Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder

Author(s): David Zarate-Lopez, Ana Laura Torres-Chávez, Alma Yadira Gálvez-Contreras* and Oscar Gonzalez-Perez*

Volume 22, Issue 2, 2024

Published on: 16 October, 2023

Page: [260 - 289] Pages: 30

DOI: 10.2174/1570159X22666231003121513

Price: $65

Open Access Journals Promotions 2
Abstract

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.

Keywords: Autism spectrum disorder, valproic acid, HDAC inhibition, neurodevelopment, prenatal exposure, pathophysiology.

Graphical Abstract
[1]
Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet, 2018, 392(10146), 508-520.
[http://dx.doi.org/10.1016/S0140-6736(18)31129-2] [PMID: 30078460]
[2]
Li, Y.A.; Chen, Z.J.; Li, X.D.; Gu, M.H.; Xia, N.; Gong, C.; Zhou, Z.W.; Yasin, G.; Xie, H.Y.; Wei, X.P.; Liu, Y.L.; Han, X.H.; Lu, M.; Xu, J.; Huang, X.L. Epidemiology of autism spectrum disorders: Global burden of disease 2019 and bibliometric analysis of risk factors. Front Pediatr., 2022, 10, 972809.
[http://dx.doi.org/10.3389/fped.2022.972809] [PMID: 36545666]
[3]
Sharma, S.R.; Gonda, X.; Tarazi, F.I. Autism spectrum disorder: Classification, diagnosis and therapy. Pharmacol. Ther., 2018, 190, 91-104.
[http://dx.doi.org/10.1016/j.pharmthera.2018.05.007] [PMID: 29763648]
[4]
Bölte, S.; Girdler, S.; Marschik, P.B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell. Mol. Life Sci., 2019, 76(7), 1275-1297.
[http://dx.doi.org/10.1007/s00018-018-2988-4] [PMID: 30570672]
[5]
Lord, C.; Brugha, T.S.; Charman, T.; Cusack, J.; Dumas, G.; Frazier, T.; Jones, E.J.H.; Jones, R.M.; Pickles, A.; State, M.W.; Taylor, J.L.; Veenstra-VanderWeele, J. Autism spectrum disorder. Nat. Rev. Dis. Primers, 2020, 6(1), 5.
[http://dx.doi.org/10.1038/s41572-019-0138-4] [PMID: 31949163]
[6]
Tomson, T.; Battino, D.; Perucca, E. Valproic acid after five decades of use in epilepsy: time to reconsider the indications of a time-honoured drug. Lancet Neurol., 2016, 15(2), 210-218.
[http://dx.doi.org/10.1016/S1474-4422(15)00314-2] [PMID: 26655849]
[7]
Johannessen, C.U.; Johannessen, S.I. Valproate: Past, present, and future. CNS Drug Rev., 2003, 9(2), 199-216.
[http://dx.doi.org/10.1111/j.1527-3458.2003.tb00249.x] [PMID: 12847559]
[8]
Rahman, M.; Nguyen, H. Valproic Acid., 2022. Available from:https://www.ncbi.nlm.nih.gov/books/NBK559112/
[9]
Mohamed, Z.A.; Thokerunga, E.; Jimale, A.O.; Liu, Z.; Fan, J. Risk of autism spectrum disorder according to the dose and trimester of exposure to antiseizure medications: A systematic review and meta-analysis. Open J. Psychiatr., 2023, 13(2), 106-121.
[http://dx.doi.org/10.4236/ojpsych.2023.132011]
[10]
Sato, A.; Kotajima-Murakami, H.; Tanaka, M.; Katoh, Y.; Ikeda, K. Influence of prenatal drug exposure, maternal inflammation, and parental aging on the development of autism spectrum disorder. Front. Psychiatry, 2022, 13, 821455.
[http://dx.doi.org/10.3389/fpsyt.2022.821455] [PMID: 35222122]
[11]
Cui, K.; Wang, Y.; Zhu, Y.; Tao, T.; Yin, F.; Guo, Y.; Liu, H.; Li, F.; Wang, P.; Chen, Y.; Qin, J. Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. Microsyst. Nanoeng., 2020, 6(1), 49.
[http://dx.doi.org/10.1038/s41378-020-0165-z] [PMID: 34567661]
[12]
Zang, Z.; Yin, H.; Du, Z.; Xie, R.; Yang, L.; Cai, Y.; Wang, L.; Zhang, D.; Li, X.; Liu, T.; Gong, H.; Gao, J.; Yang, H.; Warner, M.; Gustafsson, J.A.; Xu, H.; Fan, X. Valproic acid exposure decreases neurogenic potential of outer radial glia in human brain organoids. Front. Mol. Neurosci., 2022, 15, 1023765.
[http://dx.doi.org/10.3389/fnmol.2022.1023765] [PMID: 36523605]
[13]
Meng, Q.; Zhang, W.; Wang, X.; Jiao, C.; Xu, S.; Liu, C.; Tang, B.; Chen, C. Human forebrain organoids reveal connections between valproic acid exposure and autism risk. Transl. Psychiatry, 2022, 12(1), 130.
[http://dx.doi.org/10.1038/s41398-022-01898-x] [PMID: 35351869]
[14]
Chang, Z.L. Sodium valproate and valproic acid. In: Analytical Profiles of Drug Substances; Elsevier, 1979; pp. 529-556.
[15]
Ghodke-Puranik, Y.; Thorn, C.F.; Lamba, J.K.; Leeder, J.S.; Song, W.; Birnbaum, A.K.; Altman, R.B.; Klein, T.E. Valproic acid pathway. Pharmacogenet. Genomics, 2013, 23(4), 236-241.
[http://dx.doi.org/10.1097/FPC.0b013e32835ea0b2] [PMID: 23407051]
[16]
Methaneethorn, J. A systematic review of population pharmacokinetics of valproic acid. Br. J. Clin. Pharmacol., 2018, 84(5), 816-834.
[http://dx.doi.org/10.1111/bcp.13510] [PMID: 29328514]
[17]
Henry, T.R. The history of valproate in clinical neuroscience. Psychopharmacol. Bull., 2003, 37(S2), 5-16.
[PMID: 14624229]
[18]
Romoli, M.; Mazzocchetti, P.; D’Alonzo, R.; Siliquini, S.; Rinaldi, V.E.; Verrotti, A.; Calabresi, P.; Costa, C. Valproic acid and epilepsy: From molecular mechanisms to clinical evidences. Curr. Neuropharmacol., 2019, 17(10), 926-946.
[http://dx.doi.org/10.2174/1570159X17666181227165722] [PMID: 30592252]
[19]
Carli, M.; Weiss, F.; Grenno, G.; Ponzini, S.; Kolachalam, S.; Vaglini, F.; Viaggi, C.; Pardini, C.; Tidona, S.; Longoni, B.; Maggio, R.; Scarselli, M. Pharmacological strategies for bipolar disorders in acute phases and chronic management with a special focus on lithium, valproic acid, and atypical antipsychotics. Curr. Neuropharmacol., 2023, 21(4), 935-950.
[http://dx.doi.org/10.2174/1570159X21666230224102318] [PMID: 36825703]
[20]
Yurekli, V.A.; Akhan, G.; Kutluhan, S.; Uzar, E.; Koyuncuoglu, H.R.; Gultekin, F. The effect of sodium valproate on chronic daily headache and its subgroups. J. Headache Pain, 2008, 9(1), 37-41.
[http://dx.doi.org/10.1007/s10194-008-0002-5] [PMID: 18231713]
[21]
Wang, F.; Zhang, H.; Wang, L.; Cao, Y.; He, Q. Intravenous sodium valproate for acute migraine in the emergency department: A meta‐analysis. Acta Neurol. Scand., 2020, 142(6), 521-530.
[http://dx.doi.org/10.1111/ane.13325] [PMID: 32740903]
[22]
Wang, Y.; Xia, J.; Helfer, B.; Li, C.; Leucht, S. Valproate for schizophrenia. Cochrane Database Syst. Rev., 2016, 11(11), CD004028.
[PMID: 27884042]
[23]
Nau, H.; Rating, D.; Koch, S.; Häuser, I.; Helge, H. Valproic acid and its metabolites: placental transfer, neonatal pharmacokinetics, transfer via mother’s milk and clinical status in neonates of epileptic mothers. J. Pharmacol. Exp. Ther., 1981, 219(3), 768-777.
[PMID: 6795343]
[24]
Jeong, E.J.; Yu, W.J.; Kim, C.Y.; Chung, M.K. Placenta transfer and toxicokinetics of valproic acid in pregnant cynomolgus monkeys. Toxicol. Res., 2010, 26(4), 275-283.
[http://dx.doi.org/10.5487/TR.2010.26.4.275] [PMID: 24278535]
[25]
Lee, J.H.; Yu, W.J.; Jeong, E.J.; Chung, M.K. Milk transfer and toxicokinetics of valproic Acid in lactating cynomolgus monkeys. Toxicol. Res., 2013, 29(1), 53-60.
[http://dx.doi.org/10.5487/TR.2013.29.1.053] [PMID: 24278629]
[26]
Genton, P.; Semah, F.; Trinka, E. Valproic acid in epilepsy: Pregnancy-related issues. Drug Saf., 2006, 29(1), 1-21.
[http://dx.doi.org/10.2165/00002018-200629010-00001] [PMID: 16454531]
[27]
Williams, G.; King, J.; Cunningham, M.; Stephan, M.; Kerr, B.; Hersh, J.H. Fetal valproate syndrome and autism: Additional evidence of an association. Dev. Med. Child Neurol., 2001, 43(3), 202-206.
[http://dx.doi.org/10.1111/j.1469-8749.2001.tb00188.x] [PMID: 11263692]
[28]
Rasalam, A.D.; Hailey, H.; Williams, J.H.G.; Moore, S.J.; Turnpenny, P.D.; Lloyd, D.J.; Dean, J.C.S. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev. Med. Child Neurol., 2005, 47(8), 551-555.
[http://dx.doi.org/10.1017/S0012162205001076] [PMID: 16108456]
[29]
Ornoy, A. Valproic acid in pregnancy: How much are we endangering the embryo and fetus? Reprod. Toxicol., 2009, 28(1), 1-10.
[http://dx.doi.org/10.1016/j.reprotox.2009.02.014] [PMID: 19490988]
[30]
Harden, C.L. In utero valproate exposure and autism: Long suspected, finally proven. Epilepsy Curr., 2013, 13(6), 282-284.
[http://dx.doi.org/10.5698/1535-7597-13.6.282] [PMID: 24348128]
[31]
Christensen, J.; Grønborg, T.K.; Sørensen, M.J.; Schendel, D.; Parner, E.T.; Pedersen, L.H.; Vestergaard, M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA, 2013, 309(16), 1696-1703.
[http://dx.doi.org/10.1001/jama.2013.2270] [PMID: 23613074]
[32]
Elger, C.E. Is valproate contraindicated in young women with epilepsy? No. Epileptology, 2013, 1(1), 43-45.
[http://dx.doi.org/10.1016/j.epilep.2013.01.002]
[33]
Macfarlane, A.; Greenhalgh, T. Sodium valproate in pregnancy: What are the risks and should we use a shared decision-making approach? BMC Pregnancy Childbirth, 2018, 18(1), 200.
[http://dx.doi.org/10.1186/s12884-018-1842-x] [PMID: 29859057]
[34]
Thisted, E.; Ebbesen, F. Malformations, withdrawal manifestations, and hypoglycaemia after exposure to valproate in utero. Arch. Dis. Child., 1993, 69, 288-291.
[http://dx.doi.org/10.1136/adc.69.3_Spec_No.288]
[35]
Wiedemann, K.; Stüber, T.; Rehn, M.; Frieauff, E. Fetal valproate syndrome - still a problem today! Z. Geburtshilfe Neonatol., 2017, 221(5), 243-246.
[http://dx.doi.org/10.1055/s-0043-107619] [PMID: 29073690]
[36]
Kulkarni, M.L.; Zaheeruddin, M.; Shenoy, N.; Vani, H.N. Fetal valproate syndrome. Indian J. Pediatr., 2006, 73(10), 937-939.
[http://dx.doi.org/10.1007/BF02859291] [PMID: 17090909]
[37]
Chandane, P.; Shah, I. Fetal valproate syndrome. Indian J. Hum. Genet., 2014, 20(2), 187-188.
[http://dx.doi.org/10.4103/0971-6866.142898] [PMID: 25400349]
[38]
Zaki, S.A.; Phulsundar, A.; Shanbag, P.; Mauskar, A. Fetal valproate syndrome in a 2-month-old male infant. Ann. Saudi Med., 2010, 30(3), 233-235.
[http://dx.doi.org/10.4103/0256-4947.62839] [PMID: 20427941]
[39]
Wood, A.G.; Nadebaum, C.; Anderson, V.; Reutens, D.; Barton, S.; O’Brien, T.J.; Vajda, F. Prospective assessment of autism traits in children exposed to antiepileptic drugs during pregnancy. Epilepsia, 2015, 56(7), 1047-1055.
[http://dx.doi.org/10.1111/epi.13007] [PMID: 25963613]
[40]
Cummings, C.; Stewart, M.; Stevenson, M.; Morrow, J.; Nelson, J. Neurodevelopment of children exposed in utero to lamotrigine, sodium valproate and carbamazepine. Arch. Dis. Child., 2011, 96(7), 643-647.
[http://dx.doi.org/10.1136/adc.2009.176990] [PMID: 21415043]
[41]
Shallcross, R.; Bromley, R.L.; Irwin, B.; Bonnett, L.J.; Morrow, J.; Baker, G.A. Child development following in utero exposure: Levetiracetam vs sodium valproate. Neurology, 2011, 76(4), 383-389.
[http://dx.doi.org/10.1212/WNL.0b013e3182088297] [PMID: 21263139]
[42]
Meador, K.J.; Baker, G.A.; Browning, N.; Clayton-Smith, J.; Combs-Cantrell, D.T.; Cohen, M.; Kalayjian, L.A.; Kanner, A.; Liporace, J.D.; Pennell, P.B.; Privitera, M.; Loring, D.W. Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. N. Engl. J. Med., 2009, 360(16), 1597-1605.
[http://dx.doi.org/10.1056/NEJMoa0803531] [PMID: 19369666]
[43]
Nadebaum, C.; Anderson, V.; Vajda, F.; Reutens, D.; Barton, S.; Wood, A. The Australian brain and cognition and antiepileptic drugs study: IQ in school-aged children exposed to sodium valproate and polytherapy. J. Int. Neuropsychol. Soc., 2011, 17(1), 133-142.
[http://dx.doi.org/10.1017/S1355617710001359] [PMID: 21092354]
[44]
Nadebaum, C.; Anderson, V.A.; Vajda, F.; Reutens, D.C.; Barton, S.; Wood, A.G. Language skills of school-aged children prenatally exposed to antiepileptic drugs. Neurology, 2011, 76(8), 719-726.
[http://dx.doi.org/10.1212/WNL.0b013e31820d62c7] [PMID: 21339499]
[45]
Goyal, M.; Gupta, A.; Sharma, M.; Mathur, P.; Bansal, N. Fetal valproate syndrome with limb defects: An Indian case report. Case Rep. Pediatr., 2016, 2016, 1-4.
[http://dx.doi.org/10.1155/2016/3495910] [PMID: 28003925]
[46]
Tomson, T.; Battino, D.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Sabers, A.; Perucca, E.; Vajda, F. Dose-dependent risk of malformations with antiepileptic drugs: An analysis of data from the EURAP epilepsy and pregnancy registry. Lancet Neurol., 2011, 10(7), 609-617.
[http://dx.doi.org/10.1016/S1474-4422(11)70107-7] [PMID: 21652013]
[47]
Jentink, J.; Dolk, H.; Loane, MA.; Morris, JK.; Wellesley, D.; Garne, E. Intrauterine exposure to carbamazepine and specific congenital malformations: Systematic review and case-control study. BMJ, 2010, 341, c6581-c6581.
[http://dx.doi.org/10.1136/bmj.c6581]
[48]
Stadelmaier, R.; Nasri, H.; Deutsch, C.K.; Bauman, M.; Hunt, A.; Stodgell, C.J.; Adams, J.; Holmes, L.B. Exposure to sodium valproate during pregnancy: Facial Features and Signs of Autism. Birth Defects Res., 2017, 109(14), 1134-1143.
[http://dx.doi.org/10.1002/bdr2.1052] [PMID: 28635121]
[49]
Donovan, M.F.; Cascella, M. Embryology, Weeks 6-8.StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
[50]
O’Rahilly, R.; Müller, F. Developmental stages in human embryos: Revised and new measurements. Cells Tissues Organs, 2010, 192(2), 73-84.
[http://dx.doi.org/10.1159/000289817] [PMID: 20185898]
[51]
Sass, L.; Urhoj, S.K.; Kjærgaard, J.; Dreier, J.W.; Strandberg-Larsen, K.; Nybo Andersen, A.M. Fever in pregnancy and the risk of congenital malformations: A cohort study. BMC Pregnancy Childbirth, 2017, 17(1), 413.
[http://dx.doi.org/10.1186/s12884-017-1585-0] [PMID: 29221468]
[52]
Romøren, M.; Lindbaek, M.; Nordeng, H. Pregnancy outcome after gestational exposure to erythromycin - a population-based register study from Norway. Br. J. Clin. Pharmacol., 2012, 74(6), 1053-1062.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04286.x] [PMID: 22463376]
[53]
Sun, L.; Xi, Y.; Wen, X.; Zou, W. Use of metoclopramide in the first trimester and risk of major congenital malformations: A systematic review and meta-analysis. PLoS One, 2021, 16(9), e0257584.
[http://dx.doi.org/10.1371/journal.pone.0257584]
[54]
Christianson, A.L.; Chester, N.; Kromberg, J.G.R. Fetal valproate syndrome: Clinical and neuro-developmental features in two sibling pairs. Dev. Med. Child Neurol., 1994, 36(4), 361-369.
[http://dx.doi.org/10.1111/j.1469-8749.1994.tb11858.x] [PMID: 7512516]
[55]
Laegreid, L.; Kyllerman, M.; Hedner, T.; Hagberg, B.; Viggedahl, G. Benzodiazepine amplification of valproate teratogenic effects in children of mothers with absence epilepsy. Neuropediatrics, 1993, 24(2), 88-92.
[http://dx.doi.org/10.1055/s-2008-1071520] [PMID: 7687042]
[56]
Williams, P.G.; Hersh, J.H. A male with fetal valproate syndrome and autism. Dev. Med. Child Neurol., 1997, 39(9), 632-634.
[http://dx.doi.org/10.1111/j.1469-8749.1997.tb07500.x] [PMID: 9344057]
[57]
Bromley, R.L.; Mawer, G.; Clayton-Smith, J.; Baker, G.A. Autism spectrum disorders following in utero exposure to antiepileptic drugs. Neurology, 2008, 71(23), 1923-1924.
[http://dx.doi.org/10.1212/01.wnl.0000339399.64213.1a] [PMID: 19047565]
[58]
Moore, S.J.; Turnpenny, P.; Quinn, A.; Glover, S.; Lloyd, D.J.; Montgomery, T.; Dean, J.C. A clinical study of 57 children with fetal anticonvulsant syndromes. J. Med. Genet., 2000, 37(7), 489-497.
[http://dx.doi.org/10.1136/jmg.37.7.489] [PMID: 10882750]
[59]
Dean, J.C.S.; Hailey, H.; Moore, S.J.; Lloyd, D.J.; Turnpenny, P.D.; Little, J. Long term health and neurodevelopment in children exposed to antiepileptic drugs before birth. J. Med. Genet., 2002, 39(4), 251-259.
[http://dx.doi.org/10.1136/jmg.39.4.251] [PMID: 11950853]
[60]
Bromley, R.L.; Mawer, G.E.; Briggs, M.; Cheyne, C.; Clayton-Smith, J.; García-Fiñana, M.; Kneen, R.; Lucas, S.B.; Shallcross, R.; Baker, G.A.; Baker, G.; Briggs, M.; Bromley, R.; Clayton-Smith, J.; Dixon, P.; Fryer, A.; Gummery, A.; Kneen, R.; Kerr, L.; Lucas, S.; Mawer, G.; Shallcross, R. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. J. Neurol. Neurosurg. Psychiatry, 2013, 84(6), 637-643.
[http://dx.doi.org/10.1136/jnnp-2012-304270] [PMID: 23370617]
[61]
Petersen, I.; Collings, S.L.; McCrea, R.L.; Nazareth, I.; Osborn, D.P.; Cowen, P.J.; Sammon, C.J. Antiepileptic drugs prescribed in pregnancy and prevalence of major congenital malformations: Comparative prevalence studies. Clin. Epidemiol., 2017, 9, 95-103.
[http://dx.doi.org/10.2147/CLEP.S118336] [PMID: 28243149]
[62]
Hisle-Gorman, E.; Susi, A.; Stokes, T.; Gorman, G.; Erdie-Lalena, C.; Nylund, C.M. Prenatal, perinatal, and neonatal risk factors of autism spectrum disorder. Pediatr. Res., 2018, 84(2), 190-198.
[http://dx.doi.org/10.1038/pr.2018.23] [PMID: 29538366]
[63]
Crawley, J.N. Translational animal models of autism and neurodevelopmental disorders. Dialogues Clin. Neurosci., 2012, 14(3), 293-305.
[http://dx.doi.org/10.31887/DCNS.2012.14.3/jcrawley] [PMID: 23226954]
[64]
Bauman, M.D.; Crawley, J.N.; Berman, R.F. Autism: Animal Models, 1st ed; John Wiley & Sons, Ltd., 2010.
[65]
Belzung, C.; Lemoine, M. Criteria of validity for animal models of psychiatric disorders: Focus on anxiety disorders and depression. Biol. Mood Anxiety Disord., 2011, 1(1), 9.
[http://dx.doi.org/10.1186/2045-5380-1-9] [PMID: 22738250]
[66]
American Psychiatric AssociationDiagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision; American Psychiatric Association: Washington, DC, 2022.
[67]
Mabunga, D.F.N.; Gonzales, E.L.T.; Kim, J.; Kim, K.C.; Shin, C.Y. Exploring the validity of valproic acid animal model of autism. Exp. Neurobiol., 2015, 24(4), 285-300.
[http://dx.doi.org/10.5607/en.2015.24.4.285] [PMID: 26713077]
[68]
Rodier, P.M.; Ingram, J.L.; Tisdale, B.; Nelson, S.; Romano, J. Embryological origin for autism: Developmental anomalies of the cranial nerve motor nuclei. J. Comp. Neurol., 1996, 370(2), 247-261.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19960624)370:2<247:AID-CNE8>3.0.CO;2-2] [PMID: 8808733]
[69]
Tartaglione, A.M.; Schiavi, S.; Calamandrei, G.; Trezza, V. Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology, 2019, 159, 107477.
[http://dx.doi.org/10.1016/j.neuropharm.2018.12.024] [PMID: 30639388]
[70]
Nicolini, C.; Fahnestock, M. The valproic acid-induced rodent model of autism. Exp. Neurol., 2018, 299(Pt A), 217-227.
[http://dx.doi.org/10.1016/j.expneurol.2017.04.017] [PMID: 28472621]
[71]
Ranger, P.; Ellenbroek, B.A. Perinatal influences of valproate on brain and behaviour: An animal model for autism. In: Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology; Kostrzewa, R.M.; Archer, A., Eds.; Springer International Publishing: Cham, 2015; pp. 363-386.
[72]
Roullet, F.I.; Lai, J.K.Y.; Foster, J.A. In utero exposure to valproic acid and autism — A current review of clinical and animal studies. Neurotoxicol. Teratol., 2013, 36, 47-56.
[http://dx.doi.org/10.1016/j.ntt.2013.01.004] [PMID: 23395807]
[73]
Kim, K.C.; Kim, P.; Go, H.S.; Choi, C.S.; Yang, S.I.; Cheong, J.H.; Shin, C.Y.; Ko, K.H. The critical period of valproate exposure to induce autistic symptoms in Sprague–Dawley rats. Toxicol. Lett., 2011, 201(2), 137-142.
[http://dx.doi.org/10.1016/j.toxlet.2010.12.018] [PMID: 21195144]
[74]
Yochum, C.L.; Dowling, P.; Reuhl, K.R.; Wagner, G.C.; Ming, X. VPA-induced apoptosis and behavioral deficits in neonatal mice. Brain Res., 2008, 1203, 126-132.
[http://dx.doi.org/10.1016/j.brainres.2008.01.055] [PMID: 18316065]
[75]
Chomiak, T.; Karnik, V.; Block, E.; Hu, B. Altering the trajectory of early postnatal cortical development can lead to structural and behavioural features of autism. BMC Neurosci., 2010, 11(1), 102.
[http://dx.doi.org/10.1186/1471-2202-11-102] [PMID: 20723245]
[76]
Reynolds, S.; Millette, A.; Devine, D.P. Sensory and motor characterization in the postnatal valproate rat model of autism. Dev. Neurosci., 2012, 34(2-3), 258-267.
[http://dx.doi.org/10.1159/000336646] [PMID: 22627078]
[77]
Wagner, G.C.; Reuhl, K.R.; Cheh, M.; McRae, P.; Halladay, A.K. A new neurobehavioral model of autism in mice: Pre- and postnatal exposure to sodium valproate. J. Autism Dev. Disord., 2006, 36(6), 779-793.
[http://dx.doi.org/10.1007/s10803-006-0117-y] [PMID: 16609825]
[78]
Oguchi-Katayama, A.; Monma, A.; Sekino, Y.; Moriguchi, T.; Sato, K. Comparative gene expression analysis of the amygdala in autistic rat models produced by pre- and post-natal exposures to valproic acid. J. Toxicol. Sci., 2013, 38(3), 391-402.
[http://dx.doi.org/10.2131/jts.38.391] [PMID: 23665938]
[79]
Larner, O.; Roberts, J.; Twiss, J.; Freeman, L. A Need for consistency in behavioral phenotyping for ASD: Analysis of the valproic acid model. Rossignol D; Treat, A.R., Ed.; , 2021, pp. 1-10.
[80]
Chaliha, D.; Albrecht, M.; Vaccarezza, M.; Takechi, R.; Lam, V.; Al-Salami, H.; Mamo, J. A systematic review of the valproic-acid-induced rodent model of autism. Dev. Neurosci., 2020, 42(1), 12-48.
[http://dx.doi.org/10.1159/000509109] [PMID: 32810856]
[81]
Juliandi, B.; Tanemura, K.; Igarashi, K.; Tominaga, T.; Furukawa, Y.; Otsuka, M.; Moriyama, N.; Ikegami, D.; Abematsu, M.; Sanosaka, T.; Tsujimura, K.; Narita, M.; Kanno, J.; Nakashima, K. Reduced adult hippocampal neurogenesis and cognitive impairments following prenatal treatment of the antiepileptic drug valproic acid. Stem Cell Reports, 2015, 5(6), 996-1009.
[http://dx.doi.org/10.1016/j.stemcr.2015.10.012] [PMID: 26677766]
[82]
Main, S.L.; Kulesza, R.J. Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia. Neuroscience, 2017, 340, 34-47.
[http://dx.doi.org/10.1016/j.neuroscience.2016.10.052] [PMID: 27984183]
[83]
Cartocci, V.; Catallo, M.; Tempestilli, M.; Segatto, M.; Pfrieger, F.W.; Bronzuoli, M.R.; Scuderi, C.; Servadio, M.; Trezza, V.; Pallottini, V. Altered brain cholesterol/isoprenoid metabolism in a rat model of autism spectrum disorders. Neuroscience, 2018, 372, 27-37.
[http://dx.doi.org/10.1016/j.neuroscience.2017.12.053] [PMID: 29309878]
[84]
Cezar, LC; Kirsten, TB; da Fonseca, CCN; de Lima, APN; Bernardi, MM; Felicio, LF Zinc as a therapy in a rat model of autism prenatally induced by valproic acid. Prog. Neuropsychopharmacol. Biol. Psychiatry., 2018, 84(Pt A), 173-180.
[http://dx.doi.org/10.1016/j.pnpbp.2018.02.008]
[85]
Dai, Y.C.; Zhang, H.F.; Schön, M.; Böckers, T.M.; Han, S.P.; Han, J.S.; Zhang, R. Neonatal oxytocin treatment ameliorates autistic-like behaviors and oxytocin deficiency in valproic acid-induced rat model of autism. Front. Cell. Neurosci., 2018, 12, 355.
[http://dx.doi.org/10.3389/fncel.2018.00355] [PMID: 30356897]
[86]
Felix-Ortiz, A.C.; Febo, M. Gestational valproate alters BOLD activation in response to complex social and primary sensory stimuli. PLoS One, 2012, 7(5), e37313.
[http://dx.doi.org/10.1371/journal.pone.0037313] [PMID: 22615973]
[87]
Moldrich, R.X.; Leanage, G.; She, D.; Dolan-Evans, E.; Nelson, M.; Reza, N.; Reutens, D.C. Inhibition of histone deacetylase in utero causes sociability deficits in postnatal mice. Behav. Brain Res., 2013, 257, 253-264.
[http://dx.doi.org/10.1016/j.bbr.2013.09.049] [PMID: 24103642]
[88]
Kuo, H.Y.; Liu, F.C. Valproic acid induces aberrant development of striatal compartments and corticostriatal pathways in a mouse model of autism spectrum disorder. FASEB J., 2017, 31(10), 4458-4471.
[http://dx.doi.org/10.1096/fj.201700054R] [PMID: 28687613]
[89]
Melancia, F.; Schiavi, S.; Servadio, M.; Cartocci, V.; Campolongo, P.; Palmery, M.; Pallottini, V.; Trezza, V. Sex-specific autistic endophenotypes induced by prenatal exposure to valproic acid involve anandamide signalling. Br. J. Pharmacol., 2018, 175(18), 3699-3712.
[http://dx.doi.org/10.1111/bph.14435] [PMID: 29968249]
[90]
Servadio, M.; Manduca, A.; Melancia, F.; Leboffe, L.; Schiavi, S.; Campolongo, P.; Palmery, M.; Ascenzi, P.; di Masi, A.; Trezza, V. Impaired repair of DNA damage is associated with autistic-like traits in rats prenatally exposed to valproic acid. Eur. Neuropsychopharmacol., 2018, 28(1), 85-96.
[http://dx.doi.org/10.1016/j.euroneuro.2017.11.014] [PMID: 29174949]
[91]
Tsuji, C.; Fujisaku, T.; Tsuji, T. Oxytocin ameliorates maternal separation‐induced ultrasonic vocalisation calls in mouse pups prenatally exposed to valproic acid. J. Neuroendocrinol., 2020, 32(4), e12850.
[http://dx.doi.org/10.1111/jne.12850] [PMID: 32321197]
[92]
Tyzio, R.; Nardou, R.; Ferrari, D.C.; Tsintsadze, T.; Shahrokhi, A.; Eftekhari, S.; Khalilov, I.; Tsintsadze, V.; Brouchoud, C.; Chazal, G.; Lemonnier, E.; Lozovaya, N.; Burnashev, N.; Ben-Ari, Y. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science, 2014, 343(6171), 675-679.
[http://dx.doi.org/10.1126/science.1247190] [PMID: 24503856]
[93]
Zhang, J.; Liu, L.M.; Ni, J.F. Rapamycin modulated brain-derived neurotrophic factor and B-cell lymphoma 2 to mitigate autism spectrum disorder in rats. Neuropsychiatr. Dis. Treat., 2017, 13, 835-842.
[http://dx.doi.org/10.2147/NDT.S125088] [PMID: 28360521]
[94]
Kim, P.; Park, J.H.; Kwon, K.J.; Kim, K.C.; Kim, H.J.; Lee, J.M.; Kim, H.Y.; Han, S.H.; Shin, C.Y. Effects of Korean red ginseng extracts on neural tube defects and impairment of social interaction induced by prenatal exposure to valproic acid. Food Chem. Toxicol., 2013, 51, 288-296.
[http://dx.doi.org/10.1016/j.fct.2012.10.011] [PMID: 23104247]
[95]
Kim, K.C.; Kim, P.; Go, H.S.; Choi, C.S.; Park, J.H.; Kim, H.J.; Jeon, S.J.; dela Pena, I.C.; Han, S.H.; Cheong, J.H.; Ryu, J.H.; Shin, C.Y. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J. Neurochem., 2013, 124(6), 832-843.
[http://dx.doi.org/10.1111/jnc.12147] [PMID: 23311691]
[96]
Zhao, G.; Gao, J.; Liang, S.; Wang, X.; Sun, C.; Xia, W.; Hao, Y.; Li, X.; Cao, Y.; Wu, L. Study of the serum levels of polyunsaturated fatty acids and the expression of related liver metabolic enzymes in a rat valproate‐induced autism model. Int. J. Dev. Neurosci., 2015, 44(1), 14-21.
[http://dx.doi.org/10.1016/j.ijdevneu.2015.04.350] [PMID: 25916973]
[97]
Cho, H.; Kim, C.H.; Knight, E.Q.; Oh, H.W.; Park, B.; Kim, D.G.; Park, H.J. Changes in brain metabolic connectivity underlie autistic-like social deficits in a rat model of autism spectrum disorder. Sci. Rep., 2017, 7(1), 13213.
[http://dx.doi.org/10.1038/s41598-017-13642-3] [PMID: 29038507]
[98]
Wu, H.; Wang, X.; Gao, J.; Liang, S.; Hao, Y.; Sun, C.; Xia, W.; Cao, Y.; Wu, L. Fingolimod (FTY720) attenuates social deficits, learning and memory impairments, neuronal loss and neuroinflammation in the rat model of autism. Life Sci., 2017, 173, 43-54.
[http://dx.doi.org/10.1016/j.lfs.2017.01.012] [PMID: 28161158]
[99]
Al-Amin, M.M.; Rahman, M.M.; Khan, F.R.; Zaman, F.; Mahmud Reza, H. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav. Brain Res., 2015, 286, 112-121.
[http://dx.doi.org/10.1016/j.bbr.2015.02.041] [PMID: 25732953]
[100]
Bambini-Junior, V.; Zanatta, G.; Della, F.N.G.; Mueller de Melo, G.; Michels, M.; Fontes-Dutra, M.; Nogueira Freire, V.; Riesgo, R.; Gottfried, C. Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neurosci. Lett., 2014, 583, 176-181.
[http://dx.doi.org/10.1016/j.neulet.2014.09.039] [PMID: 25263788]
[101]
Campolongo, M.; Kazlauskas, N.; Falasco, G.; Urrutia, L.; Salgueiro, N.; Höcht, C.; Depino, A.M. Sociability deficits after prenatal exposure to valproic acid are rescued by early social enrichment. Mol. Autism, 2018, 9(1), 36.
[http://dx.doi.org/10.1186/s13229-018-0221-9] [PMID: 29946415]
[102]
Chau, D.K.F.; Choi, A.Y.T.; Yang, W.; Leung, W.N.; Chan, C.W. Downregulation of glutamatergic and GABAergic proteins in valproric acid associated social impairment during adolescence in mice. Behav. Brain Res., 2017, 316, 255-260.
[http://dx.doi.org/10.1016/j.bbr.2016.09.003] [PMID: 27614006]
[103]
Dai, X.; Yin, Y.; Qin, L. Valproic acid exposure decreases the mRNA stability of Bcl-2 via up-regulating miR-34a in the cerebellum of rat. Neurosci. Lett., 2017, 657, 159-165.
[http://dx.doi.org/10.1016/j.neulet.2017.08.018] [PMID: 28803955]
[104]
Eissa, N.; Jayaprakash, P.; Azimullah, S.; Ojha, S.K.; Al-Houqani, M.; Jalal, F.Y.; Łażewska, D.; Kieć-Kononowicz, K.; Sadek, B. The histamine H3R antagonist DL77 attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism. Sci. Rep., 2018, 8(1), 13077.
[http://dx.doi.org/10.1038/s41598-018-31385-7] [PMID: 30166610]
[105]
Gao, J.; Wu, H.; Cao, Y.; Liang, S.; Sun, C.; Wang, P.; Wang, J.; Sun, H.; Wu, L. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid. J. Nutr. Biochem., 2016, 35, 87-95.
[http://dx.doi.org/10.1016/j.jnutbio.2016.07.003] [PMID: 27469996]
[106]
Hirsch, M.M.; Deckmann, I.; Santos-Terra, J.; Staevie, G.Z.; Fontes-Dutra, M.; Carello-Collar, G.; Körbes-Rockenbach, M.; Brum Schwingel, G.; Bauer-Negrini, G.; Rabelo, B.; Gonçalves, M.C.B.; Corrêa-Velloso, J.; Naaldijk, Y.; Castillo, A.R.G.; Schneider, T.; Bambini-Junior, V.; Ulrich, H.; Gottfried, C. Effects of single-dose antipurinergic therapy on behavioral and molecular alterations in the valproic acid-induced animal model of autism. Neuropharmacology, 2020, 167, 107930.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107930] [PMID: 31904357]
[107]
Hou, Q.; Wang, Y.; Li, Y.; Chen, D.; Yang, F.; Wang, S. A developmental study of abnormal behaviors and altered gabaergic signaling in the vpa-treated rat model of autism. Front. Behav. Neurosci., 2018, 12, 182.
[http://dx.doi.org/10.3389/fnbeh.2018.00182] [PMID: 30186123]
[108]
Kerr, D.M.; Downey, L.; Conboy, M.; Finn, D.P.; Roche, M. Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behav. Brain Res., 2013, 249, 124-132.
[http://dx.doi.org/10.1016/j.bbr.2013.04.043] [PMID: 23643692]
[109]
Khalaj, R.; Hajizadeh Moghaddam, A.; Zare, M. Hesperetin and it nanocrystals ameliorate social behavior deficits and oxido‐inflammatory stress in rat model of autism. Int. J. Dev. Neurosci., 2018, 69(1), 80-87.
[http://dx.doi.org/10.1016/j.ijdevneu.2018.06.009] [PMID: 29966739]
[110]
Kim, J.W.; Seung, H.; Kim, K.C.; Gonzales, E.L.T.; Oh, H.A.; Yang, S.M.; Ko, M.J.; Han, S.H.; Banerjee, S.; Shin, C.Y. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology, 2017, 113(Pt A), 71-81.
[http://dx.doi.org/10.1016/j.neuropharm.2016.09.014] [PMID: 27638451]
[111]
Matsuo, K.; Yabuki, Y.; Fukunaga, K. 5-aminolevulinic acid inhibits oxidative stress and ameliorates autistic-like behaviors in prenatal valproic acid-exposed rats. Neuropharmacology, 2020, 168, 107975.
[http://dx.doi.org/10.1016/j.neuropharm.2020.107975] [PMID: 31991146]
[112]
Qin, L.; Dai, X.; Yin, Y. Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats. Mol. Cell. Neurosci., 2016, 75, 27-35.
[http://dx.doi.org/10.1016/j.mcn.2016.06.004] [PMID: 27343825]
[113]
Rajizadeh, M.A.; Afarinesh, M.R.; Zarif, M.; Mirasadi, A.; Esmaeilpour, K. Does caffeine therapy improve cognitive impairments in valproic acid rat model of autism? Toxin Rev., 2021, 40(4), 654-664.
[http://dx.doi.org/10.1080/15569543.2019.1680563]
[114]
Servadio, M.; Melancia, F.; Cartocci, V.; Pallottini, V.; Trezza, V. Role of the endocannabinoid system in the altered social behavior observed in the rat valproic acid model of autism. Eur. Neuropsychopharmacol., 2016, 26, S269-S270.
[http://dx.doi.org/10.1016/S0924-977X(16)31152-X]
[115]
Štefánik, P.; Olexová, L.; Kršková, L. Increased sociability and gene expression of oxytocin and its receptor in the brains of rats affected prenatally by valproic acid. Pharmacol. Biochem. Behav., 2015, 131, 42-50.
[http://dx.doi.org/10.1016/j.pbb.2015.01.021] [PMID: 25662821]
[116]
Wu, H.F.; Chen, P.S.; Chen, Y.J.; Lee, C.W.; Chen, I.T.; Lin, H.C. Alleviation of N-Methyl-d-aspartate receptor-dependent long-term depression via regulation of the glycogen synthase kinase-3β pathway in the amygdala of a valproic acid-induced animal model of autism. Mol. Neurobiol., 2017, 54(7), 5264-5276.
[http://dx.doi.org/10.1007/s12035-016-0074-1] [PMID: 27578017]
[117]
Zamberletti, E.; Gabaglio, M.; Woolley-Roberts, M.; Bingham, S.; Rubino, T.; Parolaro, D. Cannabidivarin treatment ameliorates autism-like behaviors and restores hippocampal endocannabinoid system and glia alterations induced by prenatal valproic acid exposure in rats. Front. Cell. Neurosci., 2019, 13, 367.
[http://dx.doi.org/10.3389/fncel.2019.00367] [PMID: 31447649]
[118]
Zhang, R.; Zhou, J.; Ren, J.; Sun, S.; Di, Y.; Wang, H.; An, X.; Zhang, K.; Zhang, J.; Qian, Z.; Shi, M.; Qiao, Y.; Ren, W.; Tian, Y. Transcriptional and splicing dysregulation in the prefrontal cortex in valproic acid rat model of autism. Reprod. Toxicol., 2018, 77, 53-61.
[http://dx.doi.org/10.1016/j.reprotox.2018.01.008] [PMID: 29427782]
[119]
Zhang, Y.; Xiang, Z.; Jia, Y.; He, X.; Wang, L.; Cui, W. The notch signaling pathway inhibitor dapt alleviates autism-like behavior, autophagy and dendritic spine density abnormalities in a valproic acid-induced animal model of autism. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 94, 109644.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109644] [PMID: 31075347]
[120]
Schiavi, S.; Iezzi, D.; Manduca, A.; Leone, S.; Melancia, F.; Carbone, C.; Petrella, M.; Mannaioni, G.; Masi, A.; Trezza, V. Reward-related behavioral, neurochemical and electrophysiological changes in a rat model of autism based on prenatal exposure to valproic acid. Front. Cell. Neurosci., 2019, 13, 479.
[http://dx.doi.org/10.3389/fncel.2019.00479] [PMID: 31708750]
[121]
Hajisoltani, R.; Karimi, S.A.; Rahdar, M.; Davoudi, S.; Borjkhani, M.; Hosseinmardi, N.; Behzadi, G.; Janahmadi, M. Hyperexcitability of hippocampal CA1 pyramidal neurons in male offspring of a rat model of autism spectrum disorder (ASD) induced by prenatal exposure to valproic acid: A possible involvement of Ih channel current. Brain Res., 2019, 1708, 188-199.
[http://dx.doi.org/10.1016/j.brainres.2018.12.011] [PMID: 30537517]
[122]
Kim, K.C.; Lee, D.K.; Go, H.S.; Kim, P.; Choi, C.S.; Kim, J.W.; Jeon, S.J.; Song, M.R.; Shin, C.Y. Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol., 2014, 49(1), 512-528.
[http://dx.doi.org/10.1007/s12035-013-8535-2] [PMID: 24030726]
[123]
Wu, H.F.; Chen, Y.J.; Chu, M.C.; Hsu, Y.T.; Lu, T.Y.; Chen, I.T.; Chen, P.; Lin, H.C. Deep brain stimulation modified autism-like deficits via the serotonin system in a valproic acid-induced rat model. Int. J. Mol. Sci., 2018, 19(9), 2840.
[http://dx.doi.org/10.3390/ijms19092840] [PMID: 30235871]
[124]
Schneider, T.; Turczak, J.; Przewłocki, R. Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: Issues for a therapeutic approach in autism. Neuropsychopharmacology, 2006, 31(1), 36-46.
[http://dx.doi.org/10.1038/sj.npp.1300767] [PMID: 15920505]
[125]
Degroote, S.; Hunting, D.; Sébire, G.; Takser, L. Autistic-like traits in Lewis rats exposed perinatally to a mixture of common endocrine disruptors. Endocr. Disruptors, 2014, 2(1), e976123.
[http://dx.doi.org/10.4161/23273747.2014.976123]
[126]
Ahn, Y.; Narous, M.; Tobias, R.; Rho, J.M.; Mychasiuk, R. The ketogenic diet modifies social and metabolic alterations identified in the prenatal valproic acid model of autism spectrum disorder. Dev. Neurosci., 2014, 36(5), 371-380.
[http://dx.doi.org/10.1159/000362645] [PMID: 25011527]
[127]
Codagnone, M.G.; Podestá, M.F.; Uccelli, N.A.; Reinés, A. Differential local connectivity and neuroinflammation profiles in the medial prefrontal cortex and hippocampus in the valproic acid rat model of autism. Dev. Neurosci., 2015, 37(3), 215-231.
[http://dx.doi.org/10.1159/000375489] [PMID: 25895486]
[128]
Du, L.; Zhao, G.; Duan, Z.; Li, F. Behavioral improvements in a valproic acid rat model of autism following vitamin D supplementation. Psychiatry Res., 2017, 253, 28-32.
[http://dx.doi.org/10.1016/j.psychres.2017.03.003] [PMID: 28324861]
[129]
Edalatmanesh, M.A.; Nikfarjam, H.; Vafaee, F.; Moghadas, M. Increased hippocampal cell density and enhanced spatial memory in the valproic acid rat model of autism. Brain Res., 2013, 1526, 15-25.
[http://dx.doi.org/10.1016/j.brainres.2013.06.024] [PMID: 23806776]
[130]
Kataoka, S.; Takuma, K.; Hara, Y.; Maeda, Y.; Ago, Y.; Matsuda, T. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int. J. Neuropsychopharmacol., 2013, 16(1), 91-103.
[http://dx.doi.org/10.1017/S1461145711001714] [PMID: 22093185]
[131]
Lin, H.C.; Gean, P.W.; Wang, C.C.; Chan, Y.H.; Chen, P.S. The amygdala excitatory/inhibitory balance in a valproate-induced rat autism model. PLoS ONE., 2013, 8(1), e55248.
[132]
Markram, K.; Rinaldi, T.; Mendola, D.L.; Sandi, C.; Markram, H. Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology, 2008, 33(4), 901-912.
[http://dx.doi.org/10.1038/sj.npp.1301453] [PMID: 17507914]
[133]
Olde Loohuis, N.F.M.; Martens, G.J.M.; van Bokhoven, H.; Kaplan, B.B.; Homberg, J.R.; Aschrafi, A. Altered expression of circadian rhythm and extracellular matrix genes in the medial prefrontal cortex of a valproic acid rat model of autism. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 77, 128-132.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.009] [PMID: 28408291]
[134]
Sandhya, T.; Sowjanya, J.; Veeresh, B. Bacopa monniera (L.) Wettst ameliorates behavioral alterations and oxidative markers in sodium valproate induced autism in rats. Neurochem. Res., 2012, 37(5), 1121-1131.
[http://dx.doi.org/10.1007/s11064-012-0717-1] [PMID: 22322665]
[135]
Schneider, T.; Przewłocki, R. Behavioral alterations in rats prenatally exposed to valproic acid: Animal model of autism. Neuropsychopharmacology, 2005, 30(1), 80-89.
[http://dx.doi.org/10.1038/sj.npp.1300518] [PMID: 15238991]
[136]
Wang, C.C.; Lin, H.C.; Chan, Y.H.; Gean, P.W.; Yang, Y.K.; Chen, P.S. 5-HT1A-receptor agonist modified amygdala activity and amygdala-associated social behavior in a valproate-induced rat autism model. Int. J. Neuropsychopharmacol., 2013, 16(9), 2027-2039.
[http://dx.doi.org/10.1017/S1461145713000473] [PMID: 23823694]
[137]
Yamaguchi, H.; Hara, Y.; Ago, Y.; Takano, E.; Hasebe, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice. Behav. Brain Res., 2017, 333, 67-73.
[http://dx.doi.org/10.1016/j.bbr.2017.06.035] [PMID: 28655565]
[138]
Bringas, M.E.; Carvajal-Flores, F.N.; López-Ramírez, T.A.; Atzori, M.; Flores, G. Rearrangement of the dendritic morphology in limbic regions and altered exploratory behavior in a rat model of autism spectrum disorder. Neuroscience, 2013, 241, 170-187.
[http://dx.doi.org/10.1016/j.neuroscience.2013.03.030] [PMID: 23535253]
[139]
Choi, C.S.; Hong, M.; Kim, K.C.; Kim, J.W.; Yang, S.M.; Seung, H.; Ko, M.J.; Choi, D.H.; You, J.S.; Shin, C.Y.; Bahn, G.H. Effects of atomoxetine on hyper-locomotive activity of the prenatally valproate-exposed rat offspring. Biomol. Ther., 2014, 22(5), 406-413.
[http://dx.doi.org/10.4062/biomolther.2014.027] [PMID: 25414770]
[140]
Olexová, L.; Štefánik, P.; Kršková, L. Increased anxiety-like behaviour and altered GABAergic system in the amygdala and cerebellum of VPA rats — An animal model of autism. Neurosci. Lett., 2016, 629, 9-14.
[http://dx.doi.org/10.1016/j.neulet.2016.06.035] [PMID: 27353514]
[141]
Zhang, Y.; Cui, W.; Zhai, Q.; Zhang, T.; Wen, X. N-acetylcysteine ameliorates repetitive/stereotypic behavior due to its antioxidant properties without activation of the canonical Wnt pathway in a valproic acid-induced rat model of autism. Mol. Med. Rep., 2017, 16(2), 2233-2240.
[http://dx.doi.org/10.3892/mmr.2017.6787] [PMID: 28627665]
[142]
Wu, H.F.; Chen, P.S.; Hsu, Y.T.; Lee, C.W.; Wang, T.F.; Chen, Y.J.; Lin, H.C. D-cycloserine ameliorates autism-like deficits by removing glua2-containing AMPA receptors in a valproic acid-induced rat model. Mol. Neurobiol., 2018, 55(6), 4811-4824.
[http://dx.doi.org/10.1007/s12035-017-0685-1] [PMID: 28733898]
[143]
Al Sagheer, T.; Haida, O.; Balbous, A.; Francheteau, M.; Matas, E.; Fernagut, P.O.; Jaber, M. Motor impairments correlate with social deficits and restricted neuronal loss in an environmental model of autism. Int. J. Neuropsychopharmacol., 2018, 21(9), 871-882.
[http://dx.doi.org/10.1093/ijnp/pyy043] [PMID: 29762671]
[144]
Kerr, DM; Gilmartin, A; Roche, M Pharmacological inhibition of fatty acid amide hydrolase attenuates social behavioural deficits in male rats prenatally exposed to valproic acid. Pharmacol. Res., 2016, 113(Pt A), 228-235.
[http://dx.doi.org/10.1016/j.phrs.2016.08.033]
[145]
Bambini-Junior, V.; Rodrigues, L.; Behr, G.A.; Moreira, J.C.F.; Riesgo, R.; Gottfried, C. Animal model of autism induced by prenatal exposure to valproate: Behavioral changes and liver parameters. Brain Res., 2011, 1408, 8-16.
[http://dx.doi.org/10.1016/j.brainres.2011.06.015] [PMID: 21767826]
[146]
Gobshtis, N.; Tfilin, M.; Wolfson, M.; Fraifeld, V.E.; Turgeman, G. Transplantation of mesenchymal stem cells reverses behavioural deficits and impaired neurogenesis caused by prenatal exposure to valproic acid. Oncotarget, 2017, 8(11), 17443-17452.
[http://dx.doi.org/10.18632/oncotarget.15245] [PMID: 28407680]
[147]
Guo, Q.; Yin, X.; Qiao, M.; Jia, Y.; Chen, D.; Shao, J.; Lebaron, T.W.; Gao, Y.; Shi, H.; Jia, B. Hydrogen-rich water ameliorates autistic-like behavioral abnormalities in valproic acid-treated adolescent mice offspring. Front. Behav. Neurosci., 2018, 12, 170.
[http://dx.doi.org/10.3389/fnbeh.2018.00170] [PMID: 30127728]
[148]
Huang, F.; Chen, X.; Jiang, X.; Niu, J.; Cui, C.; Chen, Z.; Sun, J. Betaine ameliorates prenatal valproic‐acid‐induced autism‐like behavioral abnormalities in mice by promoting homocysteine metabolism. Psychiatry Clin. Neurosci., 2019, 73(6), 317-322.
[http://dx.doi.org/10.1111/pcn.12833] [PMID: 30821067]
[149]
Kazlauskas, N.; Seiffe, A.; Campolongo, M.; Zappala, C.; Depino, A.M. Sex-specific effects of prenatal valproic acid exposure on sociability and neuroinflammation: Relevance for susceptibility and resilience in autism. Psychoneuroendocrinology, 2019, 110, 104441.
[http://dx.doi.org/10.1016/j.psyneuen.2019.104441] [PMID: 31541913]
[150]
Kumar, H.; Sharma, B. Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats. Brain Res. Bull., 2016, 124, 27-39.
[http://dx.doi.org/10.1016/j.brainresbull.2016.03.013] [PMID: 27034117]
[151]
Kumar, H.; Sharma, B. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats. Brain Res., 2016, 1630, 83-97.
[http://dx.doi.org/10.1016/j.brainres.2015.10.052] [PMID: 26551768]
[152]
Kumar, H.; Sharma, B.M.; Sharma, B. Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder. Neurochem. Int., 2015, 91, 34-45.
[http://dx.doi.org/10.1016/j.neuint.2015.10.007] [PMID: 26498253]
[153]
Lim, J.S.; Lim, M.Y.; Choi, Y.; Ko, G. Modeling environmental risk factors of autism in mice induces IBD-related gut microbial dysbiosis and hyperserotonemia. Mol. Brain, 2017, 10(1), 14.
[http://dx.doi.org/10.1186/s13041-017-0292-0] [PMID: 28427452]
[154]
Lucchina, L.; Depino, A.M. Altered peripheral and central inflammatory responses in a mouse model of autism. Autism Res., 2014, 7(2), 273-289.
[http://dx.doi.org/10.1002/aur.1338] [PMID: 24124122]
[155]
Mirza, R.; Sharma, B. Beneficial effects of pioglitazone, a selective peroxisome proliferator‐activated receptor‐γ agonist in prenatal valproic acid‐induced behavioral and biochemical autistic like features in Wistar rats. Int. J. Dev. Neurosci., 2019, 76(1), 6-16.
[http://dx.doi.org/10.1016/j.ijdevneu.2019.05.006] [PMID: 31128204]
[156]
Mirza, R.; Sharma, B. Benefits of Fenofibrate in prenatal valproic acid-induced autism spectrum disorder related phenotype in rats. Brain Res. Bull., 2019, 147, 36-46.
[http://dx.doi.org/10.1016/j.brainresbull.2019.02.003] [PMID: 30769127]
[157]
Mohammadi, S.; Asadi-Shekaari, M.; Basiri, M.; Parvan, M.; Shabani, M.; Nozari, M. Improvement of autistic-like behaviors in adult rats prenatally exposed to valproic acid through early suppression of NMDA receptor function. Psychopharmacology, 2020, 237(1), 199-208.
[http://dx.doi.org/10.1007/s00213-019-05357-2] [PMID: 31595334]
[158]
Wang, Y.; Zhao, S.; Liu, X.; Zheng, Y.; Li, L.; Meng, S. Oxytocin improves animal behaviors and ameliorates oxidative stress and inflammation in autistic mice. Biomed. Pharmacother., 2018, 107, 262-269.
[http://dx.doi.org/10.1016/j.biopha.2018.07.148] [PMID: 30098544]
[159]
Wang, J.; Feng, S.; Li, M.; Liu, Y.; Yan, J.; Tang, Y.; Du, D.; Chen, F. Increased expression of Kv10.2 in the hippocampus attenuates valproic acid-induced autism-like behaviors in rats. Neurochem. Res., 2019, 44(12), 2796-2808.
[http://dx.doi.org/10.1007/s11064-019-02903-4] [PMID: 31728858]
[160]
Tian, Y.; Yabuki, Y.; Moriguchi, S.; Fukunaga, K.; Mao, P.J.; Hong, L.J.; Lu, Y.M.; Wang, R.; Ahmed, M.M.; Liao, M.H.; Huang, J.Y.; Zhang, R.T.; Zhou, T.Y.; Long, S.; Han, F. Melatonin reverses the decreases in hippocampal protein serine/threonine kinases observed in an animal model of autism. J. Pineal Res., 2014, 56(1), 1-11.
[http://dx.doi.org/10.1111/jpi.12081] [PMID: 23952810]
[161]
Hirsch, M.M.; Deckmann, I.; Fontes-Dutra, M.; Bauer-Negrini, G.; Nunes, G.D.F.; Nunes, W.; Rabelo, B.; Riesgo, R.; Margis, R.; Bambini-Junior, V.; Gottfried, C. Data on social transmission of food preference in a model of autism induced by valproic acid and translational analysis of circulating microRNA. Data Brief, 2018, 18, 1433-1440.
[http://dx.doi.org/10.1016/j.dib.2018.04.047] [PMID: 29904648]
[162]
Hara, Y.; Ago, Y.; Taruta, A.; Hasebe, S.; Kawase, H.; Tanabe, W.; Tsukada, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Risperidone and aripiprazole alleviate prenatal valproic acidinduced abnormalities in behaviors and dendritic spine density in mice. Psychopharmacology., 2017, 234(21), 3217-3228.
[http://dx.doi.org/10.1007/s00213-017-4703-9] [PMID: 28798977]
[163]
Cuevas-Olguin, R.; Roychowdhury, S.; Banerjee, A.; Garcia-Oscos, F.; Esquivel-Rendon, E.; Bringas, M.E.; Kilgard, M.P.; Flores, G.; Atzori, M. Cerebrolysin prevents deficits in social behavior, repetitive conduct, and synaptic inhibition in a rat model of autism. J. Neurosci. Res., 2017, 95(12), 2456-2468.
[http://dx.doi.org/10.1002/jnr.24072] [PMID: 28609577]
[164]
Hara, Y.; Ago, Y.; Higuchi, M.; Hasebe, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Oxytocin attenuates deficits in social interaction but not recognition memory in a prenatal valproic acid-induced mouse model of autism. Horm. Behav., 2017, 96, 130-136.
[http://dx.doi.org/10.1016/j.yhbeh.2017.09.013] [PMID: 28942000]
[165]
Hara, Y.; Ago, Y.; Taruta, A.; Katashiba, K.; Hasebe, S.; Takano, E.; Onaka, Y.; Hashimoto, H.; Matsuda, T.; Takuma, K. Improvement by methylphenidate and atomoxetine of social interaction deficits and recognition memory impairment in a mouse model of valproic acid-induced autism. Autism Res., 2016, 9(9), 926-939.
[http://dx.doi.org/10.1002/aur.1596] [PMID: 26714434]
[166]
Kawase, H.; Ago, Y.; Naito, M.; Higuchi, M.; Hara, Y.; Hasebe, S.; Tsukada, S.; Kasai, A.; Nakazawa, T.; Mishina, T.; Kouji, H.; Takuma, K.; Hashimoto, H. mS-11, a mimetic of the mSin3-binding helix in NRSF, ameliorates social interaction deficits in a prenatal valproic acid-induced autism mouse model. Pharmacol. Biochem. Behav., 2019, 176, 1-5.
[http://dx.doi.org/10.1016/j.pbb.2018.11.003] [PMID: 30419271]
[167]
Kotajima-Murakami, H.; Kobayashi, T.; Kashii, H.; Sato, A.; Hagino, Y.; Tanaka, M.; Nishito, Y.; Takamatsu, Y.; Uchino, S.; Ikeda, K. Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero. Mol. Brain, 2019, 12(1), 3.
[http://dx.doi.org/10.1186/s13041-018-0423-2] [PMID: 30621732]
[168]
Matsuo, K.; Yabuki, Y.; Fukunaga, K. 493. Improvement of social interaction and cognition by oxytocin for autism-like behaviors in valproic acid-exposed rats. Biol. Psychiatry, 2017, 81(10), S200-S201.
[http://dx.doi.org/10.1016/j.biopsych.2017.02.1101]
[169]
Olde Loohuis, N.F.M.; Kole, K.; Glennon, J.C.; Karel, P.; Van der Borg, G.; Van Gemert, Y.; Van den Bosch, D.; Meinhardt, J.; Kos, A.; Shahabipour, F.; Tiesinga, P.; van Bokhoven, H.; Martens, G.J.M.; Kaplan, B.B.; Homberg, J.R.; Aschrafi, A. Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism. Neurobiol. Dis., 2015, 80, 42-53.
[http://dx.doi.org/10.1016/j.nbd.2015.05.006] [PMID: 25986729]
[170]
Wang, X.; Tao, J.; Qiao, Y.; Luo, S.; Zhao, Z.; Gao, Y.; Guo, J.; Kong, J.; Chen, C.; Ge, L.; Zhang, B.; Guo, P.; Liu, L.; Song, Y. Gastrodin rescues autistic-like phenotypes in valproic acid-induced animal model. Front. Neurol., 2018, 9, 1052.
[http://dx.doi.org/10.3389/fneur.2018.01052] [PMID: 30581411]
[171]
Zhang, Y.; Yang, C.; Yuan, G.; Wang, Z.; Cui, W.; Li, R. Sulindac attenuates valproic acid-induced oxidative stress levels in primary cultured cortical neurons and ameliorates repetitive/stereotypic-like movement disorders in Wistar rats prenatally exposed to valproic acid. Int. J. Mol. Med., 2015, 35(1), 263-270.
[http://dx.doi.org/10.3892/ijmm.2014.1996] [PMID: 25384498]
[172]
Eissa, N.; Azimullah, S.; Jayaprakash, P.; Jayaraj, R.L.; Reiner, D.; Ojha, S.K.; Beiram, R.; Stark, H.; Łażewska, D.; Kieć-Kononowicz, K.; Sadek, B. The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice. Chem. Biol. Interact., 2019, 312, 108775.
[http://dx.doi.org/10.1016/j.cbi.2019.108775] [PMID: 31369746]
[173]
Hara, Y.; Takuma, K.; Takano, E.; Katashiba, K.; Taruta, A.; Higashino, K.; Hashimoto, H.; Ago, Y.; Matsuda, T. Reduced prefrontal dopaminergic activity in valproic acid-treated mouse autism model. Behav. Brain Res., 2015, 289, 39-47.
[http://dx.doi.org/10.1016/j.bbr.2015.04.022] [PMID: 25907743]
[174]
Zhang, Y.; Sun, Y.; Wang, F.; Wang, Z.; Peng, Y.; Li, R. Downregulating the canonical Wnt/β-catenin signaling pathway attenuates the susceptibility to autism-like phenotypes by decreasing oxidative stress. Neurochem. Res., 2012, 37(7), 1409-1419.
[http://dx.doi.org/10.1007/s11064-012-0724-2] [PMID: 22374471]
[175]
Anshu, K.; Nair, A.K.; Kumaresan, U.D.; Kutty, B.M.; Srinath, S.; Laxmi, T.R. Altered attentional processing in male and female rats in a prenatal valproic acid exposure model of autism spectrum disorder. Autism Res., 2017, 10(12), 1929-1944.
[http://dx.doi.org/10.1002/aur.1852] [PMID: 28851114]
[176]
Favre, M.; ô, R.; La Mendola, D.; Meystre, J.; Christodoulou, D.; Cochrane, M.J.; Markram, H.; Markram, K. Predictable enriched environment prevents development of hyper-emotionality in the VPA rat model of autism. Front. Neurosci., 2015, 9(MAR), 127.
[http://dx.doi.org/10.3389/fnins.2015.00127] [PMID: 26089770]
[177]
Foley, A.G.; Gannon, S.; Rombach-Mullan, N.; Prendergast, A.; Barry, C.; Cassidy, A.W.; Regan, C.M. Class I histone deacetylase inhibition ameliorates social cognition and cell adhesion molecule plasticity deficits in a rodent model of autism spectrum disorder. Neuropharmacology, 2012, 63(4), 750-760.
[http://dx.doi.org/10.1016/j.neuropharm.2012.05.042] [PMID: 22683514]
[178]
Foley, A.G.; Cassidy, A.W.; Regan, C.M. Pentyl-4-yn-VPA, a histone deacetylase inhibitor, ameliorates deficits in social behavior and cognition in a rodent model of autism spectrum disorders. Eur. J. Pharmacol., 2014, 727(1), 80-86.
[http://dx.doi.org/10.1016/j.ejphar.2014.01.050] [PMID: 24486700]
[179]
Win-Shwe, T.T.; Nway, N.C.; Imai, M.; Lwin, T.T.; Mar, O.; Watanabe, H. Social behavior, neuroimmune markers and glutamic acid decarboxylase levels in a rat model of valproic acid-induced autism. J. Toxicol. Sci., 2018, 43(11), 631-643.
[http://dx.doi.org/10.2131/jts.43.631] [PMID: 30404997]
[180]
Schneider, T.; Roman, A.; Basta-Kaim, A.; Kubera, M.; Budziszewska, B.; Schneider, K.; Przewłocki, R. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology, 2008, 33(6), 728-740.
[http://dx.doi.org/10.1016/j.psyneuen.2008.02.011] [PMID: 18396377]
[181]
Banerjee, A.; Engineer, C.T.; Sauls, B.L.; Morales, A.A.; Kilgard, M.P.; Ploski, J.E. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero. Front. Behav. Neurosci., 2014, 8(387), 387.
[http://dx.doi.org/10.3389/fnbeh.2014.00387] [PMID: 25429264]
[182]
Kumaravel, P.; Melchias, G.; Vasanth, N.; Manivasagam, T. Epigallocatechin gallate attenuates behavioral defects in sodium valproate induced autism rat model. Res. J. Pharm. Technol., 2017, 10(5), 1477.
[http://dx.doi.org/10.5958/0974-360X.2017.00260.8]
[183]
Song, T.J.; Lan, X.Y.; Wei, M.P.; Zhai, F.J.; Boeckers, T.M.; Wang, J.N.; Yuan, S.; Jin, M.Y.; Xie, Y.F.; Dang, W.W.; Zhang, C.; Schön, M.; Song, P.W.; Qiu, M.H.; Song, Y.Y.; Han, S.P.; Han, J.S.; Zhang, R. Altered behaviors and impaired synaptic function in a novel rat model with a complete shank3 deletion. Front. Cell. Neurosci., 2019, 13, 111.
[http://dx.doi.org/10.3389/fncel.2019.00111] [PMID: 30971895]
[184]
Watanabe, S.; Kurotani, T.; Oga, T.; Noguchi, J.; Isoda, R.; Nakagami, A.; Sakai, K.; Nakagaki, K.; Sumida, K.; Hoshino, K.; Saito, K.; Miyawaki, I.; Sekiguchi, M.; Wada, K.; Minamimoto, T.; Ichinohe, N. Functional and molecular characterization of a non-human primate model of autism spectrum disorder shows similarity with the human disease. Nat. Commun., 2021, 12(1), 5388.
[http://dx.doi.org/10.1038/s41467-021-25487-6] [PMID: 34526497]
[185]
Zhao, H.; Wang, Q.; Yan, T.; Zhang, Y.; Xu, H.; Yu, H.; Tu, Z.; Guo, X.; Jiang, Y.; Li, X.; Zhou, H.; Zhang, Y.Q. Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl. Psychiatry, 2019, 9(1), 267.
[http://dx.doi.org/10.1038/s41398-019-0608-1] [PMID: 31636273]
[186]
Yasue, M.; Nakagami, A.; Banno, T.; Nakagaki, K.; Ichinohe, N.; Kawai, N. Indifference of marmosets with prenatal valproate exposure to third-party non-reciprocal interactions with otherwise avoided non-reciprocal individuals. Behav. Brain Res., 2015, 292, 323-326.
[http://dx.doi.org/10.1016/j.bbr.2015.06.006] [PMID: 26133500]
[187]
Sgadò, P.; Rosa-Salva, O.; Versace, E.; Vallortigara, G. Embryonic exposure to valproic acid impairs social predispositions of newly-hatched chicks. Sci. Rep., 2018, 8(1), 5919.
[http://dx.doi.org/10.1038/s41598-018-24202-8] [PMID: 29650996]
[188]
Lorenzi, E.; Pross, A.; Rosa-Salva, O.; Versace, E.; Sgadò, P.; Vallortigara, G. Embryonic exposure to valproic acid affects social predispositions for dynamic cues of animate motion in newly-hatched chicks. Front. Physiol., 2019, 10, 501.
[http://dx.doi.org/10.3389/fphys.2019.00501] [PMID: 31114510]
[189]
Adiletta, A.; Pedrana, S.; Rosa-Salva, O.; Sgadò, P. Spontaneous visual preference for face-like stimuli is impaired in newly-hatched domestic chicks exposed to valproic acid during embryogenesis. Front. Behav. Neurosci., 2021, 15, 733140.
[http://dx.doi.org/10.3389/fnbeh.2021.733140] [PMID: 34858146]
[190]
Matsushima, T.; Miura, M.; Patzke, N.; Toji, N.; Wada, K.; Ogura, Y. Fetal blockade of nicotinic acetylcholine transmission causes autism-like impairment of biological motion preference in the neonatal chick. Cereb. Cortex, 2022, tgac041.
[http://dx.doi.org/10.1093/texcom/tgac041]
[191]
Nishigori, H.; Kagami, K.; Takahashi, A.; Tezuka, Y.; Sanbe, A.; Nishigori, H. Impaired social behavior in chicks exposed to sodium valproate during the last week of embryogenesis. Psychopharmacology, 2013, 227(3), 393-402.
[http://dx.doi.org/10.1007/s00213-013-2979-y] [PMID: 23371491]
[192]
Zachar, G.; Tóth, A.S.; Gerecsei, L.I.; Zsebők, S.; Ádám, Á.; Csillag, A. Valproate exposure in ovo attenuates the acquisition of social preferences of young post-hatch domestic chicks. Front. Physiol., 2019, 10, 881.
[http://dx.doi.org/10.3389/fphys.2019.00881] [PMID: 31379596]
[193]
Chen, J.; Lei, L.; Tian, L.; Hou, F.; Roper, C.; Ge, X.; Zhao, Y.; Chen, Y.; Dong, Q.; Tanguay, R.L.; Huang, C. Developmental and behavioral alterations in zebrafish embryonically exposed to valproic acid (VPA): An aquatic model for autism. Neurotoxicol. Teratol., 2018, 66, 8-16.
[http://dx.doi.org/10.1016/j.ntt.2018.01.002] [PMID: 29309833]
[194]
Dwivedi, S.; Medishetti, R.; Rani, R.; Sevilimedu, A.; Kulkarni, P.; Yogeeswari, P. Larval zebrafish model for studying the effects of valproic acid on neurodevelopment: An approach towards modeling autism. J. Pharmacol. Toxicol. Methods, 2019, 95, 56-65.
[http://dx.doi.org/10.1016/j.vascn.2018.11.006] [PMID: 30500431]
[195]
Zimmermann, F.F.; Gaspary, K.V.; Leite, C.E.; De Paula, C.G.; Bonan, C.D. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis. Neurotoxicol. Teratol., 2015, 52(Pt A), 36-41.
[http://dx.doi.org/10.1016/j.ntt.2015.10.002] [PMID: 26477937]
[196]
Baronio, D.; Puttonen, H.A.J.; Sundvik, M.; Semenova, S.; Lehtonen, E.; Panula, P. Embryonic exposure to valproic acid affects the histaminergic system and the social behaviour of adult zebrafish (Danio rerio). Br. J. Pharmacol., 2018, 175(5), 797-809.
[http://dx.doi.org/10.1111/bph.14124] [PMID: 29235100]
[197]
Bell, M.R. Comparing postnatal development of gonadal hormones and associated social behaviors in rats, mice, and humans. Endocrinology, 2018, 159(7), 2596-2613.
[http://dx.doi.org/10.1210/en.2018-00220] [PMID: 29767714]
[198]
Carter, M. Animal behavior. In: Guide to Research Techniques in Neuroscience; Elsevier, 2015; pp. 39-71.
[http://dx.doi.org/10.1016/B978-0-12-800511-8.00002-2]
[199]
Rudie, J.D.; Brown, J.A.; Beck-Pancer, D.; Hernandez, L.M.; Dennis, E.L.; Thompson, P.M.; Bookheimer, S.Y.; Dapretto, M. Altered functional and structural brain network organization in autism. Neuroimage Clin., 2013, 2, 79-94.
[http://dx.doi.org/10.1016/j.nicl.2012.11.006] [PMID: 24179761]
[200]
Zhao, Y.; Chen, H.; Li, Y.; Lv, J.; Jiang, X.; Ge, F.; Zhang, T.; Zhang, S.; Ge, B.; Lyu, C.; Zhao, S.; Han, J.; Guo, L.; Liu, T. Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder. Neuroimage Clin., 2016, 12, 23-33.
[http://dx.doi.org/10.1016/j.nicl.2016.06.004] [PMID: 27358766]
[201]
Guo, X.; Duan, X.; Chen, H.; He, C.; Xiao, J.; Han, S.; Fan, Y.S.; Guo, J.; Chen, H. Altered inter‐ and intrahemispheric functional connectivity dynamics in autistic children. Hum. Brain Mapp., 2020, 41(2), 419-428.
[http://dx.doi.org/10.1002/hbm.24812] [PMID: 31600014]
[202]
Uzunova, G.; Pallanti, S.; Hollander, E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J. Biol. Psychiatry, 2016, 17(3), 174-186.
[http://dx.doi.org/10.3109/15622975.2015.1085597] [PMID: 26469219]
[203]
Hampson, D.R.; Blatt, G.J. Autism spectrum disorders and neuropathology of the cerebellum. Front. Neurosci., 2015, 9, 420.
[http://dx.doi.org/10.3389/fnins.2015.00420] [PMID: 26594141]
[204]
D’Mello, A.M.; Crocetti, D.; Mostofsky, S.H.; Stoodley, C.J. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin., 2015, 7, 631-639.
[http://dx.doi.org/10.1016/j.nicl.2015.02.007] [PMID: 25844317]
[205]
Hanaie, R.; Mohri, I.; Kagitani-Shimono, K.; Tachibana, M.; Azuma, J.; Matsuzaki, J.; Watanabe, Y.; Fujita, N.; Taniike, M. Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders. Cerebellum, 2013, 12(5), 645-656.
[http://dx.doi.org/10.1007/s12311-013-0475-x] [PMID: 23564050]
[206]
Bauman, M.L.; Kemper, T.L. Neuroanatomic observations of the brain in autism: A review and future directions. Int. J. Dev. Neurosci., 2005, 23(2-3), 183-187.
[http://dx.doi.org/10.1016/j.ijdevneu.2004.09.006] [PMID: 15749244]
[207]
Pang, Y.; Fan, L-W. Dysregulation of neurogenesis by neuroinflammation: key differences in neurodevelopmental and neurological disorders. Neural Regen. Res., 2017, 12(3), 366-371.
[http://dx.doi.org/10.4103/1673-5374.202926] [PMID: 28469641]
[208]
Subramanian, M.; Timmerman, C.K.; Schwartz, J.L.; Pham, D.L.; Meffert, M.K. Characterizing autism spectrum disorders by key biochemical pathways. Front. Neurosci., 2015, 9, 313.
[http://dx.doi.org/10.3389/fnins.2015.00313] [PMID: 26483618]
[209]
Chen, O.; Tahmazian, I.; Ferrara, H.J.; Hu, B.; Chomiak, T. The early overgrowth theory of autism spectrum disorder: Insight into convergent mechanisms from valproic acid exposure and translational models. In: Progress in Molecular Biology and Translational Science; Elsevier, 2020; pp. 275-300.
[210]
Libero, L.E.; DeRamus, T.P.; Lahti, A.C.; Deshpande, G.; Kana, R.K. Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates. Cortex, 2015, 66, 46-59.
[http://dx.doi.org/10.1016/j.cortex.2015.02.008] [PMID: 25797658]
[211]
Mraz, K.D.; Green, J.; Dumont-Mathieu, T.; Makin, S.; Fein, D. Correlates of head circumference growth in infants later diagnosed with autism spectrum disorders. J. Child Neurol., 2007, 22(6), 700-713.
[http://dx.doi.org/10.1177/0883073807304005] [PMID: 17641255]
[212]
Lainhart, J.; Piven, J.; Wzorek, M.; Landa, R.; Santangelo, S.L.; Coon, H.; Folstein, S. Macrocephaly in children and adults with autism. J. Am. Acad. Child Adolesc. Psychiatry, 1997, 36(2), 282-290.
[http://dx.doi.org/10.1097/00004583-199702000-00019] [PMID: 9031582]
[213]
Sacco, R.; Gabriele, S.; Persico, A.M. Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis. Psychiatry Res. Neuroimaging, 2015, 234(2), 239-251.
[http://dx.doi.org/10.1016/j.pscychresns.2015.08.016] [PMID: 26456415]
[214]
Nordahl, C.W.; Braunschweig, D.; Iosif, A.M.; Lee, A.; Rogers, S.; Ashwood, P.; Amaral, D.G.; Van de Water, J. Maternal autoantibodies are associated with abnormal brain enlargement in a subgroup of children with autism spectrum disorder. Brain Behav. Immun., 2013, 30, 61-65.
[http://dx.doi.org/10.1016/j.bbi.2013.01.084] [PMID: 23395715]
[215]
Surén, P.; Stoltenberg, C.; Bresnahan, M.; Hirtz, D.; Lie, K.K.; Lipkin, W.I.; Magnus, P.; Reichborn-Kjennerud, T.; Schjølberg, S.; Susser, E.; Øyen, A.S.; Li, L.; Hornig, M. Early growth patterns in children with autism. Epidemiology, 2013, 24(5), 660-670.
[http://dx.doi.org/10.1097/EDE.0b013e31829e1d45] [PMID: 23867813]
[216]
Lainhart, J.E.; Bigler, E.D.; Bocian, M.; Coon, H.; Dinh, E.; Dawson, G.; Deutsch, C.K.; Dunn, M.; Estes, A.; Tager-Flusberg, H.; Folstein, S.; Hepburn, S.; Hyman, S.; McMahon, W.; Minshew, N.; Munson, J.; Osann, K.; Ozonoff, S.; Rodier, P.; Rogers, S.; Sigman, M.; Spence, M.A.; Stodgell, C.J.; Volkmar, F. Head circumference and height in autism: A study by the collaborative program of excellence in autism. Am. J. Med. Genet. A., 2006, 140A(21), 2257-2274.
[http://dx.doi.org/10.1002/ajmg.a.31465] [PMID: 17022081]
[217]
Courchesne, E.; Mouton, P.R.; Calhoun, M.E.; Semendeferi, K.; Ahrens-Barbeau, C.; Hallet, M.J.; Barnes, C.C.; Pierce, K. Neuron number and size in prefrontal cortex of children with autism. JAMA, 2011, 306(18), 2001-2010.
[http://dx.doi.org/10.1001/jama.2011.1638] [PMID: 22068992]
[218]
Marchetto, M.C.; Belinson, H.; Tian, Y.; Freitas, B.C.; Fu, C.; Vadodaria, K.C.; Beltrao-Braga, P.C.; Trujillo, C.A.; Mendes, A.P.D.; Padmanabhan, K.; Nunez, Y.; Ou, J.; Ghosh, H.; Wright, R.; Brennand, K.J.; Pierce, K.; Eichenfield, L.; Pramparo, T.; Eyler, L.T.; Barnes, C.C.; Courchesne, E.; Geschwind, D.H.; Gage, F.H.; Wynshaw-Boris, A.; Muotri, A.R. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol. Psychiatry, 2017, 22(6), 820-835.
[http://dx.doi.org/10.1038/mp.2016.95] [PMID: 27378147]
[219]
Hutsler, J.J.; Love, T.; Zhang, H. Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol. Psychiatry, 2007, 61(4), 449-457.
[http://dx.doi.org/10.1016/j.biopsych.2006.01.015] [PMID: 16580643]
[220]
Wegiel, J.; Kuchna, I.; Nowicki, K.; Imaki, H.; Wegiel, J.; Marchi, E.; Ma, S.Y.; Chauhan, A.; Chauhan, V.; Bobrowicz, T.W.; de Leon, M.; Louis, L.A.S.; Cohen, I.L.; London, E.; Brown, W.T.; Wisniewski, T. The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol., 2010, 119(6), 755-770.
[http://dx.doi.org/10.1007/s00401-010-0655-4] [PMID: 20198484]
[221]
Hsieh, J.; Nakashima, K.; Kuwabara, T.; Mejia, E.; Gage, F.H. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl. Acad. Sci., 2004, 101(47), 16659-16664.
[http://dx.doi.org/10.1073/pnas.0407643101] [PMID: 15537713]
[222]
Go, H.S.; Kim, K.C.; Choi, C.S.; Jeon, S.J.; Kwon, K.J.; Han, S.H.; Lee, J.; Cheong, J.H.; Ryu, J.H.; Kim, C.H.; Ko, K.H.; Shin, C.Y. Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-3β/β-catenin pathway. Neuropharmacology, 2012, 63(6), 1028-1041.
[http://dx.doi.org/10.1016/j.neuropharm.2012.07.028] [PMID: 22841957]
[223]
Bicker, F.; Nardi, L.; Maier, J.; Vasic, V.; Schmeisser, M.J. Criss‐crossing autism spectrum disorder and adult neurogenesis. J. Neurochem., 2021, 159(3), 452-478.
[http://dx.doi.org/10.1111/jnc.15501] [PMID: 34478569]
[224]
Gilbert, J.; Man, H.Y. Fundamental elements in autism: From neurogenesis and neurite growth to synaptic plasticity. Front. Cell. Neurosci., 2017, 11, 359.
[http://dx.doi.org/10.3389/fncel.2017.00359] [PMID: 29209173]
[225]
Watanabe, Y.; Murakami, T.; Kawashima, M.; Hasegawa-Baba, Y.; Mizukami, S.; Imatanaka, N.; Akahori, Y.; Yoshida, T.; Shibutani, M. Maternal exposure to valproic acid primarily targets interneurons followed by late effects on neurogenesis in the hippocampal dentate gyrus in rat offspring. Neurotox. Res., 2017, 31(1), 46-62.
[http://dx.doi.org/10.1007/s12640-016-9660-2] [PMID: 27566479]
[226]
Ingram, J.L.; Peckham, S.M.; Tisdale, B.; Rodier, P.M. Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol. Teratol., 2000, 22(3), 319-324.
[http://dx.doi.org/10.1016/S0892-0362(99)00083-5] [PMID: 10840175]
[227]
Mowery, T.M.; Wilson, S.M.; Kostylev, P.V.; Dina, B.; Buchholz, J.B.; Prieto, A.L.; Garraghty, P.E. Embryological exposure to valproic acid disrupts morphology of the deep cerebellar nuclei in a sexually dimorphic way. Int. J. Dev. Neurosci., 2015, 40(1), 15-23.
[http://dx.doi.org/10.1016/j.ijdevneu.2014.10.003] [PMID: 25447790]
[228]
Wang, R.; Tan, J.; Guo, J.; Zheng, Y.; Han, Q.; So, K.F.; Yu, J.; Zhang, L. Aberrant development and synaptic transmission of cerebellar cortex in a VPA induced mouse autism model. Front. Cell. Neurosci., 2018, 12, 500.
[http://dx.doi.org/10.3389/fncel.2018.00500] [PMID: 30622458]
[229]
Gogolla, N.; LeBlanc, J.J.; Quast, K.B.; Südhof, T.C.; Fagiolini, M.; Hensch, T.K. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord., 2009, 1(2), 172-181.
[http://dx.doi.org/10.1007/s11689-009-9023-x] [PMID: 20664807]
[230]
Hara, Y.; Maeda, Y.; Kataoka, S.; Ago, Y.; Takuma, K.; Matsuda, T. Effect of prenatal valproic acid exposure on cortical morphology in female mice. J. Pharmacol. Sci., 2012, 118(4), 543-546.
[http://dx.doi.org/10.1254/jphs.12025SC] [PMID: 22447305]
[231]
Fujimura, K.; Mitsuhashi, T.; Shibata, S.; Shimozato, S.; Takahashi, T. In utero exposure to valproic acid induces neocortical dysgenesis via dysregulation of neural progenitor cell proliferation/differentiation. J. Neurosci., 2016, 36(42), 10908-10919.
[http://dx.doi.org/10.1523/JNEUROSCI.0229-16.2016] [PMID: 27798144]
[232]
Dixon, S.C.; Calder, B.J.; Lilya, S.M.; Davies, B.M.; Martin, A.; Peterson, M.; Hansen, J.M.; Suli, A. Valproic acid affects neurogenesis during early optic tectum development in zebrafish. Biol. Open, 2023, 12(1), bio059567.
[http://dx.doi.org/10.1242/bio.059567] [PMID: 36537579]
[233]
Dozawa, M.; Kono, H.; Sato, Y.; Ito, Y.; Tanaka, H.; Ohshima, T. Valproic acid, a histone deacetylase inhibitor, regulates cell proliferation in the adult zebrafish optic tectum. Dev. Dyn., 2014, 243(11), 1401-1415.
[http://dx.doi.org/10.1002/dvdy.24173] [PMID: 25091230]
[234]
Chen, A.; Wang, M.; Xu, C.; Zhao, Y.; Xian, P.; Li, Y.; Zheng, W.; Yi, X.; Wu, S.; Wang, Y. Glycolysis mediates neuron specific histone acetylation in valproic acid-induced human excitatory neuron differentiation. Front. Mol. Neurosci., 2023, 16, 1151162.
[http://dx.doi.org/10.3389/fnmol.2023.1151162] [PMID: 37089691]
[235]
Wang, H. Modeling neurological diseases with human brain organoids. Front. Synaptic Neurosci., 2018, 10, 15.
[http://dx.doi.org/10.3389/fnsyn.2018.00015] [PMID: 29937727]
[236]
Trujillo, C.A.; Muotri, A.R. Brain Organoids and the Study of Neurodevelopment. Trends Mol. Med., 2018, 24(12), 982-990.
[http://dx.doi.org/10.1016/j.molmed.2018.09.005] [PMID: 30377071]
[237]
Hansen, A.H.; Hippenmeyer, S. Non-cell-autonomous mechanisms in radial projection neuron migration in the developing cerebral cortex. Front. Cell Dev. Biol., 2020, 8, 574382.
[http://dx.doi.org/10.3389/fcell.2020.574382] [PMID: 33102480]
[238]
Gao, P.; Sultan, K.T.; Zhang, X.J.; Shi, S.H. Lineage-dependent circuit assembly in the neocortex. Development, 2013, 140(13), 2645-2655.
[http://dx.doi.org/10.1242/dev.087668] [PMID: 23757410]
[239]
Stoner, R.; Chow, M.L.; Boyle, M.P.; Sunkin, S.M.; Mouton, P.R.; Roy, S.; Wynshaw-Boris, A.; Colamarino, S.A.; Lein, E.S.; Courchesne, E. Patches of disorganization in the neocortex of children with autism. N. Engl. J. Med., 2014, 370(13), 1209-1219.
[http://dx.doi.org/10.1056/NEJMoa1307491] [PMID: 24670167]
[240]
Bailey, A.; Luthert, P.; Dean, A.; Harding, B.; Janota, I.; Montgomery, M.; Rutter, M.; Lantos, P. A clinicopathological study of autism. Brain, 1998, 121(5), 889-905.
[http://dx.doi.org/10.1093/brain/121.5.889] [PMID: 9619192]
[241]
Kemper, T.L.; Bauman, M. Neuropathology of infantile autism. J. Neuropathol. Exp. Neurol., 1998, 57(7), 645-652.
[http://dx.doi.org/10.1097/00005072-199807000-00001] [PMID: 9690668]
[242]
Simms, M.L.; Kemper, T.L.; Timbie, C.M.; Bauman, M.L.; Blatt, G.J. The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol., 2009, 118(5), 673-684.
[http://dx.doi.org/10.1007/s00401-009-0568-2] [PMID: 19590881]
[243]
Goldowitz, D.; Hamre, K. The cells and molecules that make a cerebellum. Trends Neurosci., 1998, 21(9), 375-382.
[http://dx.doi.org/10.1016/S0166-2236(98)01313-7] [PMID: 9735945]
[244]
Sakai, A.; Matsuda, T.; Doi, H.; Nagaishi, Y.; Kato, K.; Nakashima, K. Ectopic neurogenesis induced by prenatal antiepileptic drug exposure augments seizure susceptibility in adult mice. Proc. Natl. Acad. Sci., 2018, 115(16), 4270-4275.
[http://dx.doi.org/10.1073/pnas.1716479115] [PMID: 29610328]
[245]
Choe, Y.; Pleasure, S.J. Wnt signaling regulates intermediate precursor production in the postnatal dentate gyrus by regulating CXCR4 expression. Dev. Neurosci., 2012, 34(6), 502-514.
[http://dx.doi.org/10.1159/000345353] [PMID: 23257686]
[246]
Schultheiß, C.; Abe, P.; Hoffmann, F.; Mueller, W.; Kreuder, A.E.; Schütz, D.; Haege, S.; Redecker, C.; Keiner, S.; Kannan, S.; Claasen, J.H.; Pfrieger, F.W.; Stumm, R. CXCR4 prevents dispersion of granule neuron precursors in the adult dentate gyrus. Hippocampus, 2013, 23(12), 1345-1358.
[http://dx.doi.org/10.1002/hipo.22180] [PMID: 23929505]
[247]
Tsai, L.K.; Leng, Y.; Wang, Z.; Leeds, P.; Chuang, D.M. The mood stabilizers valproic acid and lithium enhance mesenchymal stem cell migration via distinct mechanisms. Neuropsychopharmacology, 2010, 35(11), 2225-2237.
[http://dx.doi.org/10.1038/npp.2010.97] [PMID: 20613717]
[248]
Peñagarikano, O.; Geschwind, D.H. What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol. Med., 2012, 18(3), 156-163.
[http://dx.doi.org/10.1016/j.molmed.2012.01.003] [PMID: 22365836]
[249]
Tahirovic, S.; Bradke, F. Neuronal polarity. Cold Spring Harb. Perspect. Biol., 2009, 1(3), a001644-a001644.
[http://dx.doi.org/10.1101/cshperspect.a001644] [PMID: 20066106]
[250]
Migliore, M.; Shepherd, G.M. An integrated approach to classifying neuronal phenotypes. Nat. Rev. Neurosci., 2005, 6(10), 810-818.
[http://dx.doi.org/10.1038/nrn1769] [PMID: 16276357]
[251]
Sporns, O. Structure and function of complex brain networks. Dialogues Clin. Neurosci., 2013, 15(3), 247-262.
[http://dx.doi.org/10.31887/DCNS.2013.15.3/osporns] [PMID: 24174898]
[252]
Azmitia, E.C.; Singh, J.S.; Hou, X.P.; Wegiel, J. Dystrophic serotonin axons in postmortem brains from young autism patients. Anat. Rec., 2011, 294(10), 1653-1662.
[http://dx.doi.org/10.1002/ar.21243] [PMID: 21901837]
[253]
Azmitia, E.C.; Singh, J.S.; Whitaker-Azmitia, P.M. Increased serotonin axons (immunoreactive to 5-HT transporter) in postmortem brains from young autism donors. Neuropharmacology, 2011, 60(7-8), 1347-1354.
[http://dx.doi.org/10.1016/j.neuropharm.2011.02.002] [PMID: 21329710]
[254]
Casanova, M.F.; Buxhoeveden, D.P.; Switala, A.E.; Roy, E. Minicolumnar pathology in autism. Neurology, 2002, 58(3), 428-432.
[http://dx.doi.org/10.1212/WNL.58.3.428] [PMID: 11839843]
[255]
Raymond, G.V.; Bauman, M.L.; Kemper, T.L. Hippocampus in autism: A Golgi analysis. Acta Neuropathol., 1995, 91(1), 117-119.
[http://dx.doi.org/10.1007/s004010050401] [PMID: 8773156]
[256]
Mukaetova-Ladinska, E.B.; Arnold, H.; Jaros, E.; Perry, R.; Perry, E. Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals. Neuropathol. Appl. Neurobiol., 2004, 30(6), 615-623.
[http://dx.doi.org/10.1111/j.1365-2990.2004.00574.x] [PMID: 15541002]
[257]
Hutsler, J.J.; Zhang, H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res., 2010, 1309, 83-94.
[http://dx.doi.org/10.1016/j.brainres.2009.09.120] [PMID: 19896929]
[258]
Martínez-Cerdeño, V.; Camacho, J.; Fox, E.; Miller, E.; Ariza, J.; Kienzle, D.; Plank, K.; Noctor, S.C.; Van de Water, J. Prenatal exposure to autism-specific maternal autoantibodies alters proliferation of cortical neural precursor cells, enlarges brain, and increases neuronal size in adult animals. Cereb. Cortex, 2016, 26(1), 374-383.
[http://dx.doi.org/10.1093/cercor/bhu291] [PMID: 25535268]
[259]
Snow, W.M.; Hartle, K.; Ivanco, T.L. Altered morphology of motor cortex neurons in the VPA rat model of autism. Dev. Psychobiol., 2008, 50(7), 633-639.
[http://dx.doi.org/10.1002/dev.20337] [PMID: 18985861]
[260]
Mychasiuk, R.; Richards, S.; Nakahashi, A.; Kolb, B.; Gibb, R. Effects of rat prenatal exposure to valproic acid on behaviour and neuro-anatomy. Dev. Neurosci., 2012, 34(2-3), 268-276.
[http://dx.doi.org/10.1159/000341786] [PMID: 22890088]
[261]
Muhsen, M.; Youngs, J.; Riu, A.; Gustafsson, J.Å.; Kondamadugu, V.S.; Garyfalidis, E.; Bondesson, M. Folic acid supplementation rescues valproic acid‐induced developmental neurotoxicity and behavioral alterations in zebrafish embryos. Epilepsia, 2021, 62(7), 1689-1700.
[http://dx.doi.org/10.1111/epi.16915] [PMID: 33997963]
[262]
Jacob, J.; Ribes, V.; Moore, S.; Constable, SC.; Sasai, N.; Gerety, SS. Valproic acid silencing of ascl1b/ascl1 results in the failure of serotonergic differentiation in a zebrafish model of fetal valproate syndrome. Dis. Model. Mech., 2013, 7(1), 107-117.
[263]
Kawanai, T.; Ago, Y.; Watanabe, R.; Inoue, A.; Taruta, A.; Onaka, Y.; Hasebe, S.; Hashimoto, H.; Matsuda, T.; Takuma, K. Prenatal exposure to histone deacetylase inhibitors affects gene expression of autism-related molecules and delays neuronal maturation. Neurochem. Res., 2016, 41(10), 2574-2584.
[http://dx.doi.org/10.1007/s11064-016-1969-y] [PMID: 27300699]
[264]
Lee, E.; Lee, J.; Kim, E. Excitation/inhibition imbalance in animal models of autism spectrum disorders. Biol. Psychiatry, 2017, 81(10), 838-847.
[http://dx.doi.org/10.1016/j.biopsych.2016.05.011] [PMID: 27450033]
[265]
Rubenstein, J.L.R.; Merzenich, M.M. Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav., 2003, 2(5), 255-267.
[http://dx.doi.org/10.1034/j.1601-183X.2003.00037.x] [PMID: 14606691]
[266]
Tong, F.; Meng, M.; Blake, R. Neural bases of binocular rivalry. Trends Cogn. Sci., 2006, 10(11), 502-511.
[http://dx.doi.org/10.1016/j.tics.2006.09.003] [PMID: 16997612]
[267]
van Loon, A.M.; Knapen, T.; Scholte, H.S.; St John-Saaltink, E.; Donner, T.H.; Lamme, V.A.F. GABA shapes the dynamics of bistable perception. Curr. Biol., 2013, 23(9), 823-827.
[http://dx.doi.org/10.1016/j.cub.2013.03.067] [PMID: 23602476]
[268]
Choi, Y.B.; Mentch, J.; Haskins, A.J.; Van Wicklin, C.; Robertson, C.E. Visual processing in genetic conditions linked to autism: A behavioral study of binocular rivalry in individuals with 16p11.2 deletions and age‐matched controls. Autism Res., 2023, 16(4), 831-840.
[http://dx.doi.org/10.1002/aur.2901] [PMID: 36751102]
[269]
Robertson, C.E.; Ratai, E.M.; Kanwisher, N. Reduced GABAergic action in the autistic brain. Curr. Biol., 2016, 26(1), 80-85.
[http://dx.doi.org/10.1016/j.cub.2015.11.019] [PMID: 26711497]
[270]
Casanova, M. Cortical organization. Transl. Neurosci., 2010, 1(1), 62-71.
[http://dx.doi.org/10.2478/v10134-010-0002-2] [PMID: 22754693]
[271]
Casanova, M.F.; El-Baz, A.; Switala, A. Laws of conservation as related to brain growth, aging, and evolution: Symmetry of the minicolumn. Front. Neuroanat., 2011, 5, 66.
[http://dx.doi.org/10.3389/fnana.2011.00066] [PMID: 22207838]
[272]
Casanova, M.F.; Van Kooten, I.A.J.; Switala, A.E.; Van Engeland, H.; Heinsen, H.; Steinbusch, H.W.M.; Hof, P.R.; Trippe, J.; Stone, J.; Schmitz, C. Minicolumnar abnormalities in autism. Acta Neuropathol., 2006, 112(3), 287-303.
[http://dx.doi.org/10.1007/s00401-006-0085-5] [PMID: 16819561]
[273]
McKavanagh, R.; Buckley, E.; Chance, S.A. Wider minicolumns in autism: A neural basis for altered processing? Brain, 2015, 138(7), 2034-2045.
[http://dx.doi.org/10.1093/brain/awv110] [PMID: 25935724]
[274]
Sapey-Triomphe, L.A.; Lamberton, F.; Sonié, S.; Mattout, J.; Schmitz, C. Tactile hypersensitivity and GABA concentration in the sensorimotor cortex of adults with autism. Autism Res., 2019, 12(4), 562-575.
[http://dx.doi.org/10.1002/aur.2073] [PMID: 30632707]
[275]
Kolodny, T.; Schallmo, M.P.; Gerdts, J.; Edden, R.A.E.; Bernier, R.A.; Murray, S.O. Concentrations of cortical GABA and glutamate in young adults with autism spectrum disorder. Autism Res., 2020, 13(7), 1111-1129.
[http://dx.doi.org/10.1002/aur.2300] [PMID: 32297709]
[276]
Oblak, A.L.; Gibbs, T.T.; Blatt, G.J. Decreased GABAB receptors in the cingulate cortex and fusiform gyrus in Autism: Decreased GABAB receptors in autism. J. Neurochem., 2010, 114(5), 1414-1423.
[277]
Oblak, A.; Gibbs, T.T.; Blatt, G.J. Decreased GABA A receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Autism Res., 2009, 2(4), 205-219.
[http://dx.doi.org/10.1002/aur.88] [PMID: 19650112]
[278]
Yip, J.; Soghomonian, J.J.; Blatt, G.J. Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: An in situ hybridization study. Autism Res., 2009, 2(1), 50-59.
[http://dx.doi.org/10.1002/aur.62] [PMID: 19358307]
[279]
Yip, J.; Soghomonian, J.J.; Blatt, G.J. IncreasedGAD67 mRNA expression in cerebellar interneurons in autism: Implications for Purkinje cell dysfunction. J. Neurosci. Res., 2008, 86(3), 525-530.
[http://dx.doi.org/10.1002/jnr.21520] [PMID: 17918742]
[280]
Yip, J.; Soghomonian, J.J.; Blatt, G.J. Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol., 2007, 113(5), 559-568.
[http://dx.doi.org/10.1007/s00401-006-0176-3] [PMID: 17235515]
[281]
Zhao, H.; Mao, X.; Zhu, C.; Zou, X.; Peng, F.; Yang, W.; Li, B.; Li, G.; Ge, T.; Cui, R. GABAergic system dysfunction in autism spectrum disorders. Front. Cell Dev. Biol., 2022, 9, 781327.
[http://dx.doi.org/10.3389/fcell.2021.781327] [PMID: 35198562]
[282]
Nelson, S.B.; Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron, 2015, 87(4), 684-698.
[http://dx.doi.org/10.1016/j.neuron.2015.07.033] [PMID: 26291155]
[283]
Martin, H.G.S.; Manzoni, O.J. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism. Front. Cell. Neurosci., 2014, 8, 23.
[http://dx.doi.org/10.3389/fncel.2014.00023] [PMID: 24550781]
[284]
Iijima, Y.; Behr, K.; Iijima, T.; Biemans, B.; Bischofberger, J.; Scheiffele, P. Distinct defects in synaptic differentiation of neocortical neurons in response to prenatal valproate exposure. Sci. Rep., 2016, 6(1), 27400.
[http://dx.doi.org/10.1038/srep27400] [PMID: 27264355]
[285]
Kim, J.W.; Park, K.; Kang, R.J.; Gonzales, E.L.T.; Kim, D.G.; Oh, H.A.; Seung, H.; Ko, M.J.; Kwon, K.J.; Kim, K.C.; Lee, S.H.; Chung, C.; Shin, C.Y. Pharmacological modulation of AMPA receptor rescues social impairments in animal models of autism. Neuropsychopharmacology, 2019, 44(2), 314-323.
[http://dx.doi.org/10.1038/s41386-018-0098-5] [PMID: 29899405]
[286]
Brumback, A.C.; Ellwood, I.T.; Kjaerby, C.; Iafrati, J.; Robinson, S.; Lee, A.T.; Patel, T.; Nagaraj, S.; Davatolhagh, F.; Sohal, V.S. Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior. Mol. Psychiatry, 2018, 23(10), 2078-2089.
[http://dx.doi.org/10.1038/mp.2017.213] [PMID: 29112191]
[287]
Rinaldi, T.; Kulangara, K.; Antoniello, K.; Markram, H. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl. Acad. Sci. USA, 2007, 104(33), 13501-13506.
[http://dx.doi.org/10.1073/pnas.0704391104] [PMID: 17675408]
[288]
Rinaldi, T.; Perrodin, C.; Markram, H. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism. Front. Neural Circuits, 2008, 2, 4.
[http://dx.doi.org/10.3389/neuro.04.004.2008] [PMID: 18989389]
[289]
Rinaldi, T.; Silberberg, G.; Markram, H. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid. Cereb. Cortex, 2008, 18(4), 763-770.
[http://dx.doi.org/10.1093/cercor/bhm117] [PMID: 17638926]
[290]
Banerjee, A.; García-Oscos, F.; Roychowdhury, S.; Galindo, L.C.; Hall, S.; Kilgard, M.P.; Atzori, M. Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. Int. J. Neuropsychopharmacol., 2013, 16(6), 1309-1318.
[http://dx.doi.org/10.1017/S1461145712001216] [PMID: 23228615]
[291]
Qi, C.; Chen, A.; Mao, H.; Hu, E.; Ge, J.; Ma, G.; Ren, K.; Xue, Q.; Wang, W.; Wu, S. Excitatory and inhibitory synaptic imbalance caused by brain-derived neurotrophic factor deficits during development in a valproic acid mouse model of autism. Front. Mol. Neurosci., 2022, 15, 860275.
[http://dx.doi.org/10.3389/fnmol.2022.860275] [PMID: 35465089]
[292]
Bradl, M.; Lassmann, H. Oligodendrocytes: Biology and pathology. Acta Neuropathol., 2010, 119(1), 37-53.
[http://dx.doi.org/10.1007/s00401-009-0601-5] [PMID: 19847447]
[293]
Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in development, myelin generation and beyond. Cells, 2019, 8(11), 1424.
[http://dx.doi.org/10.3390/cells8111424] [PMID: 31726662]
[294]
Jakovcevski, I.; Filipovic, R.; Mo, Z.; Rakic, S.; Zecevic, N. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front. Neuroanat., 2009, 3, 5.
[http://dx.doi.org/10.3389/neuro.05.005.2009] [PMID: 19521542]
[295]
Ackerman, S.D.; Monk, K.R. The scales and tales of myelination: Using zebrafish and mouse to study myelinating glia. Brain Res., 2016, 1641(Pt A), 79-91.
[http://dx.doi.org/10.1016/j.brainres.2015.10.011] [PMID: 26498880]
[296]
Travers, B.G.; Adluru, N.; Ennis, C.; Tromp, D.P.M.; Destiche, D.; Doran, S.; Bigler, E.D.; Lange, N.; Lainhart, J.E.; Alexander, A.L. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res., 2012, 5(5), 289-313.
[http://dx.doi.org/10.1002/aur.1243] [PMID: 22786754]
[297]
Chauhan, A.; Chauhan, V. Oxidative stress in autism. Pathophysiology, 2006, 13(3), 171-181.
[http://dx.doi.org/10.1016/j.pathophys.2006.05.007] [PMID: 16766163]
[298]
Ameis, S.H.; Lerch, J.P.; Taylor, M.J.; Lee, W.; Viviano, J.D.; Pipitone, J.; Nazeri, A.; Croarkin, P.E.; Voineskos, A.N.; Lai, M.C.; Crosbie, J.; Brian, J.; Soreni, N.; Schachar, R.; Szatmari, P.; Arnold, P.D.; Anagnostou, E. A diffusion tensor imaging study in children with adhd, autism spectrum disorder, OCD, and matched controls: Distinct and non-distinct white matter disruption and dimensional brain-behavior relationships. Am. J. Psychiatry, 2016, 173(12), 1213-1222.
[http://dx.doi.org/10.1176/appi.ajp.2016.15111435] [PMID: 27363509]
[299]
Graciarena, M.; Seiffe, A.; Nait-Oumesmar, B.; Depino, A.M. Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Front. Cell. Neurosci., 2019, 12, 517.
[http://dx.doi.org/10.3389/fncel.2018.00517] [PMID: 30687009]
[300]
Courchesne, E.; Karns, C.M.; Davis, H.R.; Ziccardi, R.; Carper, R.A.; Tigue, Z.D.; Chisum, H.J.; Moses, P.; Pierce, K.; Lord, C.; Lincoln, A.J.; Pizzo, S.; Schreibman, L.; Haas, R.H.; Akshoomoff, N.A.; Courchesne, R.Y. Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 2001, 57(2), 245-254.
[http://dx.doi.org/10.1212/WNL.57.2.245] [PMID: 11468308]
[301]
Dimond, D.; Schuetze, M.; Smith, R.E.; Dhollander, T.; Cho, I.; Vinette, S.; Ten Eycke, K.; Lebel, C.; McCrimmon, A.; Dewey, D.; Connelly, A.; Bray, S. Reduced white matter fiber density in autism spectrum disorder. Cereb. Cortex, 2019, 29(4), 1778-1788.
[http://dx.doi.org/10.1093/cercor/bhy348] [PMID: 30668849]
[302]
Galvez-Contreras, A.Y.; Zarate-Lopez, D.; Torres-Chavez, A.L.; Gonzalez-Perez, O. Role of oligodendrocytes and myelin in the pathophysiology of autism spectrum disorder. Brain Sci., 2020, 10(12), 951.
[http://dx.doi.org/10.3390/brainsci10120951] [PMID: 33302549]
[303]
Hong, S.J.; Hyung, B.; Paquola, C.; Bernhardt, B.C. The superficial white matter in autism and its role in connectivity anomalies and symptom severity. Cereb. Cortex, 2019, 29(10), 4415-4425.
[http://dx.doi.org/10.1093/cercor/bhy321] [PMID: 30566613]
[304]
Carmody, D.P.; Lewis, M. Regional white matter development in children with autism spectrum disorders. Dev. Psychobiol., 2010, 52(8), 755-763.
[http://dx.doi.org/10.1002/dev.20471] [PMID: 20564327]
[305]
Noriuchi, M.; Kikuchi, Y.; Yoshiura, T.; Kira, R.; Shigeto, H.; Hara, T.; Tobimatsu, S.; Kamio, Y. Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder. Brain Res., 2010, 1362, 141-149.
[http://dx.doi.org/10.1016/j.brainres.2010.09.051] [PMID: 20858472]
[306]
Wolff, J.J.; Gerig, G.; Lewis, J.D.; Soda, T.; Styner, M.A.; Vachet, C.; Botteron, K.N.; Elison, J.T.; Dager, S.R.; Estes, A.M.; Hazlett, H.C.; Schultz, R.T.; Zwaigenbaum, L.; Piven, J. Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain, 2015, 138(7), 2046-2058.
[http://dx.doi.org/10.1093/brain/awv118] [PMID: 25937563]
[307]
Cheon, K.A.; Kim, Y.S.; Oh, S.H.; Park, S.Y.; Yoon, H.W.; Herrington, J.; Nair, A.; Koh, Y.J.; Jang, D.P.; Kim, Y.B.; Leventhal, B.L.; Cho, Z.H.; Castellanos, F.X.; Schultz, R.T. Involvement of the anterior thalamic radiation in boys with high functioning autism spectrum disorders: A Diffusion Tensor Imaging study. Brain Res., 2011, 1417(12), 77-86.
[http://dx.doi.org/10.1016/j.brainres.2011.08.020] [PMID: 21890117]
[308]
Kumar, A.; Sundaram, S.K.; Sivaswamy, L.; Behen, M.E.; Makki, M.I.; Ager, J.; Janisse, J.; Chugani, H.T.; Chugani, D.C. Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder. Cereb. Cortex, 2010, 20(9), 2103-2113.
[http://dx.doi.org/10.1093/cercor/bhp278] [PMID: 20019145]
[309]
Ikuta, T.; Shafritz, K.M.; Bregman, J.; Peters, B.D.; Gruner, P.; Malhotra, A.K.; Szeszko, P.R. Abnormal cingulum bundle development in autism: A probabilistic tractography study. Psychiatry Res. Neuroimaging, 2014, 221(1), 63-68.
[http://dx.doi.org/10.1016/j.pscychresns.2013.08.002] [PMID: 24231056]
[310]
Nair, A.; Treiber, J.M.; Shukla, D.K.; Shih, P.; Müller, R.A. Impaired thalamocortical connectivity in autism spectrum disorder: A study of functional and anatomical connectivity. Brain, 2013, 136(6), 1942-1955.
[http://dx.doi.org/10.1093/brain/awt079] [PMID: 23739917]
[311]
Bronzuoli, M.R.; Facchinetti, R.; Ingrassia, D.; Sarvadio, M.; Schiavi, S.; Steardo, L.; Verkhratsky, A.; Trezza, V.; Scuderi, C. Neuroglia in the autistic brain: Evidence from a preclinical model. Mol. Autism, 2018, 9(1), 66.
[http://dx.doi.org/10.1186/s13229-018-0254-0] [PMID: 30603062]
[312]
Uccelli, N.A.; Codagnone, M.G.; Traetta, M.E.; Levanovich, N.; Rosato Siri, M.V.; Urrutia, L.; Falasco, G.; Vázquez, S.; Pasquini, J.M.; Reinés, A.G. Neurobiological substrates underlying corpus callosum hypoconnectivity and brain metabolic patterns in the valproic acid rat model of autism spectrum disorder. J. Neurochem., 2021, 159(1), 128-144.
[http://dx.doi.org/10.1111/jnc.15444] [PMID: 34081798]
[313]
Zhou, B.; Yan, X.; Yang, L.; Zheng, X.; Chen, Y.; Liu, Y.; Ren, Y.; Peng, J.; Zhang, Y.; Huang, J.; Tang, L.; Wen, M. Effects of arginine vasopressin on the transcriptome of prefrontal cortex in autistic rat model. J. Cell. Mol. Med., 2022, 26(21), 5493-5505.
[http://dx.doi.org/10.1111/jcmm.17578] [PMID: 36239083]
[314]
Marie, C.; Clavairoly, A.; Frah, M.; Hmidan, H.; Yan, J.; Zhao, C.; Van Steenwinckel, J.; Daveau, R.; Zalc, B.; Hassan, B.; Thomas, J.L.; Gressens, P.; Ravassard, P.; Moszer, I.; Martin, D.M.; Lu, Q.R.; Parras, C. Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8. Proc. Natl. Acad. Sci., 2018, 115(35), E8246-E8255.
[http://dx.doi.org/10.1073/pnas.1802620115] [PMID: 30108144]
[315]
Hanafy, K.A.; Sloane, J.A. Regulation of remyelination in multiple sclerosis. FEBS Lett., 2011, 585(23), 3821-3828.
[http://dx.doi.org/10.1016/j.febslet.2011.03.048] [PMID: 21443876]
[316]
Boulanger-Bertolus, J.; Pancaro, C.; Mashour, G.A. Increasing role of maternal immune activation in neurodevelopmental disorders. Front. Behav. Neurosci., 2018, 12, 230.
[http://dx.doi.org/10.3389/fnbeh.2018.00230] [PMID: 30344483]
[317]
Zawadzka, A.; Cieślik, M.; Adamczyk, A. The role of maternal immune activation in the pathogenesis of autism: A review of the evidence, proposed mechanisms and implications for treatment. Int. J. Mol. Sci., 2021, 22(21), 11516.
[http://dx.doi.org/10.3390/ijms222111516] [PMID: 34768946]
[318]
Rose, S.; Melnyk, S.; Pavliv, O.; Bai, S.; Nick, T.G.; Frye, R.E.; James, S.J. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl. Psychiatry, 2012, 2(7), e134-e134.
[http://dx.doi.org/10.1038/tp.2012.61] [PMID: 22781167]
[319]
Yockey, L.J.; Iwasaki, A. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity, 2018, 49(3), 397-412.
[http://dx.doi.org/10.1016/j.immuni.2018.07.017] [PMID: 30231982]
[320]
Fox, E.; Amaral, D.; Van de Water, J. Maternal and fetal antibrain antibodies in development and disease. Dev. Neurobiol., 2012, 72(10), 1327-1334.
[http://dx.doi.org/10.1002/dneu.22052] [PMID: 22911883]
[321]
Heuer, L.; Braunschweig, D.; Ashwood, P.; Van de Water, J.; Campbell, D.B. Association of a MET genetic variant with autism-associated maternal autoantibodies to fetal brain proteins and cytokine expression. Transl. Psychiatry, 2011, 1(10), e48-e48.
[http://dx.doi.org/10.1038/tp.2011.48] [PMID: 22833194]
[322]
Bilbo, S.D. Block, C.L.; Bolton, J.L.; Hanamsagar, R.; Tran, P.K. Beyond infection - Maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp. Neurol., 2018, 299(Pt A), pp. 241-251.
[http://dx.doi.org/10.1016/j.expneurol.2017.07.002] [PMID: 28698032]
[323]
Stubbs, E.G.; Crawford, M.L.; Burger, D.R.; Vandenbark, A.A. Depressed lymphocyte responsiveness in autistic children. J. Autism Child. Schizophr., 1977, 7(1), 49-55.
[http://dx.doi.org/10.1007/BF01531114] [PMID: 139400]
[324]
Burger, R.A.; Warren, R.P. Possible immunogenetic basis for autism. Ment. Retard. Dev. Disabil. Res. Rev., 1998, 4(2), 137-141.
[http://dx.doi.org/10.1002/(SICI)1098-2779(1998)4:2<137:AID-MRDD11>3.0.CO;2-W]
[325]
Croonenberghs, J.; Bosmans, E.; Deboutte, D.; Kenis, G.; Maes, M. Activation of the inflammatory response system in autism. Neuropsychobiology, 2002, 45(1), 1-6.
[http://dx.doi.org/10.1159/000048665] [PMID: 11803234]
[326]
Molloy, C.; Morrow, A.; Meinzenderr, J.; Schleifer, K.; Dienger, K.; Manningcourtney, P.; Altaye, M.; Willskarp, M. Elevated cytokine levels in children with autism spectrum disorder. J. Neuroimmunol., 2006, 172(1-2), 198-205.
[http://dx.doi.org/10.1016/j.jneuroim.2005.11.007] [PMID: 16360218]
[327]
Jyonouchi, H.; Sun, S.; Le, H. Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J. Neuroimmunol., 2001, 120(1-2), 170-179.
[http://dx.doi.org/10.1016/S0165-5728(01)00421-0] [PMID: 11694332]
[328]
Vargas, D.L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol., 2005, 57(1), 67-81.
[http://dx.doi.org/10.1002/ana.20315] [PMID: 15546155]
[329]
Morgan, J.T.; Chana, G.; Pardo, C.A.; Achim, C.; Semendeferi, K.; Buckwalter, J.; Courchesne, E.; Everall, I.P. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry, 2010, 68(4), 368-376.
[http://dx.doi.org/10.1016/j.biopsych.2010.05.024] [PMID: 20674603]
[330]
McDougle, C.J.; Landino, S.M.; Vahabzadeh, A.; O’Rourke, J.; Zurcher, N.R.; Finger, B.C.; Palumbo, M.L.; Helt, J.; Mullett, J.E.; Hooker, J.M.; Carlezon, W.A., Jr Toward an immune-mediated subtype of autism spectrum disorder. Brain Res., 2015, 1617, 72-92.
[http://dx.doi.org/10.1016/j.brainres.2014.09.048] [PMID: 25445995]
[331]
Suzuki, K.; Sugihara, G.; Ouchi, Y.; Nakamura, K.; Futatsubashi, M.; Takebayashi, K.; Yoshihara, Y.; Omata, K.; Matsumoto, K.; Tsuchiya, K.J.; Iwata, Y.; Tsujii, M.; Sugiyama, T.; Mori, N. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry, 2013, 70(1), 49-58.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.272] [PMID: 23404112]
[332]
Oskvig, D.B.; Elkahloun, A.G.; Johnson, K.R.; Phillips, T.M.; Herkenham, M. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav. Immun., 2012, 26(4), 623-634.
[http://dx.doi.org/10.1016/j.bbi.2012.01.015] [PMID: 22310921]
[333]
Shook, L.L.; Fourman, L.T.; Edlow, A.G. Immune responses to sARS-CoV-2 in pregnancy: Implications for the health of the next generation. J. Immunol., 2022, 209(8), 1465-1473.
[http://dx.doi.org/10.4049/jimmunol.2200414] [PMID: 36192115]
[334]
Pangrazzi, L.; Balasco, L.; Bozzi, Y. Oxidative stress and immune system dysfunction in autism spectrum disorders. Int. J. Mol. Sci., 2020, 21(9), 3293.
[http://dx.doi.org/10.3390/ijms21093293] [PMID: 32384730]
[335]
Kazlauskas, N.; Campolongo, M.; Lucchina, L.; Zappala, C.; Depino, A.M. Postnatal behavioral and inflammatory alterations in female pups prenatally exposed to valproic acid. Psychoneuroendocrinology, 2016, 72, 11-21.
[http://dx.doi.org/10.1016/j.psyneuen.2016.06.001] [PMID: 27337090]
[336]
Gąssowska-Dobrowolska, M.; Cieślik, M.; Czapski, G.A.; Jęśko, H.; Frontczak-Baniewicz, M.; Gewartowska, M.; Dominiak, A.; Polowy, R.; Filipkowski, R.K.; Babiec, L.; Adamczyk, A. Prenatal exposure to valproic acid affects microglia and synaptic ultrastructure in a brain-region-specific manner in young-adult male rats: relevance to autism spectrum disorders. Int. J. Mol. Sci., 2020, 21(10), 3576.
[http://dx.doi.org/10.3390/ijms21103576] [PMID: 32443651]
[337]
Luo, L.; Chen, J.; Wu, Q.; Yuan, B.; Hu, C.; Yang, T.; Wei, H.; Li, T. Prenatally VPA exposure is likely to cause autistic-like behavior in the rats offspring via TREM2 down-regulation to affect the microglial activation and synapse alterations. Environ. Toxicol. Pharmacol., 2023, 99, 104090.
[http://dx.doi.org/10.1016/j.etap.2023.104090] [PMID: 36870407]
[338]
Triyasakorn, K.; Ubah, U.D.B.; Roan, B.; Conlin, M.; Aho, K.; Awale, P.S. The antiepileptic drug and toxic teratogen valproic acid alters microglia in an environmental mouse model of autism. Toxics, 2022, 10(7), 379.
[http://dx.doi.org/10.3390/toxics10070379] [PMID: 35878284]
[339]
Dhabhar, F.S. Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation, 2009, 16(5), 300-317.
[http://dx.doi.org/10.1159/000216188] [PMID: 19571591]
[340]
Sweeten, T.L.; Posey, D.J.; Shankar, S.; McDougle, C.J. High nitric oxide production in autistic disorder: A possible role for interferon-γ. Biol. Psychiatry, 2004, 55(4), 434-437.
[http://dx.doi.org/10.1016/j.biopsych.2003.09.001] [PMID: 14960298]
[341]
Wu, C.; Li, A.; Leng, Y.; Li, Y.; Kang, J. Histone deacetylase inhibition by sodium valproate regulates polarization of macrophage subsets. DNA Cell Biol., 2012, 31(4), 592-599.
[http://dx.doi.org/10.1089/dna.2011.1401] [PMID: 22054065]
[342]
Zhang, Z.; Zhang, Z.Y.; Wu, Y.; Schluesener, H.J. Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats. Neuroscience, 2012, 221, 140-150.
[http://dx.doi.org/10.1016/j.neuroscience.2012.07.013] [PMID: 22800566]
[343]
Chen, S.; Ye, J.; Chen, X.; Shi, J.; Wu, W.; Lin, W.; Lin, W.; Li, Y.; Fu, H.; Li, S. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3. J. Neuroinflammation, 2018, 15(1), 150.
[http://dx.doi.org/10.1186/s12974-018-1193-6] [PMID: 29776446]
[344]
Ubah, U.D.B.; Triyasakorn, K.; Roan, B.; Conlin, M.; Lai, J.C.K.; Awale, P.S. Pan HDACi valproic acid and trichostatin a show apparently contrasting inflammatory responses in cultured J774A.1 macrophages. Epigenomes, 2022, 6(4), 38.
[http://dx.doi.org/10.3390/epigenomes6040038] [PMID: 36412793]
[345]
Noriega, D.B.; Savelkoul, H.F.J. Immune dysregulation in autism spectrum disorder. Eur. J. Pediatr., 2014, 173(1), 33-43.
[http://dx.doi.org/10.1007/s00431-013-2183-4] [PMID: 24297668]
[346]
Deckmann, I.; Santos-Terra, J.; Fontes-Dutra, M.; Körbes-Rockenbach, M.; Bauer-Negrini, G.; Schwingel, G.B.; Riesgo, R.; Bambini-Junior, V.; Gottfried, C. Resveratrol prevents brain edema, blood–brain barrier permeability, and altered aquaporin profile in autism animal model. Int. J. Dev. Neurosci., 2021, 81(7), 579-604.
[http://dx.doi.org/10.1002/jdn.10137] [PMID: 34196408]
[347]
Gurvich, N.; Tsygankova, O.M.; Meinkoth, J.L.; Klein, P.S. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res., 2004, 64(3), 1079-1086.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-0799] [PMID: 14871841]
[348]
Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784.
[http://dx.doi.org/10.1038/nrd2133] [PMID: 16955068]
[349]
Kostrouchová, M.; Kostrouch, Z.; Kostrouchová, M. Valproic acid, a molecular lead to multiple regulatory pathways. Folia Biol., 2007, 53(2), 37-49.
[PMID: 17448293]
[350]
Ganai, S.A.; Malli Kalladi, S.; Mahadevan, V. HDAC inhibition through valproic acid modulates the methylation profiles in human embryonic kidney cells. J. Biomol. Struct. Dyn., 2015, 33(6), 1185-1197.
[http://dx.doi.org/10.1080/07391102.2014.938247] [PMID: 25012937]
[351]
Blaheta, R.A.; Nau, H.; Michaelis, M.; Cinatl, J., Jr Valproate and valproate-analogues: Potent tools to fight against cancer. Curr. Med. Chem., 2002, 9(15), 1417-1433.
[http://dx.doi.org/10.2174/0929867023369763] [PMID: 12173980]
[352]
Yoon, S.; Choi, J.; Lee, W.; Do, J. Genetic and epigenetic etiology underlying autism spectrum disorder. J. Clin. Med., 2020, 9(4), 966.
[http://dx.doi.org/10.3390/jcm9040966] [PMID: 32244359]
[353]
Volmar, C.H.; Wahlestedt, C. Histone deacetylases (HDACs) and brain function. Neuroepigenetics, 2015, 1, 20-27.
[http://dx.doi.org/10.1016/j.nepig.2014.10.002]
[354]
Krämer, O.H.; Zhu, P.; Ostendorff, H.P.; Golebiewski, M.; Tiefenbach, J.; Peters, M.A.; Brill, B.; Groner, B.; Bach, I.; Heinzel, T.; Göttlicher, M. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J., 2003, 22(13), 3411-3420.
[http://dx.doi.org/10.1093/emboj/cdg315] [PMID: 12840003]
[355]
Kouzarides, T. Chromatin modifications and their function. Cell, 2007, 128(4), 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[356]
Hezroni, H.; Sailaja, B.S.; Meshorer, E. Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation patterns in embryonic stem cells. J. Biol. Chem., 2011, 286(41), 35977-35988.
[http://dx.doi.org/10.1074/jbc.M111.266254] [PMID: 21849501]
[357]
Lee, JH; Hart, SRL; Skalnik, DG Histone deacetylase activity is required for embryonic stem cell differentiation. genesis., 2004, 38(1), 32-38.
[358]
Qiao, Y.; Wang, R.; Yang, X.; Tang, K.; Jing, N. Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J. Biol. Chem., 2015, 290(4), 2508-2520.
[http://dx.doi.org/10.1074/jbc.M114.603761] [PMID: 25519907]
[359]
Gandhi, S.; Mitterhoff, R.; Rapoport, R.; Farago, M.; Greenberg, A.; Hodge, L.; Eden, S.; Benner, C.; Goren, A.; Simon, I. Mitotic H3K9ac is controlled by phase-specific activity of HDAC2, HDAC3, and SIRT1. Life Sci. Alliance, 2022, 5(10), e202201433.
[http://dx.doi.org/10.26508/lsa.202201433] [PMID: 35981887]
[360]
Lagger, G.; O’Carroll, D.; Rembold, M.; Khier, H.; Tischler, J.; Weitzer, G.; Schuettengruber, B.; Hauser, C.; Brunmeir, R.; Jenuwein, T.; Seiser, C. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J., 2002, 21(11), 2672-2681.
[http://dx.doi.org/10.1093/emboj/21.11.2672] [PMID: 12032080]
[361]
Kim, K.C.; Choi, C.S.; Gonzales, E.L.T.; Mabunga, D.F.N.; Lee, S.H.; Jeon, S.J.; Hwangbo, R.; Hong, M.; Ryu, J.H.; Han, S.H.; Bahn, G.H.; Shin, C.Y. Valproic acid induces telomerase reverse transcriptase expression during cortical development. Exp. Neurobiol., 2017, 26(5), 252-265.
[http://dx.doi.org/10.5607/en.2017.26.5.252] [PMID: 29093634]
[362]
Tung, E.W.Y.; Winn, L.M. Epigenetic modifications in valproic acid-induced teratogenesis. Toxicol. Appl. Pharmacol., 2010, 248(3), 201-209.
[http://dx.doi.org/10.1016/j.taap.2010.08.001] [PMID: 20705080]
[363]
Wang, Z.; Xu, L.; Zhu, X.; Cui, W.; Sun, Y.; Nishijo, H.; Peng, Y.; Li, R. Demethylation of specific Wnt/β-catenin pathway genes and its upregulation in rat brain induced by prenatal valproate exposure. Anat. Rec., 2010, 293(11), 1947-1953.
[http://dx.doi.org/10.1002/ar.21232] [PMID: 20734317]
[364]
He, Y.; Mei, H.; Yu, H.; Sun, S.; Ni, W.; Li, H. Role of histone deacetylase activity in the developing lateral line neuromast of zebrafish larvae. Exp. Mol. Med., 2014, 46(5), e94-e94.
[http://dx.doi.org/10.1038/emm.2014.18] [PMID: 24810423]
[365]
Leung, C.S.; Rosenzweig, S.J.; Yoon, B.; Marinelli, N.A.; Hollingsworth, E.W.; Maguire, A.M.; Cowen, M.H.; Schmidt, M.; Imitola, J.; Gamsiz Uzun, E.D.; Lizarraga, S.B. Dysregulation of the chromatin environment leads to differential alternative splicing as a mechanism of disease in a human model of autism spectrum disorder. Hum. Mol. Genet., 2023, 32(10), 1634-1646.
[http://dx.doi.org/10.1093/hmg/ddad002] [PMID: 36621967]
[366]
Boudadi, E.; Stower, H.; Halsall, J.A.; Rutledge, C.E.; Leeb, M.; Wutz, A.; O’Neill, L.P.; Nightingale, K.P.; Turner, B.M. The histone deacetylase inhibitor sodium valproate causes limited transcriptional change in mouse embryonic stem cells but selectively overrides Polycomb-mediated Hoxb silencing. Epigenetics Chromatin, 2013, 6(1), 11.
[http://dx.doi.org/10.1186/1756-8935-6-11] [PMID: 23634885]
[367]
Guerra, M.; Medici, V.; Weatheritt, R.; Corvino, V.; Palacios, D.; Geloso, M.C.; Farini, D.; Sette, C. Fetal exposure to valproic acid dysregulates the expression of autism-linked genes in the developing cerebellum. Transl. Psychiatry, 2023, 13(1), 114.
[http://dx.doi.org/10.1038/s41398-023-02391-9] [PMID: 37019889]
[368]
Hara, Y.; Ago, Y.; Takano, E.; Hasebe, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Prenatal exposure to valproic acid increases miR-132 levels in the mouse embryonic brain. Mol. Autism, 2017, 8(1), 33.
[http://dx.doi.org/10.1186/s13229-017-0149-5] [PMID: 28670439]
[369]
Jung, G.A.; Yoon, J.Y.; Moon, B.S.; Yang, D.H.; Kim, H.Y.; Lee, S.H.; Bryja, V.; Arenas, E.; Choi, K.Y. Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC Cell Biol., 2008, 9(1), 66.
[http://dx.doi.org/10.1186/1471-2121-9-66] [PMID: 19068119]
[370]
Basu, S.N.; Kollu, R.; Banerjee-Basu, S. AutDB: a gene reference resource for autism research. Nucleic Acids Res., 2009, 37(Database issue), D832-D836.
[http://dx.doi.org/10.1093/nar/gkn835] [PMID: 19015121]
[371]
Baumann, C.; Zhang, X.; Zhu, L.; Fan, Y.; De La Fuente, R. Changes in chromatin accessibility landscape and histone H3 core acetylation during valproic acid-induced differentiation of embryonic stem cells. Epigenetics Chromatin, 2021, 14(1), 58.
[http://dx.doi.org/10.1186/s13072-021-00432-5] [PMID: 34955095]
[372]
Yuan, J.; Pu, M.; Zhang, Z.; Lou, Z. Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle, 2009, 8(11), 1747-1753.
[http://dx.doi.org/10.4161/cc.8.11.8620] [PMID: 19411844]
[373]
Tessarz, P.; Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol., 2014, 15(11), 703-708.
[http://dx.doi.org/10.1038/nrm3890] [PMID: 25315270]
[374]
Xie, W.; Song, C.; Young, N.L.; Sperling, A.S.; Xu, F.; Sridharan, R.; Conway, A.E.; Garcia, B.A.; Plath, K.; Clark, A.T.; Grunstein, M. Histone h3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells. Mol. Cell, 2009, 33(4), 417-427.
[http://dx.doi.org/10.1016/j.molcel.2009.02.004] [PMID: 19250903]
[375]
Osumi, N.; Shinohara, H.; Numayama-Tsuruta, K.; Maekawa, M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells, 2008, 26(7), 1663-1672.
[http://dx.doi.org/10.1634/stemcells.2007-0884] [PMID: 18467663]
[376]
Duan, D.; Fu, Y.; Paxinos, G.; Watson, C. Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice. Brain Struct. Funct., 2013, 218(2), 353-372.
[http://dx.doi.org/10.1007/s00429-012-0397-2] [PMID: 22354470]
[377]
Kroll, T.T.; O’Leary, D.D.M. Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. Proc. Natl. Acad. Sci., 2005, 102(20), 7374-7379.
[http://dx.doi.org/10.1073/pnas.0500819102] [PMID: 15878992]
[378]
Sansom, S.N.; Griffiths, D.S.; Faedo, A.; Kleinjan, D.J.; Ruan, Y.; Smith, J. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet., 2009, 5(6), e1000511.
[http://dx.doi.org/10.1371/journal.pgen.1000511]
[379]
Yuan, X.; Dai, M.; Xu, D. TERT promoter mutations and GABP transcription factors in carcinogenesis: More foes than friends. Cancer Lett., 2020, 493, 1-9.
[http://dx.doi.org/10.1016/j.canlet.2020.07.003] [PMID: 32768523]
[380]
Tan, Y.; Xue, Y.; Song, C.; Grunstein, M. Acetylated histone H3K56 interacts with Oct4 to promote mouse embryonic stem cell pluripotency. Proc. Natl. Acad. Sci., 2013, 110(28), 11493-11498.
[http://dx.doi.org/10.1073/pnas.1309914110] [PMID: 23798425]
[381]
Ye, F.; Chen, Y.; Hoang, T.; Montgomery, R.L.; Zhao, X.; Bu, H.; Hu, T.; Taketo, M.M.; van Es, J.H.; Clevers, H.; Hsieh, J.; Bassel-Duby, R.; Olson, E.N.; Lu, Q.R. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin-TCF interaction. Nat. Neurosci., 2009, 12(7), 829-838.
[http://dx.doi.org/10.1038/nn.2333] [PMID: 19503085]
[382]
Jamadagni, P.; Breuer, M.; Schmeisser, K.; Cardinal, T.; Kassa, B.; Parker, J.A.; Pilon, N.; Samarut, E.; Patten, S.A. Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR3 expression. EMBO Rep., 2021, 22(6), e50958.
[http://dx.doi.org/10.15252/embr.202050958] [PMID: 33900016]
[383]
Mello, M.L.S. Sodium Valproate-Induced Chromatin Remodeling. Front. Cell Dev. Biol., 2021, 9, 645518.
[http://dx.doi.org/10.3389/fcell.2021.645518] [PMID: 33959607]
[384]
Simonini, M.V.; Camargo, L.M.; Dong, E.; Maloku, E.; Veldic, M.; Costa, E.; Guidotti, A. The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc. Natl. Acad. Sci., 2006, 103(5), 1587-1592.
[http://dx.doi.org/10.1073/pnas.0510341103] [PMID: 16432198]
[385]
Dong, E.; Guidotti, A.; Grayson, D.R.; Costa, E. Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc. Natl. Acad. Sci., 2007, 104(11), 4676-4681.
[http://dx.doi.org/10.1073/pnas.0700529104] [PMID: 17360583]
[386]
Tremolizzo, L.; Carboni, G.; Ruzicka, W.B.; Mitchell, C.P.; Sugaya, I.; Tueting, P.; Sharma, R.; Grayson, D.R.; Costa, E.; Guidotti, A. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc. Natl. Acad. Sci., 2002, 99(26), 17095-17100.
[http://dx.doi.org/10.1073/pnas.262658999] [PMID: 12481028]
[387]
Rocha, M.A.; Veronezi, G.M.B.; Felisbino, M.B.; Gatti, M.S.V.; Tamashiro, W.M.S.C.; Mello, M.L.S. Sodium valproate and 5-aza-2′-deoxycytidine differentially modulate DNA demethylation in G1 phase-arrested and proliferative HeLa cells. Sci. Rep., 2019, 9(1), 18236.
[http://dx.doi.org/10.1038/s41598-019-54848-x] [PMID: 31796828]
[388]
Marchion, D.C.; Bicaku, E.; Daud, A.I.; Sullivan, D.M.; Munster, P.N. Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res., 2005, 65(9), 3815-3822.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2478] [PMID: 15867379]
[389]
Palsamy, P.; Bidasee, K.R.; Shinohara, T. Valproic acid suppresses Nrf2/Keap1 dependent antioxidant protection through induction of endoplasmic reticulum stress and Keap1 promoter DNA demethylation in human lens epithelial cells. Exp. Eye Res., 2014, 121, 26-34.
[http://dx.doi.org/10.1016/j.exer.2014.01.021] [PMID: 24525405]
[390]
Detich, N.; Bovenzi, V.; Szyf, M. Valproate induces replication-independent active DNA demethylation. J. Biol. Chem., 2003, 278(30), 27586-27592.
[http://dx.doi.org/10.1074/jbc.M303740200] [PMID: 12748177]
[391]
Milutinovic, S.; D’Alessio, A.C.; Detich, N.; Szyf, M. Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis, 2007, 28(3), 560-571.
[http://dx.doi.org/10.1093/carcin/bgl167] [PMID: 17012225]
[392]
Dong, E.; Chen, Y.; Gavin, D.P.; Grayson, D.R.; Guidotti, A. Valproate induces DNA demethylation in nuclear extracts from adult mouse brain. Epigenetics, 2010, 5(8), 730-735.
[http://dx.doi.org/10.4161/epi.5.8.13053] [PMID: 20716949]
[393]
Tan, N.N.; Tang, H.L.; Lin, G.W.; Chen, Y.H.; Lu, P.; Li, H.J.; Gao, M.M.; Zhao, Q.H.; Yi, Y.H.; Liao, W.P.; Long, Y.S. Epigenetic downregulation of scn3a expression by valproate: A possible role in its anticonvulsant activity. Mol. Neurobiol., 2017, 54(4), 2831-2842.
[http://dx.doi.org/10.1007/s12035-016-9871-9] [PMID: 27013471]
[394]
Park, J.; Lee, K.; Kim, K.; Yi, S.J. The role of histone modifications: From neurodevelopment to neurodiseases. Signal Transduct. Target. Ther., 2022, 7(1), 217.
[http://dx.doi.org/10.1038/s41392-022-01078-9] [PMID: 35794091]
[395]
Göttlicher, M.; Minucci, S.; Zhu, P.; Krämer, O.H.; Schimpf, A.; Giavara, S.; Sleeman, J.P.; Lo Coco, F.; Nervi, C.; Pelicci, P.G.; Heinzel, T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J., 2001, 20(24), 6969-6978.
[http://dx.doi.org/10.1093/emboj/20.24.6969] [PMID: 11742974]
[396]
Emmett, M.J.; Lazar, M.A. Integrative regulation of physiology by histone deacetylase 3. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 102-115.
[http://dx.doi.org/10.1038/s41580-018-0076-0] [PMID: 30390028]
[397]
Hayakawa, T.; Nakayama, J. Physiological roles of class I HDAC complex and histone demethylase. J. Biomed. Biotechnol., 2011, 2011, 1-10.
[http://dx.doi.org/10.1155/2011/129383]
[398]
Mello, M.L.S.; Rocha, M.A.; de Campos, V.B. Sodium valproate modulates the methylation status of lysine residues 4, 9 and 27 in histone H3 of HeLa cells. Curr. Mol. Pharmacol., 2023, 16(2), 197-210.
[http://dx.doi.org/10.2174/1874467215666220316110405] [PMID: 35297358]
[399]
Marinova, Z.; Leng, Y.; Leeds, P.; Chuang, D.M. Histone deacetylase inhibition alters histone methylation associated with heat shock protein 70 promoter modifications in astrocytes and neurons. Neuropharmacology, 2011, 60(7-8), 1109-1115.
[http://dx.doi.org/10.1016/j.neuropharm.2010.09.022] [PMID: 20888352]
[400]
Nightingale, K.P.; Gendreizig, S.; White, D.A.; Bradbury, C.; Hollfelder, F.; Turner, B.M. Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J. Biol. Chem., 2007, 282(7), 4408-4416.
[http://dx.doi.org/10.1074/jbc.M606773200] [PMID: 17166833]
[401]
Rahhal, R.; Seto, E. Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Res., 2019, 47(10), 4911-4926.
[http://dx.doi.org/10.1093/nar/gkz292] [PMID: 31162605]
[402]
Hnilicová, J.; Hozeifi, S.; Dušková, E.; Icha, J.; Tománková, T.; Staněk, D. Histone deacetylase activity modulates alternative splicing. PLoS One, 2011, 6(2), e16727.
[http://dx.doi.org/10.1371/journal.pone.0016727]
[403]
Su, C.H. D, D.; Tarn, W.Y. Alternative splicing in neurogenesis and brain development. Front. Mol. Biosci., 2018, 5, 12.
[http://dx.doi.org/10.3389/fmolb.2018.00012] [PMID: 29484299]
[404]
Engal, E.; Baker, M.; Salton, M. The chromatin roots of abnormal splicing in autism. Trends Genet., 2022, 38(9), 892-894.
[http://dx.doi.org/10.1016/j.tig.2022.06.001] [PMID: 35750536]
[405]
Sun, W.; Poschmann, J.; Cruz-Herrera del Rosario, R.; Parikshak, N.N.; Hajan, H.S.; Kumar, V.; Ramasamy, R.; Belgard, T.G.; Elanggovan, B.; Wong, C.C.Y.; Mill, J.; Geschwind, D.H.; Prabhakar, S. Histone acetylome-wide association study of autism spectrum disorder. Cell, 2016, 167(5), 1385-1397.e11.
[http://dx.doi.org/10.1016/j.cell.2016.10.031] [PMID: 27863250]
[406]
Elgamal, M.; Moustafa, Y.; Ali, A.; El-Sayed, N.; Khodeer, D. Mechanisms of valproic acid-induced autism: Canonical wnt-β- catenin pathway. Records of Pharmaceutical and Biomedical Sciences, 2023, 7(3), 51-62.
[http://dx.doi.org/10.21608/rpbs.2023.189540.1205]
[407]
Mulligan, K.A.; Cheyette, B.N.R. Wnt signaling in vertebrate neural development and function. J. Neuroimmune Pharmacol., 2012, 7(4), 774-787.
[http://dx.doi.org/10.1007/s11481-012-9404-x] [PMID: 23015196]
[408]
Rosso, S.B.; Inestrosa, N.C. WNT signaling in neuronal maturation and synaptogenesis. Front. Cell. Neurosci., 2013, 7, 103.
[http://dx.doi.org/10.3389/fncel.2013.00103] [PMID: 23847469]
[409]
Kwan, V.; Unda, B.K.; Singh, K.K. Wnt signaling networks in autism spectrum disorder and intellectual disability. J. Neurodev. Disord., 2016, 8(1), 45.
[http://dx.doi.org/10.1186/s11689-016-9176-3] [PMID: 27980692]
[410]
Phiel, C.J.; Zhang, F.; Huang, E.Y.; Guenther, M.G.; Lazar, M.A.; Klein, P.S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem., 2001, 276(39), 36734-36741.
[http://dx.doi.org/10.1074/jbc.M101287200] [PMID: 11473107]
[411]
Takai, N.; Desmond, J.C.; Kumagai, T.; Gui, D.; Said, J.W.; Whittaker, S.; Miyakawa, I.; Koeffler, H.P. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin. Cancer Res., 2004, 10(3), 1141-1149.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0100] [PMID: 14871994]
[412]
Digel, W.; Lübbert, M. DNA methylation disturbances as novel therapeutic target in lung cancer: Preclinical and clinical results. Crit. Rev. Oncol. Hematol., 2005, 55(1), 1-11.
[http://dx.doi.org/10.1016/j.critrevonc.2005.02.002] [PMID: 15886007]
[413]
Nie, X.; Liu, H.; Liu, L.; Wang, Y.D.; Chen, W.D. Emerging roles of Wnt ligands in human colorectal cancer. Front. Oncol., 2020, 10, 1341.
[http://dx.doi.org/10.3389/fonc.2020.01341] [PMID: 32923386]
[414]
Kumar, S.; Reynolds, K.; Ji, Y.; Gu, R.; Rai, S.; Zhou, C.J. Impaired neurodevelopmental pathways in autism spectrum disorder: A review of signaling mechanisms and crosstalk. J. Neurodev. Disord., 2019, 11(1), 10.
[http://dx.doi.org/10.1186/s11689-019-9268-y] [PMID: 31202261]
[415]
Martin, P-M.; Yang, X.; Robin, N.; Lam, E.; Rabinowitz, J.S.; Erdman, C.A.; Quinn, J.; Weiss, L.A.; Hamilton, S.P.; Kwok, P-Y.; Moon, R.T.; Cheyette, B.N.R. A rare WNT1 missense variant overrepresented in ASD leads to increased Wnt signal pathway activation. Transl. Psychiatry, 2013, 3(9), e301-e301.
[http://dx.doi.org/10.1038/tp.2013.75] [PMID: 24002087]
[416]
Wassink, T.H.; Piven, J.; Vieland, V.J.; Huang, J.; Swiderski, R.E.; Pietila, J.; Braun, T.; Beck, G.; Folstein, S.E.; Haines, J.L.; Sheffield, V.C. Evidence supporting WNT2 as an autism susceptibility gene. Am. J. Med. Genet., 2001, 105(5), 406-413.
[http://dx.doi.org/10.1002/ajmg.1401] [PMID: 11449391]
[417]
Marui, T.; Funatogawa, I.; Koishi, S.; Yamamoto, K.; Matsumoto, H.; Hashimoto, O.; Jinde, S.; Nishida, H.; Sugiyama, T.; Kasai, K.; Watanabe, K.; Kano, Y.; Kato, N. Association between autism and variants in the wingless-type MMTV integration site family member 2 (WNT2) gene. Int. J. Neuropsychopharmacol., 2010, 13(4), 443-449.
[http://dx.doi.org/10.1017/S1461145709990903] [PMID: 19895723]
[418]
Levy, D.; Ronemus, M.; Yamrom, B.; Lee, Y.; Leotta, A.; Kendall, J.; Marks, S.; Lakshmi, B.; Pai, D.; Ye, K.; Buja, A.; Krieger, A.; Yoon, S.; Troge, J.; Rodgers, L.; Iossifov, I.; Wigler, M. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron, 2011, 70(5), 886-897.
[http://dx.doi.org/10.1016/j.neuron.2011.05.015] [PMID: 21658582]
[419]
Lin, P.I.; Chien, Y.L.; Wu, Y.Y.; Chen, C.H.; Gau, S.S.F.; Huang, Y.S.; Liu, S.K.; Tsai, W.C.; Chiu, Y.N. The WNT2 gene polymorphism associated with speech delay inherent to autism. Res. Dev. Disabil., 2012, 33(5), 1533-1540.
[http://dx.doi.org/10.1016/j.ridd.2012.03.004] [PMID: 22522212]
[420]
Krumm, N.; O’Roak, B.J.; Shendure, J.; Eichler, E.E. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci., 2014, 37(2), 95-105.
[http://dx.doi.org/10.1016/j.tins.2013.11.005] [PMID: 24387789]
[421]
Platt, R.J.; Zhou, Y.; Slaymaker, I.M.; Shetty, A.S.; Weisbach, N.R.; Kim, J.A.; Sharma, J.; Desai, M.; Sood, S.; Kempton, H.R.; Crabtree, G.R.; Feng, G.; Zhang, F. Chd8 mutation leads to autistic-like behaviors and impaired striatal circuits. Cell Rep., 2017, 19(2), 335-350.
[http://dx.doi.org/10.1016/j.celrep.2017.03.052] [PMID: 28402856]
[422]
Thompson, B.A.; Tremblay, V.; Lin, G.; Bochar, D.A. CHD8 is an ATP-dependent chromatin remodeling factor that regulates β-catenin target genes. Mol. Cell. Biol., 2008, 28(12), 3894-3904.
[http://dx.doi.org/10.1128/MCB.00322-08] [PMID: 18378692]
[423]
McBride, K.L.; Varga, E.A.; Pastore, M.T.; Prior, T.W.; Manickam, K.; Atkin, J.F.; Herman, G.E. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res., 2010, 3(3), 137-141.
[http://dx.doi.org/10.1002/aur.132] [PMID: 20533527]
[424]
Zhou, T.; He, X.; Cheng, R.; Zhang, B.; Zhang, R.R.; Chen, Y.; Takahashi, Y.; Murray, A.R.; Lee, K.; Gao, G.; Ma, J. Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy. Diabetologia, 2012, 55(1), 255-266.
[http://dx.doi.org/10.1007/s00125-011-2314-2] [PMID: 22016045]
[425]
DeSpenza, T., Jr; Carlson, M.; Panchagnula, S.; Robert, S.; Duy, P.Q.; Mermin-Bunnell, N.; Reeves, B.C.; Kundishora, A.; Elsamadicy, A.A.; Smith, H.; Ocken, J.; Alper, S.L.; Jin, S.C.; Hoffman, E.J.; Kahle, K.T. PTEN mutations in autism spectrum disorder and congenital hydrocephalus: developmental pleiotropy and therapeutic targets. Trends Neurosci., 2021, 44(12), 961-976.
[http://dx.doi.org/10.1016/j.tins.2021.08.007] [PMID: 34625286]
[426]
Mahmood, U.; Ahn, S.; Yang, E.J.; Choi, M.; Kim, H.; Regan, P.; Cho, K.; Kim, H.S. Dendritic spine anomalies and PTEN alterations in a mouse model of VPA-induced autism spectrum disorder. Pharmacol. Res., 2018, 128, 110-121.
[http://dx.doi.org/10.1016/j.phrs.2017.08.006] [PMID: 28823725]
[427]
Nicolini, C.; Ahn, Y.; Michalski, B.; Rho, J.M.; Fahnestock, M. Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid. Acta Neuropathol. Commun., 2015, 3(1), 3.
[http://dx.doi.org/10.1186/s40478-015-0184-4] [PMID: 25627160]
[428]
Yang, E.J.; Ahn, S.; Lee, K.; Mahmood, U.; Kim, H.S. Early behavioral abnormalities and perinatal alterations of PTEN/AKT pathway in valproic acid autism model mice. PLoS One, 2016, 11(4), e0153298.
[http://dx.doi.org/10.1371/journal.pone.0153298] [PMID: 27071011]
[429]
Barrett, C.E.; Hennessey, T.M.; Gordon, K.M.; Ryan, S.J.; McNair, M.L.; Ressler, K.J.; Rainnie, D.G. Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally. Mol. Autism, 2017, 8(1), 42.
[http://dx.doi.org/10.1186/s13229-017-0160-x] [PMID: 28775827]
[430]
Tung, E.W.Y.; Winn, L.M. Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: A role for oxidative stress in valproic acid-induced neural tube defects. Mol. Pharmacol., 2011, 80(6), 979-987.
[http://dx.doi.org/10.1124/mol.111.072314] [PMID: 21868484]
[431]
Sztainberg, Y.; Zoghbi, H.Y. Lessons learned from studying syndromic autism spectrum disorders. Nat. Neurosci., 2016, 19(11), 1408-1417.
[http://dx.doi.org/10.1038/nn.4420] [PMID: 27786181]
[432]
Varghese, M.; Keshav, N.; Jacot-Descombes, S.; Warda, T.; Wicinski, B. Dickstein, DL Autism spectrum disorder: Neuropathology and animal models. Acta Neuropathol., 2017, 134(4), 537-566.
[http://dx.doi.org/10.1007/s00401-017-1736-4]
[433]
Kim, K.C.; Gonzales, E.L.; Lázaro, M.T.; Choi, C.S.; Bahn, G.H.; Yoo, H.J.; Shin, C.Y. Clinical and neurobiological relevance of current animal models of autism spectrum disorders. Biomol. Ther., 2016, 24(3), 207-243.
[http://dx.doi.org/10.4062/biomolther.2016.061] [PMID: 27133257]
[434]
Feil, R.; Fraga, M.F. Epigenetics and the environment: Emerging patterns and implications. Nat. Rev. Genet., 2012, 13(2), 97-109.
[http://dx.doi.org/10.1038/nrg3142] [PMID: 22215131]
[435]
Good, K.V.; Vincent, J.B.; Ausió, J. MeCP2: The genetic driver of rett syndrome epigenetics. Front. Genet., 2021, 12, 620859.
[http://dx.doi.org/10.3389/fgene.2021.620859] [PMID: 33552148]
[436]
Loke, Y.J.; Hannan, A.J.; Craig, J.M. The role of epigenetic change in autism spectrum disorders. Front. Neurol., 2015, 6, 107.
[http://dx.doi.org/10.3389/fneur.2015.00107] [PMID: 26074864]
[437]
Balan, S.; Iwayama, Y.; Ohnishi, T.; Fukuda, M.; Shirai, A.; Yamada, A.; Weirich, S.; Schuhmacher, M.K.; Dileep, K.V.; Endo, T.; Hisano, Y.; Kotoshiba, K.; Toyota, T.; Otowa, T.; Kuwabara, H.; Tochigi, M.; Watanabe, A.; Ohba, H.; Maekawa, M.; Toyoshima, M.; Sasaki, T.; Nakamura, K.; Tsujii, M.; Matsuzaki, H.; Zhang, K.Y.J.; Jeltsch, A.; Shinkai, Y.; Yoshikawa, T. A loss-of-function variant in SUV39H2 identified in autism-spectrum disorder causes altered H3K9 trimethylation and dysregulation of protocadherin β-cluster genes in the developing brain. Mol. Psychiatry, 2021, 26(12), 7550-7559.
[http://dx.doi.org/10.1038/s41380-021-01199-7] [PMID: 34262135]
[438]
Balemans, M.C.M.; Huibers, M.M.H.; Eikelenboom, N.W.D.; Kuipers, A.J.; van Summeren, R.C.J.; Pijpers, M.M.C.A.; Tachibana, M.; Shinkai, Y.; van Bokhoven, H.; Van der Zee, C.E.E.M. Reduced exploration, increased anxiety, and altered social behavior: Autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice. Behav. Brain Res., 2010, 208(1), 47-55.
[http://dx.doi.org/10.1016/j.bbr.2009.11.008] [PMID: 19896504]
[439]
Chen, E.S.; Gigek, C.O.; Rosenfeld, J.A.; Diallo, A.B.; Maussion, G.; Chen, G.G.; Vaillancourt, K.; Lopez, J.P.; Crapper, L.; Poujol, R.; Shaffer, L.G.; Bourque, G.; Ernst, C. Molecular convergence of neurodevelopmental disorders. Am. J. Hum. Genet., 2014, 95(5), 490-508.
[http://dx.doi.org/10.1016/j.ajhg.2014.09.013] [PMID: 25307298]
[440]
Lin, C.W.; Septyaningtrias, D.E.; Chao, H.W.; Konda, M.; Atarashi, K.; Takeshita, K.; Tamada, K.; Nomura, J.; Sasagawa, Y.; Tanaka, K.; Nikaido, I.; Honda, K.; McHugh, T.J.; Takumi, T. A common epigenetic mechanism across different cellular origins underlies systemic immune dysregulation in an idiopathic autism mouse model. Mol. Psychiatry, 2022, 27(8), 3343-3354.
[http://dx.doi.org/10.1038/s41380-022-01566-y] [PMID: 35491410]
[441]
Lin, C.W.; Ellegood, J.; Tamada, K.; Miura, I.; Konda, M.; Takeshita, K. An old model with new insights: Endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development. Mol. Psychiatry., 2023. (Epub a head of print).
[http://dx.doi.org/10.1038/s41380-023-01999-z]
[442]
Tseng, C.E.J.; McDougle, C.J.; Hooker, J.M.; Zürcher, N.R. Epigenetics of autism spectrum disorder: Histone deacetylases. Biol. Psychiatry, 2022, 91(11), 922-933.
[http://dx.doi.org/10.1016/j.biopsych.2021.11.021] [PMID: 35120709]
[443]
Cao, D.D.; Li, L.; Chan, W.Y. MicroRNAs: Key regulators in the central nervous system and their implication in neurological diseases. Int. J. Mol. Sci., 2016, 17(6), 842.
[http://dx.doi.org/10.3390/ijms17060842] [PMID: 27240359]
[444]
Pejhan, S.; Del Bigio, M.R.; Rastegar, M. The MeCP2E1/E2-BDNF-miR132 homeostasis regulatory network is region-dependent in the human brain and is impaired in rett syndrome patients. Front. Cell Dev. Biol., 2020, 8, 763.
[http://dx.doi.org/10.3389/fcell.2020.00763] [PMID: 32974336]
[445]
Brown, E.A.; Lautz, J.D.; Davis, T.R.; Gniffke, E.P.; VanSchoiack, A.A.W.; Neier, S.C.; Tashbook, N.; Nicolini, C.; Fahnestock, M.; Schrum, A.G.; Smith, S.E.P. Clustering the autisms using glutamate synapse protein interaction networks from cortical and hippocampal tissue of seven mouse models. Mol. Autism, 2018, 9(1), 48.
[http://dx.doi.org/10.1186/s13229-018-0229-1] [PMID: 30237867]
[446]
Arakawa, H. From multisensory assessment to functional interpretation of social behavioral phenotype in transgenic mouse models for autism spectrum disorders. Front. Psychiatry, 2020, 11, 592408.
[http://dx.doi.org/10.3389/fpsyt.2020.592408] [PMID: 33329141]
[447]
Puścian, A.; Lęski, S.; Górkiewicz, T.; Meyza, K.; Lipp, H.P.; Knapska, E. A novel automated behavioral test battery assessing cognitive rigidity in two genetic mouse models of autism. Front. Behav. Neurosci., 2014, 8, 140.
[PMID: 24808839]
[448]
Jabarin, R.; Netser, S.; Wagner, S. Beyond the three-chamber test: Toward a multimodal and objective assessment of social behavior in rodents. Mol. Autism, 2022, 13(1), 41.
[http://dx.doi.org/10.1186/s13229-022-00521-6] [PMID: 36284353]
[449]
Argyropoulos, A.; Gilby, K.L.; Hill-Yardin, E.L. Studying autism in rodent models: reconciling endophenotypes with comorbidities. Front. Hum. Neurosci., 2013, 7, 417.
[http://dx.doi.org/10.3389/fnhum.2013.00417] [PMID: 23898259]
[450]
Das, I.; Estevez, M.A.; Sarkar, A.A.; Banerjee-Basu, S. A multifaceted approach for analyzing complex phenotypic data in rodent models of autism. Mol. Autism, 2019, 10(1), 11.
[http://dx.doi.org/10.1186/s13229-019-0263-7] [PMID: 30911366]
[451]
Halsall, J.A.; Turan, N.; Wiersma, M.; Turner, B.M. Cells adapt to the epigenomic disruption caused by histone deacetylase inhibitors through a coordinated, chromatin-mediated transcriptional response. Epigenetics Chromatin, 2015, 8(1), 29.
[http://dx.doi.org/10.1186/s13072-015-0021-9] [PMID: 26380582]
[452]
Schaaf, C.P.; Zoghbi, H.Y. Solving the autism puzzle a few pieces at a time. Neuron, 2011, 70(5), 806-808.
[http://dx.doi.org/10.1016/j.neuron.2011.05.025] [PMID: 21658575]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy