Review Article

MicroRNAs Regulate Inhibitor of Apoptosis Proteins (IAPs) in Colorectal Cancer

Author(s): Hamid Tanzadehpanah, Amir Avan, Majid Ghayour-Mobarhan, Gordon A. Ferns, Hamed Manoochehri, Mohsen Sheykhhasan and Hanie Mahaki*

Volume 12, Issue 3, 2023

Published on: 09 October, 2023

Page: [210 - 220] Pages: 11

DOI: 10.2174/2211536612666230915105323

Price: $65

Open Access Journals Promotions 2
Abstract

Colorectal cancer (CRC) is the second most common cause of cancer mortality, with approximately 1.9 million new cases and 0.9 million deaths globally in 2020. One of the potential ways to treat colorectal cancer may be through the use of molecular methods to induce cell apoptosis. Apoptosis is a natural cellular event that regulates the growth and proliferation of body cells and prevents cancer. In this pathway, several molecules are involved; one group promotes this process, and some molecules that are representative of inhibitors of apoptosis proteins (IAPs) inhibit apoptosis. The most important human IAPs include c-IAP1, c-IAP2, NAIP, Survivin, XIAP, Bruce, ILP-2, and Livin. Several studies have shown that the inhibition of IAPs may be useful in cancer treatment. MicroRNAs (miRNAs) may be effective in regulating the expression of various proteins, including those of the IAPs family; they are a large subgroup of non-coding RNAs that are evolutionarily conserved. Therefore, in this review, the miRNAs that may be used to target IAPs in colorectal cancer were discussed.

Keywords: Survivin, XIAP, Bruce, Livin, NAIP, miRNA.

Graphical Abstract
[1]
Gul-E-Saba C, Abdah Md A. Cancer and apoptosis. Methods Mol Biol 2022; 2543: 191-210.
[2]
Manoochehri H, Asadi S, Tanzadehpanah H, et al. CDC25A is strongly associated with colorectal cancer stem cells and poor clinical outcome of patients. Gene Reports 2021; 25: 101415.
[http://dx.doi.org/10.1016/j.genrep.2021.101415]
[3]
Šrámek J, Němcová-Fürstová V, Kovář J. Molecular mechanisms of apoptosis induction and its regulation by fatty acids in pancreatic β-cells. Int J Mol Sci 2021; 22(8): 4285.
[http://dx.doi.org/10.3390/ijms22084285] [PMID: 33924206]
[4]
Moradi M, Najafi R, Amini R, et al. Remarkable apoptotic pathway of Hemiscorpius lepturus scorpion venom on CT26 cell line. Cell Biol Toxicol 2019; 25(4): 373-85.
[http://dx.doi.org/10.1007/s10565-018-09455-3]
[5]
Erekat NS. Programmed cell death in diabetic nephropathy: A review of apoptosis, autophagy, and necroptosis. Med Sci Monit 2022; 28: e937766-1.
[http://dx.doi.org/10.12659/MSM.937766] [PMID: 35989481]
[6]
Manoochehri H, Jalali A, Tanzadehpanah H, et al. Aptamer-conjugated nanoliposomes containing COL1A1 siRNA sensitize CRC cells to conventional chemotherapeutic drugs. Colloids Surf B Biointerfaces 2022; 218: 112714.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112714]
[7]
Wang L, Ma G, Zhang Y, et al. Effect of mitochondrial cytochrome c release and its redox state on the mitochondrial-dependent apoptotic cascade reaction and tenderization of yak meat during postmortem aging. Food Res Int 2018; 111: 488-97.
[http://dx.doi.org/10.1016/j.foodres.2018.05.049] [PMID: 30007711]
[8]
Nachmias B, Ashhab Y, Ben-Yehuda D. The inhibitor of apoptosis protein family (IAPs): An emerging therapeutic target in cancer. Semin Cancer Biol 2004; 14(4): 231-43.
[9]
Cetraro P, Plaza-Diaz J, MacKenzie A, Abadía-Molina F. A review of the current impact of inhibitors of apoptosis proteins and their repression in cancer. Cancers 2022; 14(7): 1671.
[http://dx.doi.org/10.3390/cancers14071671] [PMID: 35406442]
[10]
Sheykhhasan M, Tanzadehpanah H, Ahmadieh Yazdi A, et al. FLVCR1-AS1 and FBXL19-AS1: Two putative lncrna candidates in multiple human cancers. Noncoding RNA 2022; 9(1): 1.
[http://dx.doi.org/10.3390/ncrna9010001] [PMID: 36649030]
[11]
Sheykhhasan M, Ahmadyousefi Y, Seyedebrahimi R, et al. DLX6-AS1: A putative lncRNA candidate in multiple human cancers. Expert Rev Mol Med 2021; 23: e17.
[http://dx.doi.org/10.1017/erm.2021.17] [PMID: 34823630]
[12]
Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol 2018; 141(4): 1202-7.
[13]
Mohr AM, Mott JL. Overview of MicroRNA biology. Semin Liver Dis 2015; 35(01): 003-11.
[http://dx.doi.org/10.1055/s-0034-1397344]
[14]
Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol 2007; 23(1): 175-205.
[15]
Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J, Cervantes A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin 2022; 72(4): 372-401.
[http://dx.doi.org/10.3322/caac.21728] [PMID: 35472088]
[16]
Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin 2023; 73(3): 233-54.
[http://dx.doi.org/10.3322/caac.21772] [PMID: 36856579]
[17]
Shin AE, Giancotti FG, Rustgi AK. Metastatic colorectal cancer: Mechanisms and emerging therapeutics. Trends Pharmacol Sci 2023; 44(4): 222-36.
[http://dx.doi.org/10.1016/j.tips.2023.01.003] [PMID: 36828759]
[18]
Bahmani A, Tanzadehpanah H, Hosseinpour Moghadam N, et al. Introducing a pyrazolopyrimidine as a multi-tyrosine kinase inhibitor, using multi-QSAR and docking methods. Mol Diver 2021; 25(2): 945-69.
[http://dx.doi.org/10.1007/s11030-020-10080-8]
[19]
Afshar S, Sedighi Pashaki A, Najafi R, et al. Cross-resistance of acquired radioresistant colorectal cancer cell line to gefitinib and regorafenib. Iran J Med Sci 2020; 45(1): 50-8.
[PMID: 32038059]
[20]
Tanzadehpanah H, Mahaki H, Moradi M, et al. Human serum albumin binding and synergistic effects of gefitinib in combination with regorafenib on colorectal cancer cell lines. Colorectal Cancer 2018; 7(2): CRC03.
[http://dx.doi.org/10.2217/crc-2017-0018]
[21]
Tanzadehpanah H, Bahmani A, Hosseinpour Moghadam N, et al. Synthesis, anticancer activity, and β‐lactoglobulin binding interactions of multitargeted kinase inhibitor sorafenib tosylate (SORt) using spectroscopic and molecular modelling approaches. Luminescence 2021; 36(1): 117-28.
[http://dx.doi.org/10.1002/bio.3929] [PMID: 32725773]
[22]
Tanzadehpanah H, Mahaki H, Samadi P, et al. Anticancer activity, calf thymus DNA and human serum albumin binding properties of Farnesiferol C from Ferula pseudalliacea. J Biomol Struct Dyn 2019; 37(11): 2789-800.
[http://dx.doi.org/10.1080/07391102.2018.1497543] [PMID: 30052136]
[23]
Miura K, Fujibuchi W, Ishida K, et al. Inhibitor of apoptosis protein family as diagnostic markers and therapeutic targets of colorectal cancer. Surg Today 2011; 41(2): 175-82.
[http://dx.doi.org/10.1007/s00595-010-4390-1] [PMID: 21264751]
[24]
Wang H. MicroRNAs and apoptosis in colorectal cancer. Int J Mol Sci 2020; 21(15): 5353.
[http://dx.doi.org/10.3390/ijms21155353] [PMID: 32731413]
[25]
Vucic D, Fairbrother WJ. The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 2007; 13(20): 5995-6000.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0729] [PMID: 17947460]
[26]
Clem RJ. Viral IAPs, then and now. Semin Cell Dev Biol 2015; 39: 72-9.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.011]
[27]
Kasof GM, Gomes BC. Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem 2001; 276(5): 3238-46.
[http://dx.doi.org/10.1074/jbc.M003670200] [PMID: 11024045]
[28]
Sardarian K, Maghsood AH, Farimani M, et al. Evaluation of toxoplasma gondii B1 gene in placental tissues of pregnant women with acute toxoplasmosis. Adv Biomed Res 2018; 7(119): 119.
[PMID: 30211132]
[29]
Suzuki Y, Nakabayashi Y, Takahashi R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci 2001; 98(15): 8662-7.
[http://dx.doi.org/10.1073/pnas.161506698] [PMID: 11447297]
[30]
Garg H, Suri P, Gupta JC, et al. Survivin: A unique target for tumor therapy. Cancer Cell Int 2016; 16(1): 49.
[http://dx.doi.org/10.1186/s12935-016-0326-1]
[31]
Kumar S, Fairmichael C, Longley DB, et al. The multiple roles of the IAP super-family in cancer. Pharmacol Ther 2020; 214: 107610.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107610]
[32]
Jafarzadeh A, Bazargan N, Chatrabnous N, Jafarzadeh S, Nemati M. Contribution of survivin to the immune system, allergies and autoimmune diseases. Hum Immunol 2023; 84(4): 301-10.
[http://dx.doi.org/10.1016/j.humimm.2023.01.009] [PMID: 36754653]
[33]
Johnson ME, Howerth EW. Survivin: A bifunctional inhibitor of apoptosis protein. Vet Pathol 2004; 41(6): 599-607.
[http://dx.doi.org/10.1354/vp.41-6-599] [PMID: 15557069]
[34]
Ryan BM, O’Donovan N, Duffy MJ. Survivin: A new target for anti-cancer therapy. Cancer Treat Rev 2009; 35(7): 553-62.
[http://dx.doi.org/10.1016/j.ctrv.2009.05.003] [PMID: 19559538]
[35]
Ye C, Yue G, Shen Z, et al. miR-542-3p suppresses colorectal cancer progression through targeting survivin. Transl Cancer Res 2016; 5(6): 817-26.
[http://dx.doi.org/10.21037/tcr.2016.12.10]
[36]
Ma Q, Wang X, Li Z, et al. microRNA-16 represses colorectal cancer cell growth in vitro by regulating the p53/survivin signaling pathway. Oncol Rep 2013; 29(4): 1652-8.
[http://dx.doi.org/10.3892/or.2013.2262] [PMID: 23380758]
[37]
Chavoshi H, Bornehdeli S, Asadi M, et al. Profiling of microRNAs targeting survivin in the iranian patients with colorectal cancer. Res Square 2021.
[38]
Fan L, Tan B, Li Y, et al. Upregulation of miR 185 promotes apoptosis of the human gastric cancer cell line MGC803. Mol Med Rep 2018; 17(2): 3115-22.
[PMID: 29257260]
[39]
Dai J, Wu W, Zhou J, et al. Effect of antisense microRNA targeting survivin on rectal cancer HRC-9698 cells and its mechanism. Int J Clin Exp Pathol 2015; 8(6): 6057-63.
[PMID: 26261483]
[40]
Abbas R, Larisch S. Targeting XIAP for promoting cancer cell death-the story of ARTS and SMAC. Cells 2020; 9(3): 663.
[http://dx.doi.org/10.3390/cells9030663] [PMID: 32182843]
[41]
Tu H, Costa M. XIAP’s profile in human cancer. Biomolecules 2020; 10(11): 1493.
[http://dx.doi.org/10.3390/biom10111493] [PMID: 33138314]
[42]
Mendonça B, Ferreira C, Maia R, et al. Subcellular localization of X-linked inhibitor of apoptosis protein (XIAP) in cancer: Does that matter? BBA Adv 2022; 100050.
[43]
Han J, Liu Z, Wang N, Pan W. MicroRNA-874 inhibits growth, induces apoptosis and reverses chemoresistance in colorectal cancer by targeting X-linked inhibitor of apoptosis protein. Oncol Rep 2016; 36(1): 542-50.
[http://dx.doi.org/10.3892/or.2016.4810] [PMID: 27221209]
[44]
López-Rosas I, López-Camarillo C, Salinas-Vera YM, et al. Entamoeba histolytica up-regulates microRNA-643 to promote apoptosis by targeting XIAP in human epithelial colon cells. Front Cell Infect Microbiol 2019; 8: 437.
[http://dx.doi.org/10.3389/fcimb.2018.00437] [PMID: 30671387]
[45]
Hua Y, Zhu Y, Zhang J, et al. miR-122 targets X-linked inhibitor of apoptosis protein to sensitize oxaliplatin-resistant colorectal cancer cells to oxaliplatin-mediated cytotoxicity. Cell Physiol Biochem 2018; 51(5): 2148-59.
[http://dx.doi.org/10.1159/000495832] [PMID: 30522111]
[46]
Huang L, Liu Z, Hu J, et al. MiR-377-3p suppresses colorectal cancer through negative regulation on Wnt/β-catenin signaling by targeting XIAP and ZEB2. Pharmacol Res 2020; 156: 104774.
[http://dx.doi.org/10.1016/j.phrs.2020.104774] [PMID: 32220639]
[47]
Mace PD, Smits C, Vaux DL, Silke J, Day CL. Asymmetric recruitment of cIAPs by TRAF2. J Mol Biol 2010; 400(1): 8-15.
[http://dx.doi.org/10.1016/j.jmb.2010.04.055] [PMID: 20447407]
[48]
Zadoroznyj A, Dubrez L. Cytoplasmic and nuclear functions of cIAP1. Biomolecules 2022; 12(2): 322.
[http://dx.doi.org/10.3390/biom12020322] [PMID: 35204822]
[49]
Karasawa H, Miura K, Fujibuchi W, et al. Down-regulation of cIAP2 enhances 5-FU sensitivity through the apoptotic pathway in human colon cancer cells. Cancer Sci 2009; 100(5): 903-13.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01112.x] [PMID: 19302291]
[50]
Krajewska M, Kim H, Kim C, et al. Analysis of apoptosis protein expression in early-stage colorectal cancer suggests opportunities for new prognostic biomarkers. Clin Cancer Res 2005; 11(15): 5451-61.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0094] [PMID: 16061861]
[51]
Cui YH, Xiao L, Rao JN, et al. miR-503 represses CUG-binding protein 1 translation by recruiting CUGBP1 mRNA to processing bodies. Mol Biol Cell 2012; 23(1): 151-62.
[http://dx.doi.org/10.1091/mbc.e11-05-0456] [PMID: 22072795]
[52]
Li G, Chang H, Zhai YP, Xu W. Targeted silencing of inhibitors of apoptosis proteins with siRNAs: A potential anti-cancer strategy for hepatocellular carcinoma. Asian Pac J Cancer Prev 2013; 14(9): 4943-52.
[http://dx.doi.org/10.7314/APJCP.2013.14.9.4943] [PMID: 24175757]
[53]
Pedersen J, LaCasse EC, Seidelin JB, Coskun M, Nielsen OH. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation. Trends Mol Med 2014; 20(11): 652-65.
[http://dx.doi.org/10.1016/j.molmed.2014.09.006] [PMID: 25282548]
[54]
Xu X, Wu X, Jiang Q, et al. Downregulation of microRNA-1 and microRNA-145 contributes synergistically to the development of colon cancer. Int J Mol Med 2015; 36(6): 1630-8.
[http://dx.doi.org/10.3892/ijmm.2015.2364] [PMID: 26459459]
[55]
Hu T, Weng S, Tang W, et al. Overexpression of BIRC6 is a predictor of prognosis for colorectal cancer. PLoS One 2015; 10(5): e0125281.
[http://dx.doi.org/10.1371/journal.pone.0125281] [PMID: 25933218]
[56]
Qiu XB, Goldberg AL. The membrane-associated inhibitor of apoptosis protein, BRUCE/Apollon, antagonizes both the precursor and mature forms of Smac and caspase-9. J Biol Chem 2005; 280(1): 174-82.
[http://dx.doi.org/10.1074/jbc.M411430200] [PMID: 15507451]
[57]
Chen Z, Naito M, Hori S, Mashima T, Yamori T, Tsuruo T. A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun 1999; 264(3): 847-54.
[http://dx.doi.org/10.1006/bbrc.1999.1585] [PMID: 10544019]
[58]
Sung KW, Choi J, Hwang YK, et al. Overexpression of Apollon, an antiapoptotic protein, is associated with poor prognosis in childhood de novo acute myeloid leukemia. Clin Cancer Res 2007; 13(17): 5109-14.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0693] [PMID: 17785565]
[59]
Bianchini M, Levy E, Zucchini C, et al. Comparative study of gene expression by cDNA microarray in human colorectal cancer tissues and normal mucosa. Int J Oncol 2006; 29(1): 83-94.
[http://dx.doi.org/10.3892/ijo.29.1.83] [PMID: 16773188]
[60]
Van Houdt WJ, Emmink BL, Pham TV, et al. Comparative proteomics of colon cancer stem cells and differentiated tumor cells identifies BIRC6 as a potential therapeutic target. Mol Cell Proteomics 2011; 10(12): 011353.
[http://dx.doi.org/10.1074/mcp.M111.011353] [PMID: 21788403]
[61]
Ren J, Shi M, Liu R, et al. The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development. Proc Natl Acad Sci 2005; 102(3): 565-70.
[http://dx.doi.org/10.1073/pnas.0408744102] [PMID: 15640352]
[62]
Lopergolo A, Pennati M, Gandellini P, et al. Apollon gene silencing induces apoptosis in breast cancer cells through p53 stabilisation and caspase-3 activation. Br J Cancer 2009; 100(5): 739-46.
[http://dx.doi.org/10.1038/sj.bjc.6604927] [PMID: 19223905]
[63]
Chu L, Gu J, Sun L, Qian Q, Qian C, Liu X. Oncolytic adenovirus-mediated shRNA against Apollon inhibits tumor cell growth and enhances antitumor effect of 5-fluorouracil. Gene Ther 2008; 15(7): 484-94.
[http://dx.doi.org/10.1038/gt.2008.6] [PMID: 18239605]
[64]
Choi H, Lee H, Kim SR, Gho YS, Lee SK. Epstein-Barr virus-encoded microRNA BART15-3p promotes cell apoptosis partially by targeting BRUCE. J Virol 2013; 87(14): 8135-44.
[http://dx.doi.org/10.1128/JVI.03159-12] [PMID: 23678170]
[65]
Kim JY, Jeon YK, Jeon W, Nam MJ. Fisetin induces apoptosis in Huh-7 cells via downregulation of BIRC8 and Bcl2L2. Food Chem Toxicol 2010; 48(8-9): 2259-64.
[http://dx.doi.org/10.1016/j.fct.2010.05.058] [PMID: 20510331]
[66]
Bartke T, Pohl C, Pyrowolakis G, Jentsch S. Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol Cell 2004; 14(6): 801-11.
[http://dx.doi.org/10.1016/j.molcel.2004.05.018] [PMID: 15200957]
[67]
Duckett CS. IAP proteins: Sticking it to Smac. Biochem J 2005; 385(1): E1.
[http://dx.doi.org/10.1042/BJ20041800] [PMID: 15588250]
[68]
Richter BWM, Mir SS, Eiben LJ, et al. Molecular cloning of ILP-2, a novel member of the inhibitor of apoptosis protein family. Mol Cell Biol 2001; 21(13): 4292-301.
[http://dx.doi.org/10.1128/MCB.21.13.4292-4301.2001] [PMID: 11390657]
[69]
Sanna MG, Correia JS, Ducrey O, et al. IAP suppression of apoptosis involves distinct mechanisms: The TAK1/JNK1 signaling cascade and caspase inhibition. Mol Cell Biol 2002; 22(6): 1754-66.
[http://dx.doi.org/10.1128/MCB.22.6.1754-1766.2002] [PMID: 11865055]
[70]
Chang H, Schimmer AD. Livin/melanoma inhibitor of apoptosis protein as a potential therapeutic target for the treatment of malignancy. Mol Cancer Ther 2007; 6(1): 24-30.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0443] [PMID: 17237263]
[71]
Ge Y, Cao X, Wang D, et al. Overexpression of Livin promotes migration and invasion of colorectal cancer cells by induction of epithelial–mesenchymal transition via NF-κB activation. OncoTargets Ther 2016; 1011-21.
[72]
Xu H, Wu S, Shen X, et al. Methylation‐mediated miR‐214 regulates proliferation and drug sensitivity of renal cell carcinoma cells through targeting LIVIN. J Cell Mol Med 2020; 24(11): 6410-25.
[http://dx.doi.org/10.1111/jcmm.15287] [PMID: 32395888]
[73]
Han B, Ge Y, Cui J, Liu B. Down-regulation of lncRNA DNAJC3-AS1 inhibits colon cancer via regulating miR-214-3p/LIVIN axis. Bioengineered 2020; 11(1): 524-35.
[http://dx.doi.org/10.1080/21655979.2020.1757224] [PMID: 32352854]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy