Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Nanoemulsion Based Supramolecular Drug Delivery Systems for Therapeutic Management of Fungal Infections

Author(s): Surjeet Kaur Sethi, Honey Goel* and Viney Chawla*

Volume 14, Issue 1, 2024

Published on: 26 September, 2023

Page: [2 - 15] Pages: 14

DOI: 10.2174/2210303113666230915103016

Price: $65

Open Access Journals Promotions 2
Abstract

Fungal infections are one of the significant causes of death worldwide. Antifungal agents are associated with several side effects and toxicities while treating these infections. To overcome these physicochemical and pharmacokinetic side effects of antifungal agents, supramolecular drug delivery systems can be employed. The emulsion-based supramolecular assemblies, i.e., microemulsion and nanoemulsion, can be functionalized to achieve targeted delivery of antifungal drugs at the desired body sites. Emulsion based supramolecular assemblies have the ability to minimize the side effects related to antifungal agents and enhance their efficacy and safety profile. The present review focuses on the severe fungal infections and antifungal agents available for their management with their drawbacks. This review also introduces various emulsion-based supramolecular drug delivery approaches that may improve the usability of antifungal agents or reduce their side effects to treat fungal infections.

Keywords: Supramolecular drug delivery, self-assemblies, emulsions, fungal infections, antifungal agents, drug delivery.

Graphical Abstract
[1]
Garber, G. An overview of fungal infections. Drugs, 2001, 61(S1), 1-12.
[http://dx.doi.org/10.2165/00003495-200161001-00001] [PMID: 11219546]
[2]
Hay, R.J. Fungal infections. Clin. Dermatol., 2006, 24(3), 201-212.
[http://dx.doi.org/10.1016/j.clindermatol.2005.11.011] [PMID: 16714201]
[3]
Fungal Disease Frequency - Gaffi | Gaffi - Global Action Fund for Fungal Infections. Available from: https://gaffi.org/why/fungal-disease-frequency/
[4]
Kovitwanichkanont, T.; Chong, A. Superficial fungal infections. Aust. J. Gen. Pract., 2019, 48(10), 706-711.
[http://dx.doi.org/10.31128/AJGP-05-19-4930] [PMID: 31569324]
[5]
Hoy, N.Y.; Leung, A.K.C.; Metelitsa, A.I.; Adams, S. New concepts in median nail dystrophy, onychomycosis, and hand, foot, and mouth disease nail pathology. ISRN Dermatol., 2012, 2012, 1-5.
[http://dx.doi.org/10.5402/2012/680163] [PMID: 22462009]
[6]
Vasconcellos-Pontello, V.; Veiga, F.F.; Gadelha, M.C.; Ribeiro, M.; Negri, M.; Estivalet, S.T.I. The success of topical treatment of onychomycosis seems to be influenced by fungal features. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-7.
[http://dx.doi.org/10.1155/2021/5553634] [PMID: 34335823]
[7]
Leung, A.K.C.; Lam, J.M.; Leong, K.F.; Hon, K.L.; Barankin, B.; Leung, A.A.M.; Wong, A.H.C. Onychomycosis: An updated review. Recent Pat. Inflamm. Allergy Drug Discov., 2020, 14(1), 32-45.
[http://dx.doi.org/10.2174/1872213X13666191026090713] [PMID: 31738146]
[8]
Subramanya, S.H.; Subedi, S.; Metok, Y.; Kumar, A.; Prakash, P.Y.; Nayak, N. Distal and lateral subungual onychomycosis of the finger nail in a neonate: A rare case. BMC Pediatr., 2019, 19(1), 168.
[http://dx.doi.org/10.1186/s12887-019-1549-9] [PMID: 31133007]
[9]
Ma, Y.; Wang, X.; Li, R. Cutaneous and subcutaneous fungal infections: Recent developments on host–fungus interactions. Curr. Opin. Microbiol., 2021, 62, 93-102.
[http://dx.doi.org/10.1016/j.mib.2021.05.005] [PMID: 34098513]
[10]
Medoff, G.; Kobayashi, G.S. Systemic fungal infections: An overview. Hosp. Pract., 1991, 26(2), 41-52.
[http://dx.doi.org/10.1080/21548331.1991.11704143] [PMID: 1899254]
[11]
Tenenbaum, M.J.; Greenspan, J.; Kerkering, T.M.; Utz, J.P. Blastomycosis. CRC Crit. Rev. Microbiol., 1982, 9(3), 139-163.
[http://dx.doi.org/10.3109/10408418209104489] [PMID: 7049575]
[12]
Kaur, I.P.; Kakkar, S. Topical delivery of antifungal agents. Expert Opin. Drug Deliv., 2010, 7(11), 1303-1327.
[http://dx.doi.org/10.1517/17425247.2010.525230] [PMID: 20961206]
[13]
Palmer, B.; DeLouise, L. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules, 2016, 21(12), 1719.
[http://dx.doi.org/10.3390/molecules21121719] [PMID: 27983701]
[14]
Seyedmousavi, S.; Rafati, H.; Ilkit, M.; Tolooe, A.; Hedayati, M.T.; Verweij, P. Systemic antifungal agents: Current status and projected future developments. Methods Mol. Biol., 2017, 1508, 107-139.
[http://dx.doi.org/10.1007/978-1-4939-6515-1_5] [PMID: 27837500]
[15]
Murphy, S.E.; Bicanic, T. Drug resistance and novel therapeutic approaches in invasive candidiasis. Front. Cell. Infect. Microbiol., 2021, 11, 759408.
[http://dx.doi.org/10.3389/fcimb.2021.759408] [PMID: 34970504] [PMCID: PMC8713075]
[16]
Maurya, I.K.; Semwal, R.B.; Semwal, D.K. Combination therapy against human infections caused by Candida species. In: Combination Therapy Against Multidrug Resistance; , 2020; pp. 81-94.
[http://dx.doi.org/10.1016/B978-0-12-820576-1.00004-7]
[17]
Lengert, E.V.; Talnikova, E.E.; Tuchin, V.V.; Svenskaya, Y.I. Prospective nanotechnology-based strategies for enhanced intra- and transdermal delivery of antifungal drugs. Skin Pharmacol. Physiol., 2020, 33(5), 261-269.
[http://dx.doi.org/10.1159/000511038] [PMID: 33091913]
[18]
[19]
Gupta, A.K.; Cooper, E.A. Update in antifungal therapy of dermatophytosis. Mycopathologia, 2008, 166(5-6), 353-367.
[http://dx.doi.org/10.1007/s11046-008-9109-0] [PMID: 18478357]
[20]
Churchill, D.N.; Seely, J. Nephrotoxicity associated with combined gentamicin-amphotericin B therapy. Nephron J., 1977, 19(3), 176-181.
[http://dx.doi.org/10.1159/000180883] [PMID: 268496]
[21]
Mbah, C.C.; Builders, P.F.; Attama, A.A. Nanovesicular carriers as alternative drug delivery systems: Ethosomes in focus. Expert Opin. Drug Deliv., 2013, 11(1), 45-59.
[22]
Hasanin, M.; Taha, N.F.; Abdou, A.R.; Emara, L.H. Green decoration of graphene oxide Nano sheets with gelatin and gum Arabic for targeted delivery of doxorubicin. Biotechnol. Rep., 2022, 34, e00722.
[http://dx.doi.org/10.1016/j.btre.2022.e00722] [PMID: 35686004]
[23]
Amna, T.; Hassan, M.S.; Gharsan, F.N.; Rehman, S.; Sheikh, F.A. Nanotechnology in drug delivery systems: Ways to boost bioavailability of drugs. In: Nanotechnology for Infectious Diseases; Springer Singapore: Singapore, 2022; pp. 223-236.
[http://dx.doi.org/10.1007/978-981-16-9190-4_10]
[24]
El Sayeh F Abou El Ela, A.; Abbas Ibrahim, M.; Alqahtani, Y.; Almomen, A.; Sfouq Aleanizy, F. Fluconazole nanoparticles prepared by antisolvent precipitation technique: Physicochemical, in vitro, ex vivo and in vivo ocular evaluation. Saudi Pharm. J., 2021, 29(6), 576-585.
[http://dx.doi.org/10.1016/j.jsps.2021.04.018] [PMID: 34194264]
[25]
Rajesh, S.; Gangadoo, S.; Nguyen, H.; Zhai, J.; Dekiwadia, C.; Drummond, C.J.; Chapman, J.; Truong, V.K.; Tran, N. Application of fluconazole loaded pH-sensitive lipid nanoparticles for enhanced antifungal therapy. ACS Appl. Mater. Interfaces, 2022, 14(29), 32845-32854.
[http://dx.doi.org/10.1021/acsami.2c05165] [PMID: 35850116]
[26]
Gajra, B.; Dalwadi, C.; Patel, R. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using box behnken design. Daru, 2015, 23(1), 3.
[http://dx.doi.org/10.1186/s40199-014-0087-0] [PMID: 25604353]
[27]
Soliman, G.M. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int. J. Pharm., 2017, 523(1), 15-32.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.019] [PMID: 28323096]
[28]
Ariga, K.; Sakakibara, K.; Richards, G.J.; Hill, J.P. Dynamic supramolecular systems at interfaces. Supramol. Chem., 2011, 23(3-4), 183-194.
[http://dx.doi.org/10.1080/10610278.2010.521830]
[29]
Wu, S.; Tsuruoka, T.; Terabe, K.; Hasegawa, T.; Hill, J.P.; Ariga, K.; Aono, M. A polymer-electrolyte-based atomic switch. Adv. Funct. Mater., 2011, 21(1), 93-99.
[http://dx.doi.org/10.1002/adfm.201001520]
[30]
Vistoli, G.; Pedretti, A.; Testa, B. Assessing drug-likeness – what are we missing? Drug Discov. Today, 2008, 13(7-8), 285-294.
[http://dx.doi.org/10.1016/j.drudis.2007.11.007] [PMID: 18405840]
[31]
Sepulveda, A.F.; Kumpgdee-Vollrath, M.; Franco, M.K.K.D.; Yokaichiya, F.; de Araujo, D.R. Supramolecular structure organization and rheological properties modulate the performance of hyaluronic acid-loaded thermosensitive hydrogels as drug-delivery systems. J. Colloid Interface Sci., 2023, 630(Pt B), 328-340.
[http://dx.doi.org/10.1016/j.jcis.2022.10.064] [PMID: 36327735]
[32]
Chou, L.Y.T.; Ming, K.; Chan, W.C.W. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev., 2011, 40(1), 233-245.
[http://dx.doi.org/10.1039/C0CS00003E] [PMID: 20886124]
[33]
Shen, Z.; Nieh, M.P.; Li, Y. Decorating nanoparticle surface for targeted drug delivery: Opportunities and challenges. Polymers, 2016, 8(3), 83.
[http://dx.doi.org/10.3390/polym8030083] [PMID: 30979183]
[34]
Goel, H.; Saini, K.; Razdan, K.; Khurana, R.K.; Elkordy, A.A.; Singh, K.K. In vitro physicochemical characterization of nanocarriers: A road to optimization. In: Nanoparticle Therapeutics Production Technologies, Types of Nanoparticles, and Regulatory Aspects; , 2022; pp. 133-179.
[http://dx.doi.org/10.1016/B978-0-12-820757-4.00018-1]
[35]
Goel, H.; Siddiqui, L.; Mahtab, A.; Talegaonkar, S. Fabrication design, process technologies, and convolutions in the scale-up of nanotherapeutic delivery systems. In: Nanoparticle Therapeutics Production Technologies, Types of Nanoparticles, and Regulatory Aspects; , 2022; pp. 47-131.
[http://dx.doi.org/10.1016/B978-0-12-820757-4.00017-X]
[36]
Neupane, Y.R.; Mahtab, A.; Siddiqui, L.; Singh, A.; Gautam, N.; Rabbani, S.A.; Goel, H.; Talegaonkar, S. Biocompatible nanovesicular drug delivery systems with targeting potential for autoimmune diseases. Curr. Pharm. Des., 2020, 26(42), 5488-5502.
[http://dx.doi.org/10.2174/1381612826666200523174108] [PMID: 32445443]
[37]
Kawakami, K.; Ebara, M.; Izawa, H.; Sanchez-Ballester, N.M.; Hill, J.P.; Ariga, K. Supramolecular approaches for drug development. Curr. Med. Chem., 2012, 19(15), 2388-2398.
[http://dx.doi.org/10.2174/092986712800269254] [PMID: 22455591]
[38]
Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev., 2001, 47(1), 113-131.
[http://dx.doi.org/10.1016/S0169-409X(00)00124-1] [PMID: 11251249]
[39]
Koutalas, G.; Pispas, S.; Hadjichristidis, N. Micelles of poly(isoprene-b-2-vinylpyridine-b-ethylene oxide) terpolymers in aqueous media and their interaction with surfactants. Eur. Phys. J. E, 2004, 15(4), 457-464.
[http://dx.doi.org/10.1140/epje/i2004-10075-3] [PMID: 15647896]
[40]
Bachhav, Y.G.; Mondon, K.; Kalia, Y.N.; Gurny, R.; Möller, M. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals. J. Control. Release, 2011, 153(2), 126-132.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.003] [PMID: 21397643]
[41]
Nimtrakul, P.; Williams, D.B.; Tiyaboonchai, W.; Prestidge, C.A. Copolymeric micelles overcome the oral delivery challenges of amphotericin B. Pharmaceuticals, 2020, 13(6), 121.
[http://dx.doi.org/10.3390/ph13060121] [PMID: 32545189]
[42]
Althomali, N.M.; Alshammari, R.S.; Al-atawi, T.S.; Aljohani, A.A.; Safwat, M.A.; Soliman, G.M. Impact of biocompatible poly(ethylene glycol)-block poly(ε-caprolactone) nano-micelles on the antifungal efficacy of voriconazole Biointerface Res. Biointerface Res. Appl. Chem., 2022, 13(1), 62.
[http://dx.doi.org/10.33263/BRIAC131.062]
[43]
Osouli, M.; Abdollahizad, E.; Alavi, S.; Mahboubi, A.; Abbasian, Z.; Haeri, A.; Dadashzadeh, S. Biocompatible phospholipid-based mixed micelles for posaconazole ocular delivery: Development, characterization, and in - vitro antifungal activity. J. Biomater. Appl., 2023, 37(6), 969-978.
[http://dx.doi.org/10.1177/08853282221141962] [PMID: 36424544]
[44]
Chatterjee, S.; Banerjee, D.K. Preparation, isolation, and characterization of liposomes containing natural and synthetic lipids. Methods Mol. Biol., 2002, 199, 03-16.
[http://dx.doi.org/10.1385/1-59259-175-2:03] [PMID: 12094574]
[45]
Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed; , 2011, pp. 1-676.
[http://dx.doi.org/10.1016/C2011-0-05119-0]
[46]
Guo, X.; Wu, Z.; Guo, Z. New method for site-specific modification of liposomes with proteins using sortase A-mediated transpeptidation. Bioconjug. Chem., 2012, 23(3), 650-655.
[http://dx.doi.org/10.1021/bc200694t] [PMID: 22372679]
[47]
Goel, H.; Razdan, K.; Singla, R.; Talegaonkar, S.; Khurana, R.K.; Tiwary, A.K.; Sinha, V.R.; Singh, K.K. Engineered site-specific vesicular systems for colonic delivery: Trends and implications. Curr. Pharm. Des., 2020, 26(42), 5441-5455.
[http://dx.doi.org/10.2174/1381612826666200813132301] [PMID: 32787754]
[48]
Jesorka, A.; Orwar, O. Liposomes: Technologies and analytical applications. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2008, 1(1), 801-832.
[http://dx.doi.org/10.1146/annurev.anchem.1.031207.112747] [PMID: 20636098]
[49]
Adler-Moore, J.; Lewis, R.E.; Brüggemann, R.J.M.; Rijnders, B.J.A.; Groll, A.H.; Walsh, T.J. Preclinical safety, tolerability, pharmacokinetics, pharmacodynamics, and antifungal activity of liposomal Amphotericin B. Clin. Infect. Dis., 2019, 68(S4), S244-S259.
[http://dx.doi.org/10.1093/cid/ciz064] [PMID: 31222254]
[50]
Veloso, D.F.M.C.; Benedetti, N.I.G.M.; Ávila, R.I.; Bastos, T.S.A.; Silva, T.C.; Silva, M.R.R.; Batista, A.C.; Valadares, M.C.; Lima, E.M. Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity. Drug Deliv., 2018, 25(1), 1585-1594.
[http://dx.doi.org/10.1080/10717544.2018.1492046] [PMID: 30044149]
[51]
Abdellatif, M.M.; Khalil, I.A.; Elakkad, Y.E.; Eliwa, H.A.; Samir, T.; Al-Mokaddem, A.K. Formulation and characterization of sertaconazole nitrate mucoadhesive liposomes for vaginal candidiasis. Int. J. Nanomedicine, 2020, 15, 4079-4090.
[http://dx.doi.org/10.2147/IJN.S250960] [PMID: 32606665]
[52]
Murakami, Y.; Kikuchi, J.; Hisaeda, Y.; Hayashida, O. Artificial enzymes. Chem. Rev., 1996, 96(2), 721-758.
[http://dx.doi.org/10.1021/cr9403704] [PMID: 11848771]
[53]
Chen, Y.; Liu, Y. Cyclodextrin-based bioactive supramolecular assemblies. Chem. Soc. Rev., 2010, 39(2), 495-505.
[http://dx.doi.org/10.1039/B816354P] [PMID: 20111774]
[54]
Sinha, V.R.; Amita, ; Goel, H. In vivo bioavailability and therapeutic assessment of host-guest inclusion phenomena for the hydrophobic molecule etodolac: Pharmacodynamic and pharmacokinetic evaluation. Sci. Pharm., 2010, 78(1), 103-115.
[http://dx.doi.org/10.3797/scipharm.0909-08] [PMID: 21179374]
[55]
Sinha, V.R.; Amita, ; Chadha, R.; Goel, H. Enhancing the dissolution of hydrophobic guests using solid state inclusion complexation: Characterization and in vitro evaluation. J. Incl. Phenom. Macrocycl. Chem., 2010, 66(3-4), 381-392.
[http://dx.doi.org/10.1007/s10847-009-9655-1]
[56]
Sinha, V.R.; Nanda, A.; Chadha, R.; Goel, H. Molecular simulation of hydroxypropyl-β-cyclodextrin with hydrophobic selective Cox-II chemopreventive agent using host-guest phenomena. Acta Pol. Pharm., 2011, 68(4), 585-592.
[PMID: 21796941]
[57]
Soe, H.M.S.H.; Maw, P.D.; Loftsson, T.; Jansook, P. Current overview of cyclodextrins based nanocarriers for enhanced antifungal delivery. Pharmaceuticals., 2022, 15(12), 1447.
[http://dx.doi.org/10.3390/ph15121447] [PMID: 36558897]
[58]
Fernández-Ferreiro, A.; Fernández Bargiela, N.; Varela, M.S.; Martínez, M.G.; Pardo, M.; Piñeiro Ces, A.; Méndez, J.B.; Barcia, M.G.; Lamas, M.J.; Otero-Espinar, F. Cyclodextrin–polysaccharide-based, in situ-gelled system for ocular antifungal delivery. Beilstein J. Org. Chem., 2014, 10(10), 2903-2911.
[http://dx.doi.org/10.3762/bjoc.10.308] [PMID: 25550757]
[59]
Hbaieb, S.; Kalfat, R.; Chevalier, Y. Loading antifungal drugs onto silica particles grafted with cyclodextrins by means of inclusion complex formation at the solid surface. Int. J. Pharm., 2012, 439(1-2), 234-245.
[http://dx.doi.org/10.1016/j.ijpharm.2012.09.035] [PMID: 23018113]
[60]
Buchanan, C.M.; Buchanan, N.L.; Edgar, K.J.; Ramsey, M.G. Solubilty and dissolution studies of antifungal drug: hydroxybutenyl-β-cyclodextrin complexes. Cellulose, 2006, 14(1), 35-47.
[http://dx.doi.org/10.1007/s10570-006-9076-x]
[61]
Yamaguchi, T. Lipid microspheres as drug carriers: A pharmaceutical point of view. Adv. Drug Deliv. Rev., 1996, 20(2-3), 117-130.
[http://dx.doi.org/10.1016/0169-409X(95)00115-N]
[62]
Kovarik, J.M.; Mueller, E.A.; Kutz, K.; Van Bree, J.B.; Tetzloff, W. Reduced inter- and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J. Pharm. Sci., 1994, 83(3), 444-446.
[http://dx.doi.org/10.1002/jps.2600830336] [PMID: 8207699]
[63]
Youenang, P.M.P.; Korner, D.; Benita, S.; Jean-Paul, M. Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs. J. Control. Release, 1999, 58(2), 177-187.
[http://dx.doi.org/10.1016/S0168-3659(98)00156-4] [PMID: 10053190]
[64]
Maqsood, I.; Masood, M.I.; Nawaz, H.A.; Shahzadi, I.; Arslan, N. Formulation, characterization and in vitro evaluation of antifungal activity of Nystatin micro emulsion for topical application. Pak. J. Pharm. Sci., 2019, 32(4), 1671-1677.
[PMID: 31608889]
[65]
El-Badry, M.; Fetih, G.; Shakeel, F. Comparative topical delivery of antifungal drug croconazole using liposome and micro-emulsion-based gel formulations. Drug Deliv., 2014, 21(1), 34-43.
[http://dx.doi.org/10.3109/10717544.2013.843610] [PMID: 24116896]
[66]
Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol., 2003, 21(10), 1171-1178.
[http://dx.doi.org/10.1038/nbt874] [PMID: 14520402]
[67]
Aida, T.; Meijer, E.W.; Stupp, S.I. Functional supramolecular polymers. Science, 2012, 335(6070), 813-817.
[http://dx.doi.org/10.1126/science.1205962] [PMID: 22344437]
[68]
Song, Q.; Xu, J.F.; Zhang, X. Polymerization of supramonomers: A new way for fabricating supramolecular polymers and materials. J. Polym. Sci. A Polym. Chem., 2017, 55(4), 604-609.
[http://dx.doi.org/10.1002/pola.28404]
[69]
Hoyle, C.E.; Bowman, C.N. Thiol-ene click chemistry. Angew. Chem. Int. Ed., 2010, 49(9), 1540-1573.
[http://dx.doi.org/10.1002/anie.200903924] [PMID: 20166107]
[70]
Zhang, S.; Qin, B.; Huang, Z.; Xu, J.F.; Zhang, X. Supramolecular emulsion interfacial polymerization. ACS Macro Lett., 2019, 8(2), 177-182.
[http://dx.doi.org/10.1021/acsmacrolett.8b01003] [PMID: 35619426]
[71]
Risovic, V.; Boyd, M.; Choo, E.; Wasan, K.M. Effects of lipid-based oral formulations on plasma and tissue amphotericin B concentrations and renal toxicity in male rats. Antimicrob. Agents Chemother., 2003, 47(10), 3339-3342.
[http://dx.doi.org/10.1128/AAC.47.10.3339-3342.2003] [PMID: 14506053]
[72]
do Carmo Silva, L.; de Oliveira, A.A.; de Souza, D.R.; Barbosa, K.L.B.; Freitas e Silva, K.S.; Carvalho Júnior, M.A.B.; Rocha, O.B.; Lima, R.M.; Santos, T.G.; Soares, C.M.A.; Pereira, M. Overview of antifungal drugs against paracoccidioidomycosis: How do we start, where are we, and where are we going? J. Fungi., 2020, 6(4), 300.
[http://dx.doi.org/10.3390/jof6040300] [PMID: 33228010]
[73]
Kracht, T.; Müller-Goymann, C.C. Antifungal efficacy of liquid poloxamer 407-based emulsions loaded with sertaconazole nitrate. Int. J. Pharm., 2020, 585, 119400.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119400] [PMID: 32512222]
[74]
Hennemann, B.L.; Moleta, G.S.; Fuchs, A.L.; Villetti, M.A.; Kuhn, B.L.; Rampelotto, C.R.; Paz, A.V.; de Bona da Silva, C.; Frizzo, C.P. Synergic effects of ultrasound and ionic liquids on fluconazole emulsion. Ultrason. Sonochem., 2021, 72, 105446.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105446] [PMID: 33422736]
[75]
Wu, D.; Lu, J.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Influence of nonionic and ionic surfactants on the antifungal and mycotoxin inhibitory efficacy of cinnamon oil nanoemulsions. Food Funct., 2019, 10(5), 2817-2827.
[http://dx.doi.org/10.1039/C9FO00470J] [PMID: 31049507]
[76]
Wan, J.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: Impact of oil compositions and processing parameters. Food Chem., 2019, 291, 199-206.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.032] [PMID: 31006459]
[77]
Pongsumpun, P.; Iwamoto, S.; Siripatrawan, U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason. Sonochem., 2020, 60, 104604.
[http://dx.doi.org/10.1016/j.ultsonch.2019.05.021] [PMID: 31539730]
[78]
Hassan, H.A.; Geniady, M.M.; Abdelwahab, S.F.; Abd-Elghany, M.I.; Sarhan, H.A.; Abdelghany, A.A.; Kamel, M.S.; Rodriguez, A.E.; Alio, J.L. Topical eugenol successfully treats experimental candida albicans -induced keratitis. Ophthalmic Res., 2018, 60(2), 69-79.
[http://dx.doi.org/10.1159/000488907] [PMID: 29969774]
[79]
Soriano-Ruiz, J.L.; Suñer-Carbó, J.; Calpena-Campmany, A.C.; Bozal-de Febrer, N.; Halbaut-Bellowa, L.; Boix-Montañés, A.; Souto, E.B.; Clares-Naveros, B. Clotrimazole multiple W/O/W emulsion as anticandidal agent: Characterization and evaluation on skin and mucosae. Colloids Surf. B Biointerfaces, 2019, 175, 166-174.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.070] [PMID: 30530002]
[80]
Suñer-Carbó, J.; Boix-Montañés, A.; Halbaut-Bellowa, L.; Velázquez-Carralero, N.; Zamarbide-Ledesma, J.; Bozal-de-Febrer, N.; Calpena-Campmany, A.C. Skin permeation of econazole nitrate formulated in an enhanced hydrophilic multiple emulsion. Mycoses, 2017, 60(3), 166-177.
[http://dx.doi.org/10.1111/myc.12575] [PMID: 27761948]
[81]
Wang, M.; You, S.K.; Lee, H.K.; Han, M.G.; Lee, H.M.; Pham, T.M.A.; Na, Y.G.; Cho, C.W. Development and evaluation of docetaxel-phospholipid complex loaded self-microemulsifying drug delivery system: Optimization and in vitro/ex vivo studies. Pharmaceutics, 2020, 12(6), 544.
[http://dx.doi.org/10.3390/pharmaceutics12060544] [PMID: 32545452]
[82]
Guimarães, G.P.; Reis, M.Y. de F.A.; da Silva, D.T.C. Antifungal activity of topical microemulsion containing a thiophene derivative. Brazilian J. Microbiol., 2014, 45, 545-550.
[83]
Tayah, D.Y.; Eid, A.M. Development of miconazole nitrate nanoparticles loaded in nanoemulgel to improve its antifungal activity. Saudi Pharm. J., 2023, 31(4), 526-534.
[http://dx.doi.org/10.1016/j.jsps.2023.02.005] [PMID: 37063448]
[84]
Yang, Q.; Liu, S.; Gu, Y.; Tang, X.; Wang, T.; Wu, J.; Liu, J. Development of sulconazole-loaded nanoemulsions for enhancement of transdermal permeation and antifungal activity. Int. J. Nanomedicine, 2019, 14, 3955-3966.
[http://dx.doi.org/10.2147/IJN.S206657] [PMID: 31239665]
[85]
Leclercq, L.; Nardello-Rataj, V. Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery. Eur. J. Pharm. Sci., 2016, 82, 126-137.
[http://dx.doi.org/10.1016/j.ejps.2015.11.017] [PMID: 26616822]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy