Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Estrogen Sulfotransferase SULT1E1 Expression Levels and Regulated Factors in Malignant Tumours

Author(s): Rui Wang, Xia Li, Yangyang Li, Mengjie Zhao, Lida Mi, Weiwei Chen* and Jianxiang Song*

Volume 30, Issue 10, 2023

Published on: 15 September, 2023

Page: [821 - 829] Pages: 9

DOI: 10.2174/0929866530666230915103418

Price: $65

Abstract

Estrogen plays a key role in the development and progression of many malignant tumours, and the regulation of estrogen levels involves several metabolic pathways. Among these pathways, estrogen sulfotransferase (SULT1E1) is the enzyme with the most affinity for estrogen and is primarily responsible for catalysing the metabolic reaction of estrogen sulphation. Relevant studies have shown significant differences in the expression of SULT1E1 in different malignant tumours, suggesting that SULT1E1 plays a dual role in malignant tumours, both inhibiting the growth of malignant tumours and promoting their development. In addition, the expression level of SULT1E1 may be regulated by a variety of factors, which in turn affect the growth and therapeutic effects of malignant tumours. The aim of this paper is to review the mechanism of action of SULT1E1 in malignant tumours and the mechanisms that are regulated, in order to provide potential targets for the treatment of malignant tumour patients in the future and theoretical support for the realisation of more personalised and effective therapeutic regimens.

Keywords: Estrogen sulfotransferase, malignant tumors, regulatory factor, SULT1E1, metabolic pathways, therapeutic regimens.

Graphical Abstract
[1]
Chapman, E.; Best, M.D.; Hanson, S.R.; Wong, C.H. Sulfotransferases: Structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Ed., 2004, 43(27), 3526-3548.
[http://dx.doi.org/10.1002/anie.200300631] [PMID: 15293241]
[2]
Gamage, N.; Barnett, A.; Hempel, N.; Duggleby, R.G.; Windmill, K.F.; Martin, J.L.; McManus, M.E. Human sulfotransferases and their role in chemical metabolism. Toxicol. Sci., 2006, 90(1), 5-22.
[http://dx.doi.org/10.1093/toxsci/kfj061] [PMID: 16322073]
[3]
Freimuth, R.R.; Wiepert, M.; Chute, C.G.; Wieben, E.D.; Weinshilboum, R.M. Human cytosolic sulfotransferase database mining: Identification of seven novel genes and pseudogenes. Pharmacogenomics J., 2004, 4(1), 54-65.
[http://dx.doi.org/10.1038/sj.tpj.6500223] [PMID: 14676822]
[4]
Takahashi, S.; Sakakibara, Y.; Mishiro, E.; Kouriki, H.; Nobe, R.; Kurogi, K.; Yasuda, S.; Liu, M.C.; Suiko, M. Molecular cloning, expression and characterization of a novel mouse SULT6 cytosolic sulfotransferase. J. Biochem., 2009, 146(3), 399-405.
[http://dx.doi.org/10.1093/jb/mvp087] [PMID: 19505954]
[5]
Song, W.C. Biochemistry and reproductive endocrinology of estrogen sulfotransferase. Ann. N. Y. Acad. Sci., 2001, 948(1), 43-50.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03985.x] [PMID: 11795394]
[6]
Pedersen, L.C.; Petrotchenko, E.; Shevtsov, S.; Negishi, M. Crystal structure of the human estrogen sulfotransferase-PAPS complex: Evidence for catalytic role of Ser137 in the sulfuryl transfer reaction. J. Biol. Chem., 2002, 277(20), 17928-17932.
[http://dx.doi.org/10.1074/jbc.M111651200] [PMID: 11884392]
[7]
Silva Barbosa, A.C.; Zhou, D.; Xie, Y.; Choi, Y.J.; Tung, H.C.; Chen, X.; Xu, M.; Gibbs, R.B.; Poloyac, S.M.; Liu, S.; Yu, Y.; Luo, J.; Liu, Y.; Xie, W. Inhibition of estrogen sulfotransferase (SULT1E1/EST) ameliorates ischemic acute kidney injury in mice. J. Am. Soc. Nephrol., 2020, 31(7), 1496-1508.
[http://dx.doi.org/10.1681/ASN.2019080767] [PMID: 32424001]
[8]
Stanley, E.L.; Hume, R.; Coughtrie, M.W.H. Expression profiling of human fetal cytosolic sulfotransferases involved in steroid and thyroid hormone metabolism and in detoxification. Mol. Cell. Endocrinol., 2005, 240(1-2), 32-42.
[http://dx.doi.org/10.1016/j.mce.2005.06.003] [PMID: 16024168]
[9]
Secky, L.; Svoboda, M.; Klameth, L.; Bajna, E.; Hamilton, G.; Zeillinger, R.; Jäger, W.; Thalhammer, T. The sulfatase pathway for estrogen formation: Targets for the treatment and diagnosis of hormone-associated tumors. J. Drug Deliv., 2013, 2013, 1-13.
[http://dx.doi.org/10.1155/2013/957605] [PMID: 23476785]
[10]
Thomas, H.V.; Key, T.J.; Allen, D.S.; Moore, J.W.; Dowsett, M.; Fentiman, I.S.; Wang, D.Y. A prospective study of endogenous serum hormone concentrations and breast cancer risk in post-menopausal women on the island of Guernsey. Br. J. Cancer, 1997, 76(3), 401-405.
[http://dx.doi.org/10.1038/bjc.1997.398] [PMID: 9252211]
[11]
Choi, J.Y.; Lee, K.M.; Park, S.K.; Noh, D.Y.; Ahn, S.H.; Chung, H.W.; Han, W.; Kim, J.S.; Shin, S.G.; Jang, I.J.; Yoo, K.Y.; Hirvonen, A.; Kang, D. Genetic polymorphisms of SULT1A1 and SULT1E1 and the risk and survival of breast cancer. Cancer Epidemiol. Biomarkers Prev., 2005, 14(5), 1090-1095.
[http://dx.doi.org/10.1158/1055-9965.EPI-04-0688] [PMID: 15894657]
[12]
Pasqualini, J.R.; Cortes-Prieto, J.; Chetrite, G.; Talbi, M.; Ruiz, A. Concentrations of estrone, estradiol and their sulfates, and evaluation of sulfatase and aromatase activities in patients with breast fibroadenoma. Int. J. Cancer, 1997, 70(6), 639-643.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19970317)70:6<639::AID-IJC2>3.0.CO;2-W] [PMID: 9096642]
[13]
Suzuki, T.; Nakata, T.; Miki, Y.; Kaneko, C.; Moriya, T.; Ishida, T.; Akinaga, S.; Hirakawa, H.; Kimura, M.; Sasano, H. Estrogen sulfotransferase and steroid sulfatase in human breast carcinoma. Cancer Res., 2003, 63(11), 2762-2770.
[PMID: 12782580]
[14]
Qian, Y.; Deng, C.; Song, W.C. Expression of estrogen sulfotransferase in MCF-7 cells by cDNA transfection suppresses the estrogen response: Potential role of the enzyme in regulating estrogen-dependent growth of breast epithelial cells. J. Pharmacol. Exp. Ther., 1998, 286(1), 555-560.
[PMID: 9655902]
[15]
Ung, D.; Nagar, S. Trans -resveratrol-mediated inhibition of β-oestradiol conjugation in MCF-7 cells stably expressing human sulfotransferases SULT1A1 or SULT1E1, and human liver microsomes. Xenobiotica, 2009, 39(1), 72-79.
[http://dx.doi.org/10.1080/00498250802604082] [PMID: 19219749]
[16]
Wang, M.; Ebmeier, C.C.; Olin, J.R.; Anderson, R.J. Sulfation of tibolone metabolites by human postmenopausal liver and small intestinal sulfotransferases (SULTs). Steroids, 2006, 71(5), 343-351.
[http://dx.doi.org/10.1016/j.steroids.2005.11.003] [PMID: 16360722]
[17]
Tu, H.; Liu, J.H. Interpretation of the 2011 NCCN clinical practice guidelines for endometrial cancer. Zhongguo Shiyong Fuke Yu Chanke Zazhi, 2011, 27(11), 803-807.
[18]
Šmuc, T.; Rupreht, R.; Šinkovec, J.; Adamski, J.; Rižner, T.L. Expression analysis of estrogen-metabolizing enzymes in human endometrial cancer. Mol. Cell. Endocrinol., 2006, 248(1-2), 114-117.
[http://dx.doi.org/10.1016/j.mce.2005.10.013] [PMID: 16337331]
[19]
Suzuki, T.; Miki, Y.; Nakamura, Y.; Ito, K.; Sasano, H. Steroid sulfatase and estrogen sulfotransferase in human carcinomas. Mol. Cell. Endocrinol., 2011, 340(2), 148-153.
[http://dx.doi.org/10.1016/j.mce.2010.11.001] [PMID: 21073915]
[20]
Wang, M.; Zhang, C.; Shi, C.; Shuang, C. Expression and clinical significance of human estrogen sulfate transferase gene in estrogen-dependent endometrial adenocarcinoma tissues. Zhongguo Shiyong Fuke Yu Chanke Zazhi, 2011, 27(10), 767-770.
[21]
Xu, Y.; Liu, X.; Guo, F.; Ning, Y.; Zhi, X.; Wang, X.; Chen, S.; Yin, L.; Li, X. Effect of estrogen sulfation by SULT1E1 and PAPSS on the development of estrogen-dependent cancers. Cancer Sci., 2012, 103(6), 1000-1009.
[http://dx.doi.org/10.1111/j.1349-7006.2012.02258.x] [PMID: 22380844]
[22]
Svoboda, M.; Thalhammer, T.; Aust, S.; Arrich, F.; Assadian, O.; Toma, C.D. Estrogen sulfotransferase (SULT1E1) expression in benign and malignant human bone tumors. J. Surg. Oncol., 2007, 95(7), 572-581.
[http://dx.doi.org/10.1002/jso.20748] [PMID: 17230544]
[23]
Piccinato, C.A.; Neme, R.M.; Torres, N.; Sanches, L.R.; Derogis, P.B.M.C.; Brudniewski, H.F.; Rosa e Silva, J.C.; Ferriani, R.A. Effects of steroid hormone on estrogen sulfotransferase and on steroid sulfatase expression in endometriosis tissue and stromal cells. J. Steroid Biochem. Mol. Biol., 2016, 158, 117-126.
[http://dx.doi.org/10.1016/j.jsbmb.2015.12.025] [PMID: 26723541]
[24]
Xu, Y.; Yang, X.; Wang, Z.; Li, M.; Ning, Y.; Chen, S.; Yin, L.; Li, X. Estrogen sulfotransferase (SULT1E1) regulates inflamm atory response and lipid metabolism of human endothelial cells via PPARγ. Mol. Cell. Endocrinol., 2013, 369(1-2), 140-149.
[http://dx.doi.org/10.1016/j.mce.2013.01.020] [PMID: 23384540]
[25]
Tong, M.H.; Jiang, H.; Liu, P.; Lawson, J.A.; Brass, L.F.; Song, W.C. Spontaneous fetal loss caused by placental thrombosis in estrogen sulfotransferase- deficient mice. Nat. Med., 2005, 11(2), 153-159.
[http://dx.doi.org/10.1038/nm1184] [PMID: 15685171]
[26]
Li, L.; Falany, C.N. Elevated hepatic SULT1E1 activity in mouse models of cystic fibrosis alters the regulation of estrogen responsive proteins. J. Cyst. Fibros., 2007, 6(1), 23-30.
[http://dx.doi.org/10.1016/j.jcf.2006.05.001] [PMID: 16798114]
[27]
Cornel, K.M.C.; Krakstad, C.; Delvoux, B.; Xanthoulea, S.; Jori, B.; Bongers, M.Y.; Konings, G.F.J.; Kooreman, L.F.S.; Kruitwagen, R.F.P.M.; Salvesen, H.B.; Romano, A. High mRNA levels of 17β-hydroxysteroid dehydrogenase type 1 correlate with poor prognosis in endometrial cancer. Mol. Cell. Endocrinol., 2017, 442, 51-57.
[http://dx.doi.org/10.1016/j.mce.2016.11.030] [PMID: 27923582]
[28]
Chen, H.; Kong, Y.; Yao, Q.; Zhang, X.; Fu, Y.; Li, J.; Liu, C.; Wang, Z. Three hypomethylated genes were associated with poor overall survival in pancreatic cancer patients. Aging, 2019, 11(3), 885-897.
[http://dx.doi.org/10.18632/aging.101785] [PMID: 30710069]
[29]
Agarwal, N.; Alex, A.B.; Farnham, J.M.; Patel, S.; Gill, D.; Buckley, T.H.; Stephenson, R.A.; Cannon-Albright, L. Inherited variants in SULT1E1 and response to abiraterone acetate by men with metastatic castration refractory prostate cancer. J. Urol., 2016, 196(4), 1112-1116.
[http://dx.doi.org/10.1016/j.juro.2016.04.079] [PMID: 27150425]
[30]
Runge-Morris, M.; Kocarek, T.A.; Falany, C.N. Regulation of the cytosolic sulfotransferases by nuclear receptors. Drug Metab. Rev., 2013, 45(1), 15-33.
[http://dx.doi.org/10.3109/03602532.2012.748794] [PMID: 23330539]
[31]
Fang, H.L.; Strom, S.C.; Cai, H.; Falany, C.N.; Kocarek, T.A.; Runge-Morris, M. Regulation of human hepatic hydroxysteroid sulfotransferase gene expression by the peroxisome proliferator-activated receptor alpha transcription factor. Mol. Pharmacol., 2005, 67(4), 1257-1267.
[http://dx.doi.org/10.1124/mol.104.005389] [PMID: 15635043]
[32]
Aleksunes, L.M.; Klaassen, C.D. Coordinated regulation of hepatic phase I and II drug-metabolizing genes and transporters using AhR-, CAR-, PXR-, PPARα-, and Nrf2-null mice. Drug Metab. Dispos., 2012, 40(7), 1366-1379.
[http://dx.doi.org/10.1124/dmd.112.045112] [PMID: 22496397]
[33]
Kodama, S.; Hosseinpour, F.; Goldstein, J.A.; Negishi, M. Liganded pregnane X receptor represses the human sulfotransferase SULT1E1 promoter through disrupting its chromatin structure. Nucleic Acids Res., 2011, 39(19), 8392-8403.
[http://dx.doi.org/10.1093/nar/gkr458] [PMID: 21764778]
[34]
Alnouti, Y.; Klaassen, C.D. Regulation of sulfotransferase enzymes by prototypical microsomal enzyme inducers in mice. J. Pharmacol. Exp. Ther., 2008, 324(2), 612-621.
[http://dx.doi.org/10.1124/jpet.107.129650] [PMID: 17993606]
[35]
Sueyoshi, T.; Green, W.D.; Vinal, K.; Woodrum, T.S.; Moore, R.; Negishi, M. Garlic extract diallyl sulfide (DAS) activates nuclear receptor CAR to induce the Sult1e1 gene in mouse liver. PLoS One, 2011, 6(6), e21229.
[http://dx.doi.org/10.1371/journal.pone.0021229] [PMID: 21698271]
[36]
Ou, Z.; Jiang, M.; Hu, B.; Huang, Y.; Xu, M.; Ren, S.; Li, S.; Liu, S.; Xie, W.; Huang, M. Transcriptional regulation of human hydroxysteroid sulfotransferase SULT2A1 by LXRα. Drug Metab. Dispos., 2014, 42(10), 1684-1689.
[http://dx.doi.org/10.1124/dmd.114.058479] [PMID: 25028566]
[37]
Wang, Z.; Zhang, S.F.; Cheng, L.L. Molecular biological characteristics of transcription factor RORγt and its expression in immune-related diseases. J. Graduate Med. Sci., 2014, 27(06), 655-658.
[38]
Kang, H.S.; Angers, M.; Beak, J.Y.; Wu, X.; Gimble, J.M.; Wada, T.; Xie, W.; Collins, J.B.; Grissom, S.F.; Jetten, A.M. Gene expression profiling reveals a regulatory role for RORα and RORγ in phase I and phase II metabolism. Physiol. Genomics, 2007, 31(2), 281-294.
[http://dx.doi.org/10.1152/physiolgenomics.00098.2007] [PMID: 17666523]
[39]
Fu, J.; Fang, H.; Paulsen, M.; Ljungman, M.; Kocarek, T.A.; Runge-Morris, M. Regulation of estrogen sulfotransferase expression by confluence of MCF10A breast epithelial cells: Role of the aryl hydrocarbon receptor. J. Pharmacol. Exp. Ther., 2011, 339(2), 597-606.
[http://dx.doi.org/10.1124/jpet.111.185173] [PMID: 21828262]
[40]
Nazmeen, A; Chen, G; Ghosh, TK; Maiti, S Breast cancer pathogenesis is linked to the intra-tumoral estrogen sulfo-transferase (hSULT1E1) expressions regulated by cellular redox dependent Nrf-2/NFκβ interplay. Cancer Cell Int., 2020, 20, 70.
[41]
Gong, H.; Jarzynka, M.J.; Cole, T.J.; Lee, J.H.; Wada, T.; Zhang, B.; Gao, J.; Song, W.C.; DeFranco, D.B.; Cheng, S.Y.; Xie, W. Glucocorticoids antagonize estrogens by glucocorticoid receptor-mediated activation of estrogen sulfotransferase. Cancer Res., 2008, 68(18), 7386-7393.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1545] [PMID: 18794126]
[42]
Chen, X.; Yang, J.; Lu, Z.; Ding, Y. A 70-RNA model based on SVR and RFE for predicting the pancreatic cancer clinical prognosis. Methods, 2022, 204, 278-285.
[http://dx.doi.org/10.1016/j.ymeth.2022.02.011] [PMID: 35248692]
[43]
Fashe, M.; Hashiguchi, T.; Yi, M.; Moore, R.; Negishi, M. Phenobarbital-induced phosphorylation converts nuclear receptor ROR α from a repressor to an activator of the estrogen sulfotransferase gene Sult1e1 in mouse livers. FEBS Lett., 2018, 592(16), 2760-2768.
[http://dx.doi.org/10.1002/1873-3468.13199] [PMID: 30025153]
[44]
Falany, C.N.; He, D.; Li, L.; Falany, J.L.; Wilborn, T.W.; Kocarek, T.A.; Runge-Morris, M. Regulation of hepatic sulfotransferase (SULT) 1E1 expression and effects on estrogenic activity in cystic fibrosis (CF). J. Steroid Biochem. Mol. Biol., 2009, 114(1-2), 113-119.
[http://dx.doi.org/10.1016/j.jsbmb.2009.02.009] [PMID: 19429440]
[45]
Parker, V.S.; Squirewell, E.J.; Lehmler, H.J.; Robertson, L.W.; Duffel, M.W. Hydroxylated and sulfated metabolites of commonly occurring airborne polychlorinated biphenyls inhibit human steroid sulfotransferases SULT1E1 and SULT2A1. Environ. Toxicol. Pharmacol., 2018, 58, 196-201.
[http://dx.doi.org/10.1016/j.etap.2018.01.010] [PMID: 29408762]
[46]
Isshiki, M.; Ohta, H.; Tamura, H. Coffee reduces SULT1E1 expression in human colon carcinoma Caco-2 cells. Biol. Pharm. Bull., 2013, 36(2), 299-304.
[http://dx.doi.org/10.1248/bpb.b12-00902] [PMID: 23370358]
[47]
Song, Z. Mechanisms of SIRT1 regulation of sulfotransferases SULT1E1 and SULT2A1 involved in hepatic lipid metabolism. Chinese People's Liberation Army Air Force Military Medical University., 2018.
[48]
Huang, H; Lan, BD; Zhang, YJ Inhibition of human sulfotransferases by phthalate monoesters. Front. Endocrinol., 2022, 13, 868105.
[http://dx.doi.org/10.3389/fendo.2022.868105]
[49]
Adjei, A.A.; Thomae, B.A.; Prondzinski, J.L.; Eckloff, B.W.; Wieben, E.D.; Weinshilboum, R.M. Human estrogen sulfotransferase (SULT1E1) pharmacogenomics: Gene resequencing and functional genomics. Br. J. Pharmacol., 2003, 139(8), 1373-1382.
[http://dx.doi.org/10.1038/sj.bjp.0705369] [PMID: 12922923]
[50]
Li, L.; He, D.; Wilborn, T.W.; Falany, J.L.; Falany, C.N. Increased SULT1E1 activity in HepG2 hepatocytes decreases growth hormone stimulation of STAT5b phosphorylation. Steroids, 2009, 74(1), 20-29.
[http://dx.doi.org/10.1016/j.steroids.2008.09.002] [PMID: 18831980]
[51]
Chander, S.K.; Foster, P.A.; Leese, M.P.; Newman, S.P.; Potter, B.V.L.; Purohit, A.; Reed, M.J. in vivo inhibition of angiogenesis by sulphamoylated derivatives of 2-methoxyoestradiol. Br. J. Cancer, 2007, 96(9), 1368-1376.
[http://dx.doi.org/10.1038/sj.bjc.6603727] [PMID: 17426705]
[52]
Foster, P.A.; Ho, Y.T.; Newman, S.P.; Kasprzyk, P.G.; Leese, M.P.; Potter, B.V.L.; Reed, M.J.; Purohit, A. 2-MeOE2bisMATE and 2-EtE2bisMATE induce cell cycle arrest and apoptosis in breast cancer xenografts as shown by a novel ex vivo technique. Breast Cancer Res. Treat., 2008, 111(2), 251-260.
[http://dx.doi.org/10.1007/s10549-007-9791-5] [PMID: 17957467]
[53]
Foster, P.A.; Newman, S.P.; Chander, S.K.; Stengel, C.; Jhalli, R.; Woo, L.L.W.; Potter, B.V.L.; Reed, M.J.; Purohit, A. in vivo efficacy of STX213, a second-generation steroid sulfatase inhibitor, for hormone-dependent breast cancer therapy. Clin. Cancer Res., 2006, 12(18), 5543-5549.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0632] [PMID: 17000691]
[54]
Foster, P.A.; Chander, S.K.; Parsons, M.F.C.; Newman, S.P.; Woo, L.W.L.; Potter, B.V.L.; Reed, M.J.; Purohit, A. Efficacy of three potent steroid sulfatase inhibitors: Pre-clinical investigations for their use in the treatment of hormone-dependent breast cancer. Breast Cancer Res. Treat., 2008, 111(1), 129-138.
[http://dx.doi.org/10.1007/s10549-007-9769-3] [PMID: 17914670]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy