Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Recent Advances in Nanobiotechnology for the Treatment of Non-Hodgkin’s Lymphoma

Author(s): Shuxian Liu, Minghao Xu, Lei Zhong, Xiangmin Tong* and Suying Qian

Volume 24, Issue 9, 2024

Published on: 02 October, 2023

Page: [895 - 907] Pages: 13

DOI: 10.2174/1389557523666230915103121

Price: $65

Open Access Journals Promotions 2
Abstract

Lymphoma is the eighth most common type of cancer worldwide. Currently, lymphoma is mainly classified into two main groups: Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), with NHL accounting for 80% to 90% of the cases. NHL is primarily divided into B, T, and natural killer (NK) cell lymphoma. Nanotechnology is developing rapidly and has made significant contributions to the field of medicine. This review summarizes the advancements of nanobiotechnology in recent years and its applications in the treatment of NHL, especially in diffuse large B cell lymphoma (DLBCL), primary central nervous system lymphoma (PCNSL), and follicular lymphoma (FL). The technologies discussed include clinical imaging, targeted drug delivery, photodynamic therapy (PDT), and thermodynamic therapy (TDT) for lymphoma. This review aims to provide a better understanding of the use of nanotechnology in the treatment of non-Hodgkin's lymphoma.

Keywords: B cell lymphoma, nanobiotechnology, non-hodgkin's lymphoma, combination therapy, nano biomaterials, cancer.

Graphical Abstract
[1]
de Leval, L.; Jaffe, E.S. Lymphoma classification. Cancer J., 2020, 26(3), 176-185.
[http://dx.doi.org/10.1097/PPO.0000000000000451] [PMID: 32496451]
[2]
Ansell, S.M. Non-hodgkin lymphoma: Diagnosis and treatment. Mayo Clin. Proc., 2015, 90(8), 1152-1163.
[http://dx.doi.org/10.1016/j.mayocp.2015.04.025] [PMID: 26250731]
[3]
Violeta Filip, P.; Cuciureanu, D.; Sorina Diaconu, L.; Maria Vladareanu, A.; Silvia Pop, C. MALT lymphoma: Epidemiology, clinical diagnosis and treatment. J. Med. Life, 2018, 11(3), 187-193.
[http://dx.doi.org/10.25122/jml-2018-0035] [PMID: 30364585]
[4]
Pan, Z.; Xu, M.L. T-cell and NK-cell lymphomas in the lung. Semin. Diagn. Pathol., 2020, 37(6), 273-282.
[http://dx.doi.org/10.1053/j.semdp.2020.04.003] [PMID: 32448591]
[5]
Cheng, M.; Zain, J.; Rosen, S.T.; Querfeld, C. Emerging drugs for the treatment of cutaneous T-cell lymphoma. Expert Opin. Emerg. Drugs, 2022, 27(1), 45-54.
[http://dx.doi.org/10.1080/14728214.2022.2049233] [PMID: 35235473]
[6]
Rohena-Quinquilla, I.R.; Lattin, G.E., Jr; Wolfman, D. Imaging of extranodal genitourinary lymphoma. Radiol. Clin. North Am., 2016, 54(4), 747-764.
[http://dx.doi.org/10.1016/j.rcl.2016.03.009] [PMID: 27265606]
[7]
Khdhir, M.; El Annan, T.; El Amine, M.A.; Shareef, M. Complications of lymphoma in the abdomen and pelvis: Clinical and imaging review. Abdom. Radiol., 2022, 47(8), 2937-2955.
[http://dx.doi.org/10.1007/s00261-022-03567-5] [PMID: 35690955]
[8]
Olsen, T.G.; Heegaard, S. Orbital lymphoma. Surv. Ophthalmol., 2019, 64(1), 45-66.
[http://dx.doi.org/10.1016/j.survophthal.2018.08.002] [PMID: 30144455]
[9]
Abdelwahed Hussein, M.R. Non-Hodgkin’s lymphoma of the oral cavity and maxillofacial region: A pathologist viewpoint. Expert Rev. Hematol., 2018, 11(9), 737-748.
[http://dx.doi.org/10.1080/17474086.2018.1506326] [PMID: 30058399]
[10]
Kumar, P.; Singh, A.; Deshmukh, A.; Chandrashekhara, S.H. Imaging of bowel lymphoma: A pictorial review. Dig. Dis. Sci., 2022, 67(4), 1187-1199.
[http://dx.doi.org/10.1007/s10620-021-06979-3]
[11]
Nair, R.; Arora, N.; Mallath, M.K. Epidemiology of non-hodgkin’s lymphoma in India. Oncology, 2016, 91(Suppl. 1), 18-25.
[http://dx.doi.org/10.1159/000447577] [PMID: 27462703]
[12]
Müller, A.M.S.; Ihorst, G.; Mertelsmann, R.; Engelhardt, M. Epidemiology of non-Hodgkin’s lymphoma (NHL): Trends, geographic distribution, and etiology. Ann. Hematol., 2005, 84(1), 1-12.
[http://dx.doi.org/10.1007/s00277-004-0939-7] [PMID: 15480663]
[13]
Thandra, K.C.; Barsouk, A.; Saginala, K.; Padala, S.A.; Barsouk, A.; Rawla, P. Epidemiology of Non-Hodgkin’s Lymphoma. Med. Sci., 2021, 9(1), 5.
[http://dx.doi.org/10.3390/medsci9010005] [PMID: 33573146]
[14]
Sandlund, J.T.; Martin, M.G. Non-Hodgkin lymphoma across the pediatric and adolescent and young adult age spectrum. Hematology (Am. Soc. Hematol. Educ. Program), 2016, 2016(1), 589-597.
[http://dx.doi.org/10.1182/asheducation-2016.1.589] [PMID: 27913533]
[15]
Rieutort, D.; Moyne, O.; Cocco, P.; de Gaudemaris, R.; Bicout, D.J. Ranking occupational contexts associated with risk of non-Hodgkin lymphoma. Am. J. Ind. Med., 2016, 59(7), 561-574.
[http://dx.doi.org/10.1002/ajim.22604] [PMID: 27214653]
[16]
Seifert, M.; Küppers, R. Determining the origin of human germinal center B cell-derived malignancies. Methods Mol. Biol., 2017, 1623, 253-279.
[http://dx.doi.org/10.1007/978-1-4939-7095-7_20] [PMID: 28589362]
[17]
Armitage, J.O.; Gascoyne, R.D.; Lunning, M.A.; Cavalli, F. Non-Hodgkin lymphoma. Lancet, 2017, 390(10091), 298-310.
[http://dx.doi.org/10.1016/S0140-6736(16)32407-2] [PMID: 28153383]
[18]
Parihar, A.S.; Singh, R.; Shaik, S.; Negi, B.S.; Rajguru, J.P.; Patil, P.B.; Sharma, U. Non-Hodgkin’s lymphoma: A review. J. Family Med. Prim. Care, 2020, 9(4), 1834-1840.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_1037_19] [PMID: 32670927]
[19]
Sapkota, S.; Shaikh, H. Non-hodgkin lymphoma. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
[20]
Wang, H.; Fu, B.; Gale, R.P.; Liang, Y.N.K. -/T-cell lymphomas. Leukemia, 2021, 35(9), 2460-2468.
[http://dx.doi.org/10.1038/s41375-021-01313-2] [PMID: 34117356]
[21]
Tse, E.; Au-Yeung, R.; Kwong, Y.L. Recent advances in the diagnosis and treatment of natural killer/T-cell lymphomas. Expert Rev. Hematol., 2019, 12(11), 927-935.
[http://dx.doi.org/10.1080/17474086.2019.1660640] [PMID: 31487202]
[22]
Gandhi, M.K.; Hoang, T.; Law, S.C.; Brosda, S.; O’Rourke, K.; Tobin, J.W.D.; Vari, F.; Murigneux, V.; Fink, L.; Gunawardana, J.; Gould, C.; Oey, H.; Bednarska, K.; Delecluse, S.; Trappe, R.U.; Merida de Long, L.; Sabdia, M.B.; Bhagat, G.; Hapgood, G.; Blyth, E.; Clancy, L.; Wight, J.; Hawkes, E.; Rimsza, L.M.; Maguire, A.; Bojarczuk, K.; Chapuy, B.; Keane, C. EBV-associated primary CNS lymphoma occurring after immunosuppression is a distinct immunobiological entity. Blood, 2021, 137(11), 1468-1477.
[http://dx.doi.org/10.1182/blood.2020008520] [PMID: 33202420]
[23]
Asano, N.; Iijima, K.; Koike, T.; Imatani, A.; Shimosegawa, T. Helicobacter pylori-negative gastric mucosa-associated lymphoid tissue lymphomas: A review. World J. Gastroenterol., 2015, 21(26), 8014-8020.
[http://dx.doi.org/10.3748/wjg.v21.i26.8014] [PMID: 26185372]
[24]
Major, A.; Smith, S.M. DA-R-EPOCH vs R-CHOP in DLBCL: How do we choose? Clin. Adv. Hematol. Oncol., 2021, 19(11), 698-709.
[PMID: 34807015]
[25]
Stegemann, M.; Denker, S.; Schmitt, C.A. DLBCL 1L—What to Expect beyond R-CHOP? Cancers, 2022, 14(6), 1453.
[http://dx.doi.org/10.3390/cancers14061453] [PMID: 35326604]
[26]
Morrison, V.A. Frontline therapy with R-CHOP for diffuse large B-cell lymphoma: Where have we come (or not come)? A Perspective. J. Geriatr. Oncol., 2021, 12(2), 320-325.
[http://dx.doi.org/10.1016/j.jgo.2020.09.015] [PMID: 32972884]
[27]
Zahid, U.; Akbar, F.; Amaraneni, A.; Husnain, M.; Chan, O.; Riaz, I.B.; McBride, A.; Iftikhar, A.; Anwer, F. A review of autologous stem cell transplantation in lymphoma. Curr. Hematol. Malig. Rep., 2017, 12(3), 217-226.
[http://dx.doi.org/10.1007/s11899-017-0382-1] [PMID: 28478586]
[28]
Bock, A.M.; Nowakowski, G.S.; Wang, Y. Bispecific antibodies for non-hodgkin lymphoma treatment. Curr. Treat. Options Oncol., 2022, 23(2), 155-170.
[http://dx.doi.org/10.1007/s11864-021-00925-1] [PMID: 35182296]
[29]
Illidge, T.; Specht, L.; Yahalom, J.; Aleman, B.; Berthelsen, A.K.; Constine, L.; Dabaja, B.; Dharmarajan, K.; Ng, A.; Ricardi, U.; Wirth, A. Modern radiation therapy for nodal non-hodgkin lymphoma—target definition and dose guidelines from the international lymphoma radiation oncology group. IJROBP, 2014, 89(1), 49-58.
[http://dx.doi.org/10.1016/j.ijrobp.2014.01.006]
[30]
Chavez, J.C.; Locke, F.L. CAR T cell therapy for B-cell lymphomas. Best Pract. Res. Clin. Haematol., 2018, 31(2), 135-146.
[http://dx.doi.org/10.1016/j.beha.2018.04.001] [PMID: 29909914]
[31]
Nair, R.; Westin, J. CAR T-Cells. Adv. Exp. Med. Biol., 2020, 1244, 215-233.
[http://dx.doi.org/10.1007/978-3-030-41008-7_10] [PMID: 32301017]
[32]
Marofi, F.; Rahman, H.S.; Achmad, M.H.; Sergeevna, K.N.; Suksatan, W.; Abdelbasset, W.K.; Mikhailova, M.V.; Shomali, N.; Yazdanifar, M.; Hassanzadeh, A.; Ahmadi, M.; Motavalli, R.; Pathak, Y.; Izadi, S.; Jarahian, M. A deep insight into CAR-T cell therapy in non-hodgkin lymphoma: Application, opportunities, and future directions. Front. Immunol., 2021, 12, 681984.
[http://dx.doi.org/10.3389/fimmu.2021.681984] [PMID: 34248965]
[33]
Gupta, A.; Gill, S. CAR-T cell persistence in the treatment of leukemia and lymphoma. Leuk. Lymphoma, 2021, 62(11), 2587-2599.
[34]
Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules, 2019, 25(1), 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[35]
Chaturvedi, V.K.; Singh, A.; Singh, V.K.; Singh, M.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr. Drug Metab., 2019, 20(6), 416-429.
[http://dx.doi.org/10.2174/1389200219666180918111528] [PMID: 30227814]
[36]
Giri, P.M.; Banerjee, A.; Layek, B. A recent review on cancer nanomedicine. Cancers, 2023, 15(8), 2256.
[http://dx.doi.org/10.3390/cancers15082256] [PMID: 37190185]
[37]
Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol., 2021, 14(1), 85.
[http://dx.doi.org/10.1186/s13045-021-01096-0]
[38]
Hafeez, U.; Parakh, S.; Gan, H.K.; Scott, A.M. Antibody–drug conjugates for cancer therapy. Molecules, 2020, 25(20), 4764.
[http://dx.doi.org/10.3390/molecules25204764] [PMID: 33081383]
[39]
Meng, W.; He, C.; Hao, Y.; Wang, L.; Li, L.; Zhu, G. Prospects and challenges of extracellular vesicle-based drug delivery system: Considering cell source. Drug Deliv., 2020, 27(1), 585-598.
[http://dx.doi.org/10.1080/10717544.2020.1748758] [PMID: 32264719]
[40]
Li, W.; Cao, Z.; Liu, R.; Liu, L.; Li, H.; Li, X.; Chen, Y.; Lu, C.; Liu, Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 4222-4233.
[http://dx.doi.org/10.1080/21691401.2019.1687501] [PMID: 31713452]
[41]
Large, D.E.; Abdelmessih, R.G.; Fink, E.A.; Auguste, D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev., 2021, 176, 113851.
[http://dx.doi.org/10.1016/j.addr.2021.113851] [PMID: 34224787]
[42]
Zahednezhad, F.; Saadat, M.; Valizadeh, H.; Zakeri-Milani, P.; Baradaran, B. Liposome and immune system interplay: Challenges and potentials. J. Control. Release, 2019, 305, 194-209.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.030] [PMID: 31121278]
[43]
Mirzavi, F.; Barati, M.; Soleimani, A.; Vakili-Ghartavol, R.; Jaafari, M.R.; Soukhtanloo, M. A review on liposome-based therapeutic approaches against malignant melanoma. Int. J. Pharm., 2021, 599, 120413.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120413] [PMID: 33667562]
[44]
Jiwanti, P.K.; Wardhana, B.Y.; Sutanto, L.G.; Dewi, D.M.M.; Putri, I.Z.D. Recent development of nano-carbon material in pharmaceutical application: A review. Molecules, 2022, 27(21), 7578.
[45]
Saleem, J.; Wang, L.; Chen, C. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv. Healthc. Mater., 2018, 7(20), 1800525.
[46]
Liao, C.; Li, Y.; Tjong, S. Graphene Nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci., 2018, 19(11), 3564.
[http://dx.doi.org/10.3390/ijms19113564] [PMID: 30424535]
[47]
Svadlakova, T.; Holmannova, D.; Kolackova, M.; Malkova, A.; Krejsek, J.; Fiala, Z. Immunotoxicity of carbon-based nanomaterials, starring phagocytes. Int. J. Mol. Sci., 2022, 23(16), 8889.
[http://dx.doi.org/10.3390/ijms23168889] [PMID: 36012161]
[48]
Chauhan, A. Dendrimers for drug delivery. Molecules, 2018, 23(4), 938.
[http://dx.doi.org/10.3390/molecules23040938] [PMID: 29670005]
[49]
Huang, D.; Wu, D. Biodegradable dendrimers for drug delivery. Mater. Sci. Eng. C, 2018, 90, 713-727.
[http://dx.doi.org/10.1016/j.msec.2018.03.002] [PMID: 29853143]
[50]
Hyodo, F.; Eto, H.; Naganuma, T.; Koyasu, N.; Elhelaly, A.E.; Noda, Y.; Kato, H.; Murata, M.; Akahoshi, T.; Hashizume, M.; Utsumi, H.; Matsuo, M. In vivo dynamic nuclear polarization magnetic resonance imaging for the evaluation of redox-related diseases and theranostics. Antioxid. Redox Signal., 2022, 36(1-3), 172-184.
[http://dx.doi.org/10.1089/ars.2021.0087] [PMID: 34015957]
[51]
Juweid, M.E.; Mueller, M.; Alhouri, A. A-Risheq, M.Z.; Mottaghy, F.M. Positron emission tomography/computed tomography in the management of Hodgkin and B‐cell non‐Hodgkin lymphoma: An update. Cancer, 2021, 127(20), 3727-3741.
[http://dx.doi.org/10.1002/cncr.33772] [PMID: 34286864]
[52]
Yadav, D.; Shah, K.; Naidoo, K.; Sudha Surasi, D.S. PET/Computed tomography in thyroid cancer. Neuroimaging Clin. N. Am., 2021, 31(3), 345-357.
[http://dx.doi.org/10.1016/j.nic.2021.04.004] [PMID: 34243869]
[53]
Cui, N.Y.; Gong, X.T.; Tian, Y.T.; Wang, Y.; Zhang, R.; Liu, M.J.; Han, J.; Wang, B.; Yang, D. Contrast-enhanced ultrasound imaging for intestinal lymphoma. World J. Gastroenterol., 2021, 27(32), 5438-5447.
[http://dx.doi.org/10.3748/wjg.v27.i32.5438] [PMID: 34539143]
[54]
Xiao, Y.D.; Paudel, R.; Liu, J.; Ma, C.; Zhang, Z.S.; Zhou, S.K. MRI contrast agents: Classification and application (Review). Int. J. Mol. Med., 2016, 38(5), 1319-1326.
[http://dx.doi.org/10.3892/ijmm.2016.2744] [PMID: 27666161]
[55]
Avasthi, A.; Caro, C.; Pozo-Torres, E.; Leal, M.P.; García-Martín, M.L. Magnetic nanoparticles as MRI contrast agents. Top. Curr. Chem., 2020, 378(3), 40.
[http://dx.doi.org/10.1007/s41061-020-00302-w] [PMID: 32382832]
[56]
Tähkä, S.; Laiho, A.; Kostiainen, M.A. Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging. Chemistry, 2014, 20(10), 2718-2722.
[http://dx.doi.org/10.1002/chem.201304070] [PMID: 24523066]
[57]
Meignan, M.; Itti, E.; Gallamini, A.; Younes, A. FDG PET/CT imaging as a biomarker in lymphoma. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(4), 623-633.
[http://dx.doi.org/10.1007/s00259-014-2973-6] [PMID: 25573631]
[58]
Juweid, M.E. FDG-PET/CT in Lymphoma. In: Positron Emission Tomography; Hoekstra, O.S., Ed.; Humana Press: Totowa, NJ, 2011; pp. 1-19.
[http://dx.doi.org/10.1007/978-1-61779-062-1_1]
[59]
Romero, E.; Martínez, A.; Oteo, M.; Ibañez, M.; Santos, M.; Morcillo, M.Á. Development and long-term evaluation of a new 68Ge/68Ga generator based on nano-SnO2 for PET imaging. Sci. Rep., 2020, 10(1), 12756.
[http://dx.doi.org/10.1038/s41598-020-69659-8] [PMID: 32728067]
[60]
Shin, U.; Kim, J.; Lee, J.; Park, D.; Lee, C.; Jung, H.C.; Park, J.; Lee, K.; Lee, M.W.; Kim, S.W.; Seo, J. Development of 64Cu-loaded Perfluoropentane Nanodroplet: A potential tumor theragnostic nano-carrier and dual-modality PET-ultrasound imaging agents. Ultrasound Med. Biol., 2020, 46(10), 2775-2784.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2020.05.019] [PMID: 32653208]
[61]
Choi, Y.E.; Kwak, J.W.; Park, J.W. Nanotechnology for early cancer detection. Sensors, 2010, 10(1), 428-455.
[http://dx.doi.org/10.3390/s100100428] [PMID: 22315549]
[62]
Huang, L.L.; Wang, Z.J.; Xie, H.Y. Photoluminescent inorganic nanoprobe‐based pathogen detection. Chem. Asian J., 2022, 17(16), e202200475.
[http://dx.doi.org/10.1002/asia.202200475] [PMID: 35758547]
[63]
Cheng, L.; Wang, X.; Gong, F.; Liu, T.; Liu, Z. 2D nanomaterials for cancer theranostic applications. Adv. Mater., 2020, 32(13), 1902333.
[http://dx.doi.org/10.1002/adma.201902333] [PMID: 31353752]
[64]
Chen, J.; Chen, L.; Zeng, F.; Wu, S.; Aminopeptidase, N. Aminopeptidase N activatable nanoprobe for tracking lymphatic metastasis and guiding tumor resection surgery via optoacoustic/NIR-II fluorescence dual-mode imaging. Anal. Chem., 2022, 94(23), 8449-8457.
[http://dx.doi.org/10.1021/acs.analchem.2c01241] [PMID: 35657647]
[65]
Yang, G.; Cao, Y.; Yan, B.; Lv, Q.; Yu, J.; Zhao, F.; Chen, Z.; Yang, H.; Chen, M.; Jin, Z. Application of a double-colour upconversion nanofluorescent probe for targeted imaging of mantle cell lymphoma. Oncotarget, 2018, 9(24), 16758-16774.
[http://dx.doi.org/10.18632/oncotarget.23860] [PMID: 29682183]
[66]
Song, L.; Chen, Y.; Ding, J.; Wu, H.; Zhang, W.; Ma, M.; Zang, F.; Wang, Z.; Gu, N.; Zhang, Y. Rituximab conjugated iron oxide nanoparticles for targeted imaging and enhanced treatment against CD20-positive lymphoma. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(5), 895-907.
[http://dx.doi.org/10.1039/C9TB02521A] [PMID: 31909406]
[67]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[68]
Rommasi, F.; Esfandiari, N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res. Lett., 2021, 16(1), 95.
[http://dx.doi.org/10.1186/s11671-021-03553-8] [PMID: 34032937]
[69]
Almeida, B.; Nag, O.K.; Rogers, K.E.; Delehanty, J.B. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules, 2020, 25(23), 5672.
[http://dx.doi.org/10.3390/molecules25235672] [PMID: 33271886]
[70]
Tang, L.; Li, J.; Zhao, Q.; Pan, T.; Zhong, H.; Wang, W. Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics, 2021, 13(8), 1151.
[http://dx.doi.org/10.3390/pharmaceutics13081151] [PMID: 34452113]
[71]
Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine, 2006, 1(3), 297-315.
[PMID: 17717971]
[72]
Liu, C.; Zhang, M. Analysis and evaluation of DRCOP scheme based on polyethylene glycol liposome doxorubicin in patients with diffuse large B-cell lymphoma. Am. J. Transl. Res., 2021, 13(5), 5362-5367.
[PMID: 34150131]
[73]
Li, Z-H.; Xing, M-T.; Zhang, Y-P.; Wang, Y.; Zhan, X-R. Clinical efficiency and safety of the first-line CHOP regimen containing PLD applied to treat aged patients with advanced DLBCL. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2016, 24(3), 744-748.
[http://dx.doi.org/10.7534/j.issn.1009-2137.2016.03.020] [PMID: 27342502]
[74]
Ishima, Y.; Yamazaki, N.; Chuang, V.T.G.; Shimizu, T.; Ando, H.; Ishida, T. A maleimide-terminally modified PEGylated liposome induced the accelerated blood clearance independent of the production of Anti-PEG IgM antibodies. Biol. Pharm. Bull., 2022, 45(10), 1518-1524.
[http://dx.doi.org/10.1248/bpb.b22-00389] [PMID: 36184510]
[75]
Xiao, R.; Wang, R.; Zeng, Z.; Lili, Xu; Wang, J. Application of poly(ethylene glycol)– distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int. J. Nanomedicine, 2012, 7, 4185-4198.
[http://dx.doi.org/10.2147/IJN.S34489] [PMID: 22904628]
[76]
Jiang, S.; Wang, X.; Zhang, Z.; Sun, L.; Pu, Y.; Yao, H.; Li, J.; Liu, Y.; Zhang, Y.; Zhang, W. CD20 monoclonal antibody targeted nanoscale drug delivery system for doxorubicin chemotherapy: An in vitro study of cell lysis of CD20-positive Raji cells. Int. J. Nanomedicine, 2016, 11, 5505-5518.
[http://dx.doi.org/10.2147/IJN.S115428] [PMID: 27843311]
[77]
Xiang, J.; Zhao, R.; Wang, B.; Sun, X.; Guo, X.; Tan, S.; Liu, W. Advanced nano-carriers for anti-tumor drug loading. Front. Oncol., 2021, 11, 758143.
[http://dx.doi.org/10.3389/fonc.2021.758143] [PMID: 34604097]
[78]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[79]
Zhao, Q.; Sun, X.; Wu, B.; Shang, Y.; Huang, X.; Dong, H.; Liu, H.; Chen, W.; Gui, R.; Li, J. Construction of homologous cancer cell membrane camouflage in a nano-drug delivery system for the treatment of lymphoma. J. Nanobiotechnol, 2021, 19(1), 8.
[http://dx.doi.org/10.1186/s12951-020-00738-8] [PMID: 33407527]
[80]
Billingsley, M.M.; Singh, N.; Ravikumar, P.; Zhang, R.; June, C.H.; Mitchell, M.J. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett., 2020, 20(3), 1578-1589.
[http://dx.doi.org/10.1021/acs.nanolett.9b04246] [PMID: 31951421]
[81]
Zhao, Q.; Li, J.; Wu, B.; Shang, Y.; Huang, X.; Dong, H.; Liu, H.; Gui, R.; Nie, X. A nano-traditional chinese medicine against lymphoma that regulates the level of reactive oxygen species. Front Chem., 2020, 8, 565.
[http://dx.doi.org/10.3389/fchem.2020.00565] [PMID: 32766207]
[82]
Etrych, T.; Daumová, L.; Pokorná, E.; Tušková, D.; Lidický, O. Kolářová, V.; Pankrác, J.; Šefc, L.; Chytil, P.; Klener, P. Effective doxorubicin-based nano-therapeutics for simultaneous malignant lymphoma treatment and lymphoma growth imaging. J. Control. Release, 2018, 289, 44-55.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.018] [PMID: 30248447]
[83]
Mahmoudian, M.; Valizadeh, H.; Löbenberg, R.; Zakeri-Milani, P. Bortezomib-loaded lipidic-nano drug delivery systems; formulation, therapeutic efficacy, and pharmacokinetics. J. Microencapsul., 2021, 38(3), 192-202.
[http://dx.doi.org/10.1080/02652048.2021.1876175] [PMID: 33530812]
[84]
Wang, X.; Luo, D.; Basilion, J.P. Photodynamic therapy: Targeting cancer biomarkers for the treatment of cancers. Cancers, 2021, 13(12), 2992.
[http://dx.doi.org/10.3390/cancers13122992] [PMID: 34203805]
[85]
Larue, L.; Myrzakhmetov, B.; Ben-Mihoub, A.; Moussaron, A.; Thomas, N.; Arnoux, P.; Baros, F.; Vanderesse, R.; Acherar, S.; Frochot, C. Fighting hypoxia to improve PDT. Pharmaceuticals, 2019, 12(4), 163.
[http://dx.doi.org/10.3390/ph12040163] [PMID: 31671658]
[86]
Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics, 2021, 13(9), 1332.
[http://dx.doi.org/10.3390/pharmaceutics13091332] [PMID: 34575408]
[87]
Yan, J.; Gao, T.; Lu, Z.; Yin, J.; Zhang, Y.; Pei, R. Aptamer-targeted photodynamic platforms for tumor therapy. ACS Appl. Mater. Interfaces, 2021, 13(24), 27749-27773.
[http://dx.doi.org/10.1021/acsami.1c06818] [PMID: 34110790]
[88]
Wang, G.; Liu, J.; Zhu, L.; Guo, Y.; Yang, L. Silver sulfide nanoparticles for photodynamic therapy of human lymphoma cells via disruption of energy metabolism. RSC Advances, 2019, 9(51), 29936-29941.
[http://dx.doi.org/10.1039/C9RA05432D] [PMID: 35531500]
[89]
Tao, Y.; Hou, X.; Gao, H.; Zhang, X.; Zuo, F.; Wang, Y.; Li, X.; Jiang, G. Grade-targeted nanoparticles for improved hypoxic tumor microenvironment and enhanced photodynamic cancer therapy. Nanomedicine, 2021, 16(3), 221-235.
[http://dx.doi.org/10.2217/nnm-2020-0096] [PMID: 33533660]
[90]
Li, Z.; Wang, C.; Cheng, L.; Gong, H.; Yin, S.; Gong, Q.; Li, Y.; Liu, Z. PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials, 2013, 34(36), 9160-9170.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.041] [PMID: 24008045]
[91]
Li, Z.; Yin, Y.; Jin, W.; Zhang, B.; Yan, H.; Mei, H.; Wang, H.; Guo, T.; Shi, W.; Hu, Y. Tissue factor-targeted “O2-evolving” nanoparticles for photodynamic therapy in malignant lymphoma. Front. Oncol., 2020, 10, 524712.
[http://dx.doi.org/10.3389/fonc.2020.524712] [PMID: 33240803]
[92]
Kumari, S.; Sharma, N.; Sahi, S.V. Advances in cancer therapeutics: Conventional thermal therapy to nanotechnology-based photothermal therapy. Pharmaceutics, 2021, 13(8), 1174.
[http://dx.doi.org/10.3390/pharmaceutics13081174] [PMID: 34452135]
[93]
Huang, X.; Lu, Y.; Guo, M.; Du, S.; Han, N. Recent strategies for nano-based PTT combined with immunotherapy: From a biomaterial point of view. Theranostics, 2021, 11(15), 7546-7569.
[http://dx.doi.org/10.7150/thno.56482] [PMID: 34158866]
[94]
Ashikbayeva, Z.; Tosi, D.; Balmassov, D.; Schena, E.; Saccomandi, P.; Inglezakis, V. Application of nanoparticles and nanomaterials in thermal ablation therapy of cancer. Nanomaterials, 2019, 9(9), 1195.
[http://dx.doi.org/10.3390/nano9091195] [PMID: 31450616]
[95]
Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev., 2019, 48(7), 2053-2108.
[http://dx.doi.org/10.1039/C8CS00618K] [PMID: 30259015]
[96]
Liu, Y.; Crawford, B.M.; Vo-Dinh, T. Gold nanoparticles-mediated photothermal therapy and immunotherapy. Immunotherapy, 2018, 10(13), 1175-1188.
[http://dx.doi.org/10.2217/imt-2018-0029] [PMID: 30236026]
[97]
Zhao, P.; Ji, W.; Zhou, S.; Qiu, L.; Li, L.; Qian, Z.; Liu, X.; Zhang, H.; Cao, X. Upconverting and persistent luminescent nanocarriers for accurately imaging-guided photothermal therapy. Mater. Sci. Eng. C, 2017, 79, 191-198.
[http://dx.doi.org/10.1016/j.msec.2017.05.046] [PMID: 28629007]
[98]
Singh, A.; Nandwana, V.; Rink, J.S.; Ryoo, S.R.; Chen, T.H.; Allen, S.D.; Scott, E.A.; Gordon, L.I.; Thaxton, C.S.; Dravid, V.P. Biomimetic magnetic nanostructures: A theranostic platform targeting lipid metabolism and immune response in lymphoma. ACS Nano, 2019, 13(9), 10301-10311.
[http://dx.doi.org/10.1021/acsnano.9b03727] [PMID: 31487458]
[99]
Jiao, J.; Qian, Z.; Wang, Y.; Liu, M.; Fan, L.; Liu, M.; Hao, Z.; Jiao, J.; Lv, Z. Synthesis and biological evaluation of PEGylated MWO4 nanoparticles as sonodynamic AID inhibitors in treating diffuse large B-cell lymphoma. Molecules, 2022, 27(21), 7143.
[http://dx.doi.org/10.3390/molecules27217143] [PMID: 36363970]
[100]
Son, S.; Kim, J.H.; Wang, X.; Zhang, C.; Yoon, S.A.; Shin, J.; Sharma, A.; Lee, M.H.; Cheng, L.; Wu, J.; Kim, J.S. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev., 2020, 49(11), 3244-3261.
[http://dx.doi.org/10.1039/C9CS00648F] [PMID: 32337527]
[101]
Xu, M.; Zhou, L.; Zheng, L.; Zhou, Q.; Liu, K.; Mao, Y.; Song, S. Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett., 2021, 497, 229-242.
[http://dx.doi.org/10.1016/j.canlet.2020.10.037] [PMID: 33122099]
[102]
Pan, X.; Wang, H.; Wang, S.; Sun, X.; Wang, L.; Wang, W.; Shen, H.; Liu, H. Sonodynamic therapy (SDT): A novel strategy for cancer nanotheranostics. Sci. China Life Sci., 2018, 61(4), 415-426.
[http://dx.doi.org/10.1007/s11427-017-9262-x] [PMID: 29666990]
[103]
Sun, L.; Wang, P.; Zhang, J.; Sun, Y.; Sun, S.; Xu, M.; Zhang, L.; Wang, S.; Liang, X.; Cui, L. Design and application of inorganic nanoparticles for sonodynamic cancer therapy. Biomater. Sci., 2021, 9(6), 1945-1960.
[http://dx.doi.org/10.1039/D0BM01875A] [PMID: 33522523]
[104]
Zhang, L.; Li, C.X.; Wan, S.S.; Zhang, X.Z. Nanocatalyst‐mediated chemodynamic tumor therapy. Adv. Healthc. Mater., 2022, 11(2), 2101971.
[http://dx.doi.org/10.1002/adhm.202101971] [PMID: 34751505]
[105]
Jia, C.; Guo, Y.; Wu, F.G. Chemodynamic therapy via fenton and fenton‐like nanomaterials: Strategies and recent advances. Small, 2022, 18(6), 2103868.
[http://dx.doi.org/10.1002/smll.202103868] [PMID: 34729913]
[106]
Liu, X.; Jin, Y.; Liu, T.; Yang, S.; Zhou, M.; Wang, W.; Yu, H. Iron-based theranostic nanoplatform for improving chemodynamic therapy of cancer. ACS Biomater. Sci. Eng., 2020, 6(9), 4834-4845.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01009] [PMID: 33455215]
[107]
Arumov, A.; Liyanage, P.Y.; Trabolsi, A.; Roberts, E.R.; Li, L.; Ferreira, B.C.L.B.; Gao, Z.; Ban, Y.; Newsam, A.D.; Taggart, M.W.; Vega, F.; Bilbao, D.; Leblanc, R.M.; Schatz, J.H. Optimized doxorubicin chemotherapy for diffuse large B-cell lymphoma exploits nanocarrier delivery to transferrin receptors. Cancer Res., 2021, 81(3), 763-775.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-2674] [PMID: 33177062]
[108]
Xi, S.; Yang, Y.G.; Suo, J.; Sun, T. Research progress on gene editing based on nano-drug delivery vectors for tumor therapy. Front. Bioeng. Biotechnol., 2022, 10, 873369.
[http://dx.doi.org/10.3389/fbioe.2022.873369] [PMID: 35419357]
[109]
Roma-Rodrigues, C.; Rivas-García, L.; Baptista, P.V.; Fernandes, A.R. Gene therapy in cancer treatment: Why go nano? Pharmaceutics, 2020, 12(3), 233.
[http://dx.doi.org/10.3390/pharmaceutics12030233] [PMID: 32151052]
[110]
Ren, X.H.; Xu, C.; Li, L.L.; Zuo, Y.; Han, D.; He, X.Y.; Cheng, S.X. A targeting delivery system for effective genome editing in leukemia cells to reverse malignancy. J. Control. Release, 2022, 343, 645-656.
[http://dx.doi.org/10.1016/j.jconrel.2022.02.012] [PMID: 35157940]
[111]
Jawaid, P.; Rehman, M.U.; Yoshihisa, Y. Effects of SOD/catalase mimetic platinum nanoparticles on radiation-induced apoptosis in human lymphoma U937 cells. Apoptosis, 2014, 19, 1006-1016.
[112]
Wang, M.Y.; Qu, Y.; Hu, D.R.; Chen, L.J.; Shi, K.; Jia, Y.P.; Yi, Y.Y.; Wei, Q.; Niu, T.; Qian, Z.Y. Methotrexate-loaded biodegradable polymeric micelles for lymphoma therapy. Int. J. Pharm., 2019, 557, 74-85.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.025] [PMID: 30557680]
[113]
Ghasemi Goorbandi, R.; Mohammadi, M.R.; Malekzadeh, K. Synthesizing efficacious genistein in conjugation with superparamagnetic Fe3O4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma. Biomater. Res., 2020, 24(1), 9.
[http://dx.doi.org/10.1186/s40824-020-00187-2] [PMID: 32206338]
[114]
Nevala, W.K.; Butterfield, J.T.; Sutor, S.L.; Knauer, D.J.; Markovic, S.N. Antibody-targeted paclitaxel loaded nanoparticles for the treatment of CD20+ B-cell lymphoma. Sci. Rep., 2017, 7(1), 45682.
[http://dx.doi.org/10.1038/srep45682] [PMID: 28378801]
[115]
Xiao, K.; Liu, Q.; Al Awwad, N.; Zhang, H.; Lai, L.; Luo, Y.; Lee, J.S.; Li, Y.; Lam, K.S. Reversibly disulfide cross-linked micelles improve the pharmacokinetics and facilitate the targeted, on-demand delivery of doxorubicin in the treatment of B-cell lymphoma. Nanoscale, 2018, 10(17), 8207-8216.
[http://dx.doi.org/10.1039/C8NR00680F] [PMID: 29682647]
[116]
Sukirtha, R.; Priyanka, K.M.; Antony, J.J.; Kamalakkannan, S.; Thangam, R.; Gunasekaran, P.; Krishnan, M.; Achiraman, S. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem., 2012, 47(2), 273-279.
[http://dx.doi.org/10.1016/j.procbio.2011.11.003]
[117]
Jahnke, K.; Doolittle, N.D.; Muldoon, L.L.; Neuwelt, E.A. Implications of the blood-brain barrier in primary central nervous system lymphoma. Neurosurg. Focus, 2006, 21(5), E11.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy