang, W.; Yao, X.; Sun, K.; Ye, Y.; Guo, F. Icariin protects against iron overload-induced bone loss via suppressing oxidative stress. J. Cell. Physiol., 2019, 234(7), 10123-10137.
[http://dx.doi.org/10.1002/jcp.27678] [PMID: 30387158]
[10]
Ooko, E.; Saeed, M.E.M.; Kadioglu, O.; Sarvi, S.; Colak, M.; Elmasaoudi, K.; Janah, R.; Greten, H.J.; Efferth, T. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine, 2015, 22(11), 1045-1054.
[http://dx.doi.org/10.1016/j.phymed.2015.08.002] [PMID: 26407947]
[11]
Jin, Y.; Wu, S.; Zhang, L.; Yao, G.; Zhao, H.; Qiao, P.; Zhang, J. Artesunate inhibits osteoclast differentiation by inducing ferroptosis and prevents iron overload-induced bone loss. Basic Clin. Pharmacol. Toxicol., 2023, 132(2), 144-153.
[http://dx.doi.org/10.1111/bcpt.13817] [PMID: 36433916]
[12]
Salari, N.; Ghasemi, H.; Mohammadi, L.; Behzadi, M.; Rabieenia, E.; Shohaimi, S.; Mohammadi, M. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res., 2021, 16(1), 609.
[http://dx.doi.org/10.1186/s13018-021-02772-0] [PMID: 34657598]
[13]
Skrzypulec, V.; Warcholińska, R.W.; Walaszek, A.; Drosdzol, A.; Nowosielski, K.; Piela, B. Osteoporosis-pathogenesis and prophylaxis. Wiad. Lek. Wars. Pol., 1960, 2004(57), 295-300.
[14]
Capulli, M.; Paone, R.; Rucci, N. Osteoblast and osteocyte: Games without frontiers. Arch. Biochem. Biophys., 2014, 561, 3-12.
[http://dx.doi.org/10.1016/j.abb.2014.05.003] [PMID: 24832390]
[15]
Ponzetti, M.; Rucci, N. Osteoblast differentiation and signaling: Established concepts and emerging topics. Int. J. Mol. Sci., 2021, 22(13), 6651.
[http://dx.doi.org/10.3390/ijms22136651] [PMID: 34206294]
[16]
Wu, M.; Chen, G.; Li, Y.P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res., 2016, 4(1), 16009.
[http://dx.doi.org/10.1038/boneres.2016.9] [PMID: 27563484]
[17]
Martínez-Gil, N.; Ugartondo, N.; Grinberg, D.; Balcells, S. Wnt pathway extracellular components and their essential roles in bone homeostasis. Genes, 2022, 13(1), 138.
[http://dx.doi.org/10.3390/genes13010138] [PMID: 35052478]
[18]
Phimphilai, M.; Zhao, Z.; Boules, H.; Roca, H.; Franceschi, R.T. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J. Bone Miner. Res., 2006, 21(4), 637-646.
[http://dx.doi.org/10.1359/jbmr.060109] [PMID: 16598384]
[19]
Chen, G.; Deng, C.; Li, Y.P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci., 2012, 8(2), 272-288.
[http://dx.doi.org/10.7150/ijbs.2929] [PMID: 22298955]
[20]
Lowery, J.W.; Rosen, V. The BMP pathway and its inhibitors in the skeleton. Physiol. Rev., 2018, 98(4), 2431-2452.
[http://dx.doi.org/10.1152/physrev.00028.2017] [PMID: 30156494]
[21]
Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature, 2003, 425(6958), 577-584.
[http://dx.doi.org/10.1038/nature02006] [PMID: 14534577]
[22]
Massagué, J.; Seoane, J.; Wotton, D. Smad transcription factors. Genes Dev., 2005, 19(23), 2783-2810.
[http://dx.doi.org/10.1101/gad.1350705] [PMID: 16322555]
[23]
Gipson, G.R.; Goebel, E.J.; Hart, K.N.; Kappes, E.C.; Kattamuri, C.; McCoy, J.C.; Thompson, T.B. Structural perspective of BMP ligands and signaling. Bone, 2020, 140, 115549.
[http://dx.doi.org/10.1016/j.bone.2020.115549] [PMID: 32730927]
[24]
Ampuja, M.; Kallioniemi, A. Transcription factors-Intricate players of the bone morphogenetic protein signaling pathway. Genes Chromosomes Cancer, 2018, 57(1), 3-11.
[http://dx.doi.org/10.1002/gcc.22502] [PMID: 28857319]
[25]
Rim, E.Y.; Clevers, H.; Nusse, R. The Wnt pathway: From signaling mechanisms to synthetic modulators. Annu. Rev. Biochem., 2022, 91(1), 571-598.
[http://dx.doi.org/10.1146/annurev-biochem-040320-103615] [PMID: 35303793]
[26]
Nusse, R. Wnt signaling. Cold Spring Harb. Perspect. Biol., 2012, 4(5), a011163.
[http://dx.doi.org/10.1101/cshperspect.a011163] [PMID: 22550232]
[27]
Duan, P.; Bonewald, L.F. The role of the Wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int. J. Biochem. Cell Biol., 2016, 77(Pt A), 23-29.
[http://dx.doi.org/10.1016/j.biocel.2016.05.015] [PMID: 27210503]
[28]
Almalki, S.G.; Agrawal, D.K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation, 2016, 92(1-2), 41-51.
[http://dx.doi.org/10.1016/j.diff.2016.02.005] [PMID: 27012163]
[29]
Marie, P.J.; Fromigué, O. Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen. Med., 2006, 1(4), 539-548.
[http://dx.doi.org/10.2217/17460751.1.4.539] [PMID: 17465848]
[30]
Komori, T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem. Cell Biol., 2018, 149(4), 313-323.
[http://dx.doi.org/10.1007/s00418-018-1640-6] [PMID: 29356961]
[31]
Komori, T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int. J. Mol. Sci., 2019, 20(7), 1694.
[http://dx.doi.org/10.3390/ijms20071694] [PMID: 30987410]
[32]
Harada, S.; Rodan, G.A. Control of osteoblast function and regulation of bone mass. Nature, 2003, 423(6937), 349-355.
[http://dx.doi.org/10.1038/nature01660] [PMID: 12748654]
[33]
Hadjidakis, D.J.; Androulakis, I. Bone remodeling. Ann. N. Y. Acad. Sci., 2006, 1092(1), 385-396.
[http://dx.doi.org/10.1196/annals.1365.035] [PMID: 17308163]
[34]
Boyce, B.F. Advances in the regulation of osteoclasts and osteoclast functions. J. Dent. Res., 2013, 92(10), 860-867.
[http://dx.doi.org/10.1177/0022034513500306] [PMID: 23906603]
[35]
Takayanagi, H. RANKL as the master regulator of osteoclast differentiation. J. Bone Miner. Metab., 2021, 39(1), 13-18.
[http://dx.doi.org/10.1007/s00774-020-01191-1] [PMID: 33385253]
[36]
Mizuno, A.; Amizuka, N.; Irie, K.; Murakami, A.; Fujise, N.; Kanno, T.; Sato, Y.; Nakagawa, N.; Yasuda, H.; Mochizuki, S.; Gomibuchi, T.; Yano, K.; Shima, N.; Washida, N.; Tsuda, E.; Morinaga, T.; Higashio, K.; Ozawa, H. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun., 1998, 247(3), 610-615.
[http://dx.doi.org/10.1006/bbrc.1998.8697] [PMID: 9647741]
[37]
Yasuda, H. Discovery of the RANKL/RANK/OPG system. J. Bone Miner. Metab., 2021, 39(1), 2-11.
[http://dx.doi.org/10.1007/s00774-020-01175-1] [PMID: 33389131]
[38]
Kurotaki, D.; Yoshida, H.; Tamura, T. Epigenetic and transcriptional regulation of osteoclast differentiation. Bone, 2020, 138, 115471.
[http://dx.doi.org/10.1016/j.bone.2020.115471] [PMID: 32526404]
[39]
Udagawa, N.; Koide, M.; Nakamura, M.; Nakamichi, Y.; Yamashita, T.; Uehara, S.; Kobayashi, Y.; Furuya, Y.; Yasuda, H.; Fukuda, C.; Tsuda, E. Osteoclast differentiation by RANKL and OPG signaling pathways. J. Bone Miner. Metab., 2021, 39(1), 19-26.
[http://dx.doi.org/10.1007/s00774-020-01162-6] [PMID: 33079279]
[40]
Ma, R.; Xu, J.; Dong, B.; Kauther, M.D.; Jäger, M.; Wedemeyer, C. Inhibition of osteoclastogenesis by RNA interference targeting RANK. BMC Musculoskelet. Disord., 2012, 13(1), 154.
[http://dx.doi.org/10.1186/1471-2474-13-154] [PMID: 22913338]
[41]
Chen, X.; Wang, Z.; Duan, N.; Zhu, G.; Schwarz, E.M.; Xie, C. Osteoblast–osteoclast interactions. Connect. Tissue Res., 2018, 59(2), 99-107.
[http://dx.doi.org/10.1080/03008207.2017.1290085] [PMID: 28324674]
[42]
Kim, J.M.; Lin, C.; Stavre, Z.; Greenblatt, M.B.; Shim, J.H. Osteoblast-osteoclast communication and bone homeostasis. Cells, 2020, 9(9), 2073.
[http://dx.doi.org/10.3390/cells9092073] [PMID: 32927921]
[43]
Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol., 2021, 18(5), 1106-1121.
[http://dx.doi.org/10.1038/s41423-020-00630-3] [PMID: 33785842]
[44]
Carneiro, K.N.; Fitzgerald, K.A. Apoptosis, pyroptosis, and necroptosis-oh my! the many ways a cell can die. J. Mol. Biol., 2022, 434(4), 167378.
[http://dx.doi.org/10.1016/j.jmb.2021.167378] [PMID: 34838807]
[45]
D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592.
[http://dx.doi.org/10.1002/cbin.11137] [PMID: 30958602]
[46]
Wang, Y.; Kanneganti, T.D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput. Struct. Biotechnol. J., 2021, 19, 4641-4657.
[http://dx.doi.org/10.1016/j.csbj.2021.07.038] [PMID: 34504660]
[47]
Obeng, E. Apoptosis (programmed cell death) and its signals - A review. Braz. J. Biol., 2021, 81(4), 1133-1143.
[http://dx.doi.org/10.1590/1519-6984.228437] [PMID: 33111928]
[48]
Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 128.
[http://dx.doi.org/10.1038/s41392-021-00507-5] [PMID: 33776057]
[49]
Bedoui, S.; Herold, M.J.; Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol., 2020, 21(11), 678-695.
[http://dx.doi.org/10.1038/s41580-020-0270-8] [PMID: 32873928]
[50]
Khoury, M.K.; Gupta, K.; Franco, S.R.; Liu, B. Necroptosis in the pathophysiology of disease. Am. J. Pathol., 2020, 190(2), 272-285.
[http://dx.doi.org/10.1016/j.ajpath.2019.10.012] [PMID: 31783008]
[51]
Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282.
[http://dx.doi.org/10.1038/s41580-020-00324-8] [PMID: 33495651]
[52]
Yang, W.S.; Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol., 2008, 15(3), 234-245.
[http://dx.doi.org/10.1016/j.chembiol.2008.02.010] [PMID: 18355723]
[53]
Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88.
[http://dx.doi.org/10.1038/s41419-020-2298-2] [PMID: 32015325]
[54]
Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Ferroptosis in infection, inflammation, and immunity. J. Exp. Med., 2021, 218(6), e20210518.
[http://dx.doi.org/10.1084/jem.20210518] [PMID: 33978684]
[55]
Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 2022, 185(14), 2401-2421.
[http://dx.doi.org/10.1016/j.cell.2022.06.003] [PMID: 35803244]
[56]
Gao, G.; Li, J.; Zhang, Y.; Chang, Y.Z. Cellular iron metabolism and regulation. Adv. Exp. Med. Biol., 2019, 1173, 21-32.
[http://dx.doi.org/10.1007/978-981-13-9589-5_2] [PMID: 31456203]
[57]
Dev, S.; Babitt, J.L. Overview of iron metabolism in health and disease. Hemodial. Int. Int. Symp. Home Hemodial., 2017, 21(S1), pp. S6-S20.
[http://dx.doi.org/10.1111/hdi.12542]
[58]
Anderson, G.J.; Frazer, D.M. Current understanding of iron homeostasis. Am. J. Clin. Nutr., 2017, 106(S6), 1559S-1566S.
[http://dx.doi.org/10.3945/ajcn.117.155804] [PMID: 29070551]
[59]
Liu, M.; Zhu, W.; Pei, D. System Xc: A key regulatory target of ferroptosis in cancer. Invest. New Drugs, 2021, 39(4), 1123-1131.
[http://dx.doi.org/10.1007/s10637-021-01070-0] [PMID: 33506324]
[60]
Levine, W.G. Glutathione and hepatic mixed-function oxidase activity. Drug Metab. Rev., 1983, 14(5), 909-930.
[http://dx.doi.org/10.3109/03602538308991416] [PMID: 6418502]
[61]
Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 419-425.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.086] [PMID: 28212725]
[62]
Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.F.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98.
[http://dx.doi.org/10.1038/nchembio.2239] [PMID: 27842070]
[63]
Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K.; Dixon, S.J.; Olzmann, J.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692.
[http://dx.doi.org/10.1038/s41586-019-1705-2] [PMID: 31634900]
[64]
Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier da Silva, T.N.; Panzilius, E.; Scheel, C.H.; Mourão, A.; Buday, K.; Sato, M.; Wanninger, J.; Vignane, T.; Mohana, V.; Rehberg, M.; Flatley, A.; Schepers, A.; Kurz, A.; White, D.; Sauer, M.; Sattler, M.; Tate, E.W.; Schmitz, W.; Schulze, A.; O’Donnell, V.; Proneth, B.; Popowicz, G.M.; Pratt, D.A.; Angeli, J.P.F.; Conrad, M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575(7784), 693-698.
[http://dx.doi.org/10.1038/s41586-019-1707-0] [PMID: 31634899]
[65]
Koppula, P.; Lei, G.; Zhang, Y.; Yan, Y.; Mao, C.; Kondiparthi, L.; Shi, J.; Liu, X.; Horbath, A.; Das, M.; Li, W.; Poyurovsky, M.V.; Olszewski, K.; Gan, B. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat. Commun., 2022, 13(1), 2206.
[http://dx.doi.org/10.1038/s41467-022-29905-1] [PMID: 35459868]
[66]
Kraft, V.A.N.; Bezjian, C.T.; Pfeiffer, S.; Ringelstetter, L.; Müller, C.; Zandkarimi, F.; Merl-Pham, J.; Bao, X.; Anastasov, N.; Kössl, J.; Brandner, S.; Daniels, J.D.; Schmitt-Kopplin, P.; Hauck, S.M.; Stockwell, B.R.; Hadian, K.; Schick, J.A. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci., 2020, 6(1), 41-53.
[http://dx.doi.org/10.1021/acscentsci.9b01063] [PMID: 31989025]
[67]
Fang, X.; Ardehali, H.; Min, J.; Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol., 2023, 20(1), 7-23.
[http://dx.doi.org/10.1038/s41569-022-00735-4] [PMID: 35788564]
[68]
Costa, I.; Barbosa, D.J.; Benfeito, S.; Silva, V.; Chavarria, D.; Borges, F.; Remião, F.; Silva, R. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol. Ther., 2023, 244, 108373.
[http://dx.doi.org/10.1016/j.pharmthera.2023.108373] [PMID: 36894028]
[69]
Zhao, D.; Yang, K.; Guo, H.; Zeng, J.; Wang, S.; Xu, H.; Ge, A.; Zeng, L.; Chen, S.; Ge, J. Mechanisms of ferroptosis in Alzheimer’s disease and therapeutic effects of natural plant products: A review. Biomed. Pharmacother., 2023, 164, 114312.
[http://dx.doi.org/10.1016/j.biopha.2023.114312] [PMID: 37210894]
[70]
Liu, J.; Kang, R.; Tang, D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J., 2022, 289(22), 7038-7050.
[http://dx.doi.org/10.1111/febs.16059] [PMID: 34092035]
[71]
Dolma, S.; Lessnick, S.L.; Hahn, W.C.; Stockwell, B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003, 3(3), 285-296.
[http://dx.doi.org/10.1016/S1535-6108(03)00050-3] [PMID: 12676586]
[72]
Lőrincz, T.; Jemnitz, K.; Kardon, T.; Mandl, J.; Szarka, A. Ferroptosis is involved in acetaminophen induced cell death. Pathol. Oncol. Res., 2015, 21(4), 1115-1121.
[http://dx.doi.org/10.1007/s12253-015-9946-3] [PMID: 25962350]
[73]
Sui, X.; Zhang, R.; Liu, S.; Duan, T.; Zhai, L.; Zhang, M.; Han, X.; Xiang, Y.; Huang, X.; Lin, H.; Xie, T. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front. Pharmacol., 2018, 9, 1371.
[http://dx.doi.org/10.3389/fphar.2018.01371] [PMID: 30524291]
[74]
Shimada, K.; Skouta, R.; Kaplan, A.; Yang, W.S.; Hayano, M.; Dixon, S.J.; Brown, L.M.; Valenzuela, C.A.; Wolpaw, A.J.; Stockwell, B.R. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol., 2016, 12(7), 497-503.
[http://dx.doi.org/10.1038/nchembio.2079] [PMID: 27159577]
[75]
Zhang, X.; Guo, Y.; Li, H.; Han, L. FIN56, a novel ferroptosis inducer, triggers lysosomal membrane permeabilization in a TFEB-dependent manner in glioblastoma. J. Cancer, 2021, 12(22), 6610-6619.
[http://dx.doi.org/10.7150/jca.58500] [PMID: 34659551]
[76]
Zhang, Q.; Qu, H.; Chen, Y.; Luo, X.; Chen, C.; Xiao, B.; Ding, X.; Zhao, P.; Lu, Y.; Chen, A.F.; Yu, Y. Atorvastatin induces mitochondria-dependent ferroptosis via the modulation of Nrf2-xCT/GPx4 axis. Front. Cell Dev. Biol., 2022, 10, 806081.
[http://dx.doi.org/10.3389/fcell.2022.806081] [PMID: 35309902]
[77]
Shan, L.; Xu, X.; Zhang, J.; Cai, P.; Gao, H.; Lu, Y.; Shi, J.; Guo, Y.; Su, Y. Increased hemoglobin and heme in MALDI-TOF MS analysis induce ferroptosis and promote degeneration of herniated human nucleus pulposus. Mol. Med., 2021, 27(1), 103.
[http://dx.doi.org/10.1186/s10020-021-00368-2] [PMID: 34496740]
[78]
Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ., 2016, 23(3), 369-379.
[http://dx.doi.org/10.1038/cdd.2015.158] [PMID: 26794443]
[79]
Li, Q.; Han, X.; Lan, X.; Gao, Y.; Wan, J.; Durham, F.; Cheng, T.; Yang, J.; Wang, Z.; Jiang, C.; Ying, M.; Koehler, R.C.; Stockwell, B.R.; Wang, J. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight, 2017, 2(7), e90777.
[http://dx.doi.org/10.1172/jci.insight.90777] [PMID: 28405617]
[80]
Miotto, G.; Rossetto, M.; Di Paolo, M.L.; Orian, L.; Venerando, R.; Roveri, A.; Vučković, A.M.; Travain, B.V.; Zaccarin, M.; Zennaro, L.; Maiorino, M.; Toppo, S.; Ursini, F.; Cozza, G. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol., 2020, 28, 101328.
[http://dx.doi.org/10.1016/j.redox.2019.101328] [PMID: 31574461]
[81]
Mishima, E.; Conrad, M. Nutritional and metabolic control of ferroptosis. Annu. Rev. Nutr., 2022, 42(1), 275-309.
[http://dx.doi.org/10.1146/annurev-nutr-062320-114541] [PMID: 35650671]
[82]
Xie, Y.; Song, X.; Sun, X.; Huang, J.; Zhong, M.; Lotze, M.T.; Zeh, H.J., III; Kang, R.; Tang, D. Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem. Biophys. Res. Commun., 2016, 473(4), 775-780.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.052] [PMID: 27037021]
[83]
Probst, L.; Dächert, J.; Schenk, B.; Fulda, S. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death. Biochem. Pharmacol., 2017, 140, 41-52.
[http://dx.doi.org/10.1016/j.bcp.2017.06.112] [PMID: 28595877]
[84]
Alim, I.; Caulfield, J.T.; Chen, Y.; Swarup, V.; Geschwind, D.H.; Ivanova, E.; Seravalli, J.; Ai, Y.; Sansing, L.H.; Ste Marie, E.J.; Hondal, R.J.; Mukherjee, S.; Cave, J.W.; Sagdullaev, B.T.; Karuppagounder, S.S.; Ratan, R.R. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell, 2019, 177(5), 1262-1279.e25.
[http://dx.doi.org/10.1016/j.cell.2019.03.032] [PMID: 31056284]
[85]
Jiang, Z.; Wang, H.; Qi, G.; Jiang, C.; Chen, K.; Yan, Z. Iron overload-induced ferroptosis of osteoblasts inhibits osteogenesis and promotes osteoporosis: An in vitro and in vivo study. IUBMB Life, 2022, 74(11), 1052-1069.
[http://dx.doi.org/10.1002/iub.2656] [PMID: 35638167]
[86]
Ni, S.; Yuan, Y.; Qian, Z.; Zhong, Z.; Lv, T.; Kuang, Y.; Yu, B. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic. Biol. Med., 2021, 169, 271-282.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.04.027] [PMID: 33895289]
[87]
Li, G.F.; Pan, Y.Z.; Sirois, P.; Li, K.; Xu, Y.J. Iron homeostasis in osteoporosis and its clinical implications. Osteoporos. Int., 2012, 23(10), 2403-2408.
[http://dx.doi.org/10.1007/s00198-012-1982-1] [PMID: 22525981]
[88]
Guggenbuhl, P.; Filmon, R.; Mabilleau, G.; Baslé, M.F.; Chappard, D. Iron inhibits hydroxyapatite crystal growth in vitro. Metabolism, 2008, 57(7), 903-910.
[http://dx.doi.org/10.1016/j.metabol.2008.02.004] [PMID: 18555830]
[89]
Ma, H.; Wang, X.; Zhang, W.; Li, H.; Zhao, W.; Sun, J.; Yang, M. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Oxid. Med. Cell. Longev., 2020, 2020, 1-18.
[http://dx.doi.org/10.1155/2020/9067610] [PMID: 33343809]
[90]
Lin, Y.; Shen, X.; Ke, Y.; Lan, C.; Chen, X.; Liang, B.; Zhang, Y.; Yan, S. Activation of osteoblast ferroptosis via the METTL3/ASK1-p38 signaling pathway in high glucose and high fat (HGHF)-induced diabetic bone loss. FASEB J., 2022, 36(3), e22147.
[http://dx.doi.org/10.1096/fj.202101610R] [PMID: 35104016]
[91]
Ge, W.; Jie, J.; Yao, J.; Li, W.; Cheng, Y.; Lu, W. Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts. Mol. Med. Rep., 2022, 25(4), 140.
[http://dx.doi.org/10.3892/mmr.2022.12656] [PMID: 35211757]
[92]
Palacios, S. Medical treatment of osteoporosis. Climacteric, 2022, 25(1), 43-49.
[http://dx.doi.org/10.1080/13697137.2021.1951697] [PMID: 34382489]
[93]
Zhang, Z.; Ji, C.; Wang, Y.N.; Liu, S.; Wang, M.; Xu, X.; Zhang, D. Maresin1 suppresses high-glucose-induced ferroptosis in osteoblasts via NRF2 activation in type 2 diabetic osteoporosis. Cells, 2022, 11(16), 2560.
[http://dx.doi.org/10.3390/cells11162560] [PMID: 36010637]
[94]
Tao, Z.S.; Li, T.L.; Wei, S. Silymarin prevents iron overload induced bone loss by inhibiting oxidative stress in an ovariectomized animal model. Chem. Biol. Interact., 2022, 366, 110168.
[http://dx.doi.org/10.1016/j.cbi.2022.110168] [PMID: 36087815]
[95]
Tan, D.X.; Manchester, L.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R. Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules, 2015, 20(10), 18886-18906.
[http://dx.doi.org/10.3390/molecules201018886] [PMID: 26501252]
[96]
Yang, F.; Yang, L.; Li, Y.; Yan, G.; Feng, C.; Liu, T.; Gong, R.; Yuan, Y.; Wang, N.; Idiiatullina, E.; Bikkuzin, T.; Pavlov, V.; Li, Y.; Dong, C.; Wang, D.; Cao, Y.; Han, Z.; Zhang, L.; Huang, Q.; Ding, F.; Bi, Z.; Cai, B. Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence. J. Pineal Res., 2017, 63(3), e12422.
[http://dx.doi.org/10.1111/jpi.12422] [PMID: 28500782]
[97]
Sun, X.; Xia, T.; Zhang, S.; Zhang, J.; Xu, L.; Han, T.; Xin, H. Hops extract and xanthohumol ameliorate bone loss induced by iron overload via activating Akt/GSK3β/Nrf2 pathway. J. Bone Miner. Metab., 2022, 40(3), 375-388.
[http://dx.doi.org/10.1007/s00774-021-01295-2] [PMID: 35106609]
[98]
Zhang, Q.; Zhao, L.; Shen, Y.; He, Y.; Cheng, G.; Yin, M.; Zhang, Q.; Qin, L. Curculigoside protects against excess-iron-induced bone loss by attenuating akt-foxo1-dependent oxidative damage to mice and osteoblastic MC3T3-E1 cells. Oxid. Med. Cell. Longev., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/9281481] [PMID: 31949885]
[99]
Vijayan, V.; Khandelwal, M.; Manglani, K.; Singh, R.R.; Gupta, S.; Surolia, A. Homocysteine alters the osteoprotegerin/RANKL system in the osteoblast to promote bone loss: Pivotal role of the redox regulator forkhead O1. Free Radic. Biol. Med., 2013, 61, 72-84.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.03.004] [PMID: 23500899]
[100]
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444(7117), 337-342.
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[101]
Zhao, L.; Wang, Y.; Wang, Z.; Xu, Z.; Zhang, Q.; Yin, M. Effects of dietary resveratrol on excess-iron-induced bone loss via antioxidative character. J. Nutr. Biochem., 2015, 26(11), 1174-1182.
[http://dx.doi.org/10.1016/j.jnutbio.2015.05.009] [PMID: 26239832]
[102]
Lee, N.K.; Choi, Y.G.; Baik, J.Y.; Han, S.Y.; Jeong, D.; Bae, Y.S.; Kim, N.; Lee, S.Y. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood, 2005, 106(3), 852-859.
[http://dx.doi.org/10.1182/blood-2004-09-3662] [PMID: 15817678]
[103]
Zhang, J. The osteoprotective effects of artemisinin compounds and the possible mechanisms associated with intracellular iron: A review of in vivo and in vitro studies. Environ. Toxicol. Pharmacol., 2020, 76, 103358.
[http://dx.doi.org/10.1016/j.etap.2020.103358] [PMID: 32143118]
[104]
Jin, H.; Du, J.; Ren, H.; Yang, G.; Wang, W.; Du, J.; Astragaloside, I.V. Astragaloside IV protects against iron loading-induced abnormal differentiation of bone marrow mesenchymal stem cells (BMSCs). FEBS Open Bio, 2021, 11(4), 1223-1236.
[http://dx.doi.org/10.1002/2211-5463.13082] [PMID: 33445204]

© 2024 Bentham Science Publishers | Privacy Policy