Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Current Perspectives of Matrix Metalloproteinase 11 (MMP11) as a Diagnostic and Therapeutic Target for Cancer

Author(s): Asokan Shobana, Remella Venkata Deeksha, Syed Ali Abdul Rahman, Tiviya Thangaswamy, Revathi Paramasivam Oviya* and Gopal Gopisetty

Volume 20, Issue 3, 2024

Published on: 22 September, 2023

Page: [243 - 251] Pages: 9

DOI: 10.2174/1573394719666230914103330

Price: $65

Open Access Journals Promotions 2
Abstract

Matrix metalloproteinase 11 (MMP11), also known as stromelysin-3, is a member of the matrix metalloproteinases family of proteins that are involved in physiological and pathological extracellular matrix remodelling. MMP11 does not hydrolyse classical MMP substrates, such as laminin and fibronectin, and many of its substrates remain unknown, piquing the interest of researchers. Several studies have reported the role of MMP11 in inducing tumour growth by inhibiting apoptosis and promoting cancer cell migration and invasion. Various reports have shown its potential as a diagnostic and prognostic marker in a majority of cancers. MMP11 also induces an immune response as a tumour-associated antigen, and recent evidence shows the involvement of many microRNAs in targeting MMP11 in cancer, with prospective future applications in cancer immunotherapy and gene silencing. Owing to the importance of MMP11 in both cancer diagnosis and therapy, there is a need for deeper understanding of its mechanism and role in tumour progression. The current review focuses on the role of MMP11 in cell signalling pathways, its expression status in various cancers, and its potential in cancer treatment.

Keywords: MMPs, MMP11, diagnostic marker, prognostic marker, cancer immunotherapy, gene therapy.

Graphical Abstract
[1]
Yang Y, Gao M, Li Y, Li M, Ma Q. LncRNA CTBP1-AS2 facilitates gastric cancer progression via regulating the miR-139-3p/MMP11 axis. OncoTargets Ther 2020; 13: 11537-47.
[http://dx.doi.org/10.2147/OTT.S264394] [PMID: 33204108]
[2]
Laronha H, Caldeira J. Structure and function of human matrix metalloproteinases. Cells 2020; 9(5): 1076.
[http://dx.doi.org/10.3390/cells9051076] [PMID: 32357580]
[3]
Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol 2018; 81: 241-330.
[http://dx.doi.org/10.1016/bs.apha.2017.08.002] [PMID: 29310800]
[4]
Ma B, Ran R, Liao HY, Zhang HH. The paradoxical role of matrix metalloproteinase-11 in cancer. Biomed Pharmacother 2021; 141: 111899.
[http://dx.doi.org/10.1016/j.biopha.2021.111899] [PMID: 34346316]
[5]
Zhang X, Huang S, Guo J, et al. Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics (Review). Int J Oncol 2016; 48(5): 1783-93.
[6]
Andarawewa KL, Motrescu ER, Chenard MP, et al. Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res 2005; 65(23): 10862-71.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1231] [PMID: 16322233]
[7]
Boulay A, Masson R, Chenard MP, et al. High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase. Cancer Res 2001; 61(5): 2189-93.
[PMID: 11280785]
[8]
Tan B, Jaulin A, Bund C, et al. Matrix metalloproteinase-11 promotes early mouse mammary gland tumor growth through metabolic reprogramming and increased IGF1/AKT/FoxO1 signaling pathway, enhanced ER stress and alteration in mitochondrial UPR. Cancers 2020; 12(9): 2357.
[http://dx.doi.org/10.3390/cancers12092357] [PMID: 32825455]
[9]
Zhuang Y, Li X, Zhan P, Pi G, Wen G. MMP11 promotes the proliferation and progression of breast cancer through stabilizing Smad2 protein. Oncol Rep 2021; 45(4): 16.
[http://dx.doi.org/10.3892/or.2021.7967] [PMID: 33649832]
[10]
Jiang S, Liu H, Zhang J, Zhang F, Fan J. Carnosol induces cell apoptosis and inhibits invasion and proliferation in skin epidermoid cancer in vitro through MMP11-EGFR pathway. Res Sq 2021. Available from:
[http://dx.doi.org/10.21203/rs.3.rs-148241/v1]
[11]
Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 2008; 8(12): 915-28.
[http://dx.doi.org/10.1038/nrc2536] [PMID: 19029956]
[12]
Ianza A, Sirico M, Bernocchi O, Generali D. Role of the IGF-1 axis in overcoming resistance in breast cancer. Front Cell Dev Biol 2021; 9: 641449.
[http://dx.doi.org/10.3389/fcell.2021.641449] [PMID: 33829018]
[13]
Fromigué O, Louis K, Wu E, et al. Active stromelysin-3 (MMP-11) increases MCF-7 survival in three-dimensional matrigel culture via activation of p42/p44 MAP-kinase. Int J Cancer 2003; 106(3): 355-63.
[http://dx.doi.org/10.1002/ijc.11232] [PMID: 12845673]
[14]
Su C, Wang W, Wang C. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway. Oncol Lett 2018; 15(5): 7000-6.
[http://dx.doi.org/10.3892/ol.2018.8234] [PMID: 29731870]
[15]
Zhang Z, Dong T, Fu Y, et al. MMP-11 promotes papillary thyroid cell proliferation and invasion via the NF-κB pathway. J Cell Biochem 2019; 120(2): 1860-8.
[16]
Su R-L, Qiao Y, Guo R-F, Lv Y-Y. Cyr61 overexpression induced by interleukin 8 via NF-kB signaling pathway and its role in tumorigenesis of gastric carcinoma in vitro. Int J Clin Exp Pathol 2019; 12(9): 3197-207.
[PMID: 31934164]
[17]
Albers RE, Selesniemi K, Natale DRC, Brown TL. TGF- β induces Smad2 phosphorylation, ARE induction, and trophoblast differentiation. Int J Stem Cells 2018; 11(1): 111-20.
[http://dx.doi.org/10.15283/ijsc17069] [PMID: 29699384]
[18]
Chen L, Yang T, Lu DW, et al. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 2018; 101: 670-81.
[http://dx.doi.org/10.1016/j.biopha.2018.02.090] [PMID: 29518614]
[19]
Kang SU, Cho SY, Jeong H, et al. Matrix metalloproteinase 11 (MMP11) in macrophages promotes the migration of HER2-positive breast cancer cells and monocyte recruitment through CCL2–CCR2 signaling. Lab Invest 2022; 102(4): 376-90.
[http://dx.doi.org/10.1038/s41374-021-00699-y] [PMID: 34775491]
[20]
Basset P, Bellocq JP, Wolf C, et al. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 1990; 348(6303): 699-704.
[http://dx.doi.org/10.1038/348699a0] [PMID: 1701851]
[21]
Kasper G, Reule M, Tschirschmann M, et al. Stromelysin-3 overexpression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: Involvement of the IGF-1 signalling pathway. BMC Cancer 2007; 7(1): 12.
[http://dx.doi.org/10.1186/1471-2407-7-12] [PMID: 17233884]
[22]
Fu J, Khaybullin R, Zhang Y, Xia A, Qi X. Gene expression profiling leads to discovery of correlation of matrix metalloproteinase 11 and heparanase 2 in breast cancer progression. BMC Cancer 2015; 15(1): 473.
[http://dx.doi.org/10.1186/s12885-015-1410-y] [PMID: 26084486]
[23]
Han J, Choi YL, Kim H, et al. MMP11 and CD2 as novel prognostic factors in hormone receptor-negative, HER2-positive breast cancer. Breast Cancer Res Treat 2017; 164(1): 41-56.
[http://dx.doi.org/10.1007/s10549-017-4234-4] [PMID: 28409241]
[24]
Cid S, Eiro N, Fernández B, et al. Prognostic influence of tumor stroma on breast cancer subtypes. Clin Breast Cancer 2017; 18(1): e123-33.
[25]
Naghshvar F, Torabizadeh Z, Yazdani Charati J, Akbarnezhad M. Relationship between mmp-11 expression in invasive ductal breast carcinoma with its clinicopathologic parameters. Middle East J Cancer 2017; 8(2): 69-75.
[26]
Cheng T, Chen P, Chen J, Deng Y, Huang C. Landscape analysis of matrix metalloproteinases unveils key prognostic markers for patients with breast cancer. Front Genet 2022; 12: 809600.
[http://dx.doi.org/10.3389/fgene.2021.809600] [PMID: 35069702]
[27]
Malvia S, Bagadi SAR, Pradhan D, et al. Study of gene expression profiles of breast cancers in Indian Women. Sci Rep 2019; 9(1): 10018.
[http://dx.doi.org/10.1038/s41598-019-46261-1] [PMID: 31292488]
[28]
Johnson D, Clases D, Fernández-Sánchez ML, et al. Quantitative multiplexed analysis of MMP-11 and CD45 in metastatic breast cancer tissues by immunohistochemistry-assisted LA–ICP–MS. Metallomics 2022; 14(8): mfac052.
[http://dx.doi.org/10.1093/mtomcs/mfac052] [PMID: 35867868]
[29]
Eiro N, Cid S, Aguado N, et al. MMP1 and MMP11 expression in peripheral blood mononuclear cells upon their interaction with breast cancer cells and fibroblasts. Int J Mol Sci 2020; 22(1): 371.
[http://dx.doi.org/10.3390/ijms22010371] [PMID: 33396463]
[30]
Kim HS, Kim MG, Min KW, Jung US, Kim DH. High MMP-11 expression associated with low CD8+ T cells decreases the survival rate in patients with breast cancer. PLoS One 2021; 16(5): e0252052.
[http://dx.doi.org/10.1371/journal.pone.0252052] [PMID: 34038440]
[31]
Tian X, Ye C, Yang Y, et al. Expression of CD147 and matrix metalloproteinase-11 in colorectal cancer and their relationship to clinicopathological features. J Transl Med 2015; 13(1): 337.
[http://dx.doi.org/10.1186/s12967-015-0702-y] [PMID: 26507719]
[32]
Li YR, Meng K, Yang G, et al. Diagnostic genes and immune infiltration analysis of colorectal cancer determined by LASSO and SVM machine learning methods: A bioinformatics analysis. J Gastrointest Oncol 2022; 13(3): 1188-203.
[http://dx.doi.org/10.21037/jgo-22-536] [PMID: 35837194]
[33]
Zhou Y-J, Lu X-F, Chen H, et al. Single-cell transcriptomics reveals early molecular and immune alterations underlying the serrated neoplasia pathway toward colorectal cancer. Cell Mol Gastroenterol Hepatol 2022.
[PMID: 36216310]
[34]
Zhao J, Chen Y. Systematic identification of cancer-associated-fibroblast-derived genes in patients with colorectal cancer based on single-cell sequencing and transcriptomics. Front Immunol 2022; 13: 988246.
[http://dx.doi.org/10.3389/fimmu.2022.988246] [PMID: 36105798]
[35]
Martin-Morales L, Manzano S, Rodrigo-Faus M, et al. Germline gain-of-function MMP11 variant results in an aggressive form of colorectal cancer. Int J Cancer 2022.
[PMID: 36093604]
[36]
Xu C-J, Xu F. MMP-11 and VEGF-C expression correlate with clinical features of colorectal adenocarcinoma. Int J Clin Exp Med 2014; 7(9): 2883-8.
[PMID: 25356153]
[37]
Pang L, Wang DW, Zhang N, Xu DH, Meng XW. Elevated serum levels of MMP-11 correlate with poor prognosis in colon cancer patients. Cancer Biomark 2016; 16(4): 599-607.
[http://dx.doi.org/10.3233/CBM-160601] [PMID: 27002762]
[38]
Zhang D, Zhou S, Liu B. Identification and validation of an individualized emt-related prognostic risk score formula in gastric adenocarcinoma patients. BioMed Res Int 2020; 2020: 1-15.
[http://dx.doi.org/10.1155/2020/7082408] [PMID: 32309437]
[39]
Huo J, Xie W, Fan X, Sun P. Pyroptosis, apoptosis, and necroptosis molecular subtype derived prognostic signature universal applicable for gastric cancer-A large sample and multicenter retrospective analysis. Comput Biol Med 2022; 149: 106037.
[http://dx.doi.org/10.1016/j.compbiomed.2022.106037] [PMID: 36044785]
[40]
Hashimoto I, Kimura Y, Oue N, et al. Identification of a biomarker combination for survival stratification in pStage II/III gastric cancer after curative resection. Cancers 2022; 14(18): 4427.
[http://dx.doi.org/10.3390/cancers14184427] [PMID: 36139587]
[41]
Nonsrijun N, Mitchai J, Brown K, Leksomboon R, Tuamsuk P. Overexpression of matrix metalloproteinase 11 in Thai prostatic adenocarcinoma is associated with poor survival. Asian Pac J Cancer Prev 2013; 14(5): 3331-5.
[http://dx.doi.org/10.7314/APJCP.2013.14.5.3331] [PMID: 23803125]
[42]
Wan X, Pu H, Huang W, et al. Androgen-induced miR-135a acts as a tumor suppressor through downregulating RBAK and MMP11, and mediates resistance to androgen deprivation therapy. Oncotarget 2016; 7(32): 51284-300.
[http://dx.doi.org/10.18632/oncotarget.9992] [PMID: 27323416]
[43]
Hsieh CY, Chou YE, Lin CY, et al. Impact of matrix metalloproteinase-11 gene polymorphisms on biochemical recurrence and clinicopathological characteristics of prostate cancer. Int J Environ Res Public Health 2020; 17(22): 8603.
[http://dx.doi.org/10.3390/ijerph17228603] [PMID: 33228130]
[44]
Fernandez-Gomez JM, Eiro N, García-Rodríguez JJ, et al. Metalloproteinase 11, potential marker and molecular target in advanced and castration-resistant prostate cancer. Culture study of peritumoral fibroblasts. Actas Urol Esp 2017; 41(6): 376-82.
[45]
Eiro N, Fernández-Gómez JM, Gonzalez-Ruiz de León C, Fraile M, Gonzalez-Suarez J, Lobo-Rodríguez B, et al. Gene expression profile of stromal factors in cancer-associated fibroblasts from prostate cancer. Diagnostics 2022; 12(7): 1605.
[http://dx.doi.org/10.3390/diagnostics12071605]
[46]
Jones LE, Humphreys MJ, Campbell F, Neoptolemos JP, Boyd MT. Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: Increased expression of matrix metalloproteinase-7 predicts poor survival. Clin Cancer Res 2004; 10(8): 2832-45.
[http://dx.doi.org/10.1158/1078-0432.CCR-1157-03] [PMID: 15102692]
[47]
Lee J, Lee J, Kim JH. Identification of matrix metalloproteinase 11 as a prognostic biomarker in pancreatic cancer. Anticancer Res 2019; 39(11): 5963-71.
[http://dx.doi.org/10.21873/anticanres.13801] [PMID: 31704821]
[48]
Wang H, Lu L, Liang X, Chen Y. Identification of prognostic genes in the pancreatic adenocarcinoma immune microenvironment by integrated bioinformatics analysis. Cancer Immunol Immunother 2022; 71(7): 1757-69.
[http://dx.doi.org/10.1007/s00262-021-03110-3] [PMID: 34854950]
[49]
Xie J, Zhou X, Wang R, et al. Identification of potential diagnostic biomarkers in MMPs for pancreatic carcinoma. Medicine 2021; 100(23): e26135.
[http://dx.doi.org/10.1097/MD.0000000000026135] [PMID: 34114996]
[50]
Vazquez-Ortiz G, Pina-Sanchez P, Vazquez K, et al. Overexpression of cathepsin f, matrix metalloproteinases 11 and 12 in cervical cancer. BMC Cancer 2005; 5(1): 68.
[http://dx.doi.org/10.1186/1471-2407-5-68] [PMID: 15989693]
[51]
Valdivia A, Peralta R, Matute-González M, et al. Co-expression of metalloproteinases 11 and 12 in cervical scrapes cells from cervical precursor lesions. Int J Clin Exp Pathol 2011; 4(7): 674-82.
[PMID: 22076168]
[52]
Jia L, Wang S, Cao J, Zhou H, Wei W, Zhang J. RETRACTED: SiRNA targeted against matrix metalloproteinase 11 inhibits the metastatic capability of murine hepatocarcinoma cell Hca-F to lymph nodes. Int J Biochem Cell Biol 2007; 39(11): 2049-62.
[http://dx.doi.org/10.1016/j.biocel.2007.05.023] [PMID: 17627864]
[53]
Jin Y, Liang ZY, Zhou WX, Zhou L. An MMP-based risk score strongly distinguishes prognosis in hepatocellular carcinoma after resection. Future Oncol 2022; 18(26): 2903-17.
[http://dx.doi.org/10.2217/fon-2021-1558] [PMID: 35861053]
[54]
Stojic J, Hagemann C, Haas S, et al. Expression of matrix metalloproteinases MMP-1, MMP-11 and MMP-19 is correlated with the WHO-grading of human malignant gliomas. Neurosci Res 2008; 60(1): 40-9.
[http://dx.doi.org/10.1016/j.neures.2007.09.009] [PMID: 17980449]
[55]
Meneses-García A, Herrera J, Mohar A, García-Cuellar C, Súchil-Bernal L. Metalloproteinase (MMP-1, 2 and 11), tissue inhibitor of metalloproteinase-1 (TIMP-1), and p53 expression in nasal-type angiocentric T/NK-cell lymphoma: An immunohistochemical study Gac Med Mex 2005; 141(4): 291-6.
[PMID: 16164124]
[56]
Duan S, Guo Y. Expression and clinical significance of stromelysin-3 in laryngeal cancer Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2008; 22(3): 104-7.
[PMID: 18476627]
[57]
Li Z, Ding S, Zhong Q, Li G, Zhang Y, Huang XC. Significance of MMP11 and P14(ARF) expressions in clinical outcomes of patients with laryngeal cancer. Int J Clin Exp Med 2015; 8(9): 15581-90.
[PMID: 26629052]
[58]
Hsin CH, Chen MK, Tang CH, et al. High level of plasma matrix metalloproteinase-11 is associated with clinicopathological characteristics in patients with oral squamous cell carcinoma. PLoS One 2014; 9(11): e113129-9.
[http://dx.doi.org/10.1371/journal.pone.0113129] [PMID: 25423087]
[59]
Hsin CH, Chou YE, Yang SF, et al. MMP-11 promoted the oral cancer migration and FAK/Src activation. Oncotarget 2017; 8(20): 32783-93.
[http://dx.doi.org/10.18632/oncotarget.15824] [PMID: 28427180]
[60]
Tongtawee T, Kaewpitoon SJ, Loyd R, et al. High expression of matrix metalloproteinase-11 indicates poor prognosis in human cholangiocarcinoma. Asian Pac J Cancer Prev 2015; 16(9): 3697-701.
[http://dx.doi.org/10.7314/APJCP.2015.16.9.3697] [PMID: 25987024]
[61]
Shen H, Bai X, Liu J, Liu P, Zhang T. Screening potential biomarkers of cholangiocarcinoma based on gene chip meta-analysis and small-sample experimental research. Front Oncol 2022; 12: 1001400.
[http://dx.doi.org/10.3389/fonc.2022.1001400] [PMID: 36300097]
[62]
Chen GL, Wang SC, Huang WC, et al. The association of MMP-11 promoter polymorphisms with susceptibility to lung cancer in Taiwan. Anticancer Res 2019; 39(10): 5375-80.
[http://dx.doi.org/10.21873/anticanres.13731] [PMID: 31570432]
[63]
Sharma R, Chattopadhyay TK, Mathur M, Ralhan R. Prognostic significance of stromelysin-3 and tissue inhibitor of matrix metalloproteinase-2 in esophageal cancer. Oncology 2004; 67(3-4): 300-9.
[http://dx.doi.org/10.1159/000081331] [PMID: 15557792]
[64]
Feng Z, Qu J, Liu X, et al. Integrated bioinformatics analysis of differentially expressed genes and immune cell infiltration characteristics in Esophageal Squamous cell carcinoma. Sci Rep 2021; 11(1): 16696.
[http://dx.doi.org/10.1038/s41598-021-96274-y] [PMID: 34404882]
[65]
Li CC, Hsieh MJ, Wang SS, et al. Impact of matrix metalloproteinases 11 gene variants on urothelial cell carcinoma development and clinical characteristics. Int J Environ Res Public Health 2020; 17(2): 475.
[http://dx.doi.org/10.3390/ijerph17020475] [PMID: 31940762]
[66]
Li WM, Wei YC, Huang CN, et al. Matrix metalloproteinase-11 as a marker of metastasis and predictor of poor survival in urothelial carcinomas. J Surg Oncol 2016; 113(6): 700-7.
[http://dx.doi.org/10.1002/jso.24195] [PMID: 26861489]
[67]
Chen C, Liu X, Jiang J, et al. Matrix metalloproteinase 11 is a potential biomarker in bladder cancer diagnosis and prognosis. OncoTargets Ther 2020; 13: 9059-69.
[http://dx.doi.org/10.2147/OTT.S243452] [PMID: 32982295]
[68]
Shen C, Da L, Wu Z, et al. Expression and prognostic significance of the MMP family molecules in bladder cancer. Comb Chem High Throughput Screen 2021; 24(8): 1183-96.
[http://dx.doi.org/10.2174/1386207323666200917103253] [PMID: 32940175]
[69]
Zhao H, Chen Z, Fang Y, et al. Prediction of prognosis and recurrence of bladder cancer by ECM-related genes. J Immunol Res 2022; 2022: 1-16.
[http://dx.doi.org/10.1155/2022/1793005] [PMID: 35450397]
[70]
Zou M, Zhang C, Sun Y, et al. Comprehensive analysis of matrix metalloproteinases and their inhibitors in head and neck squamous cell carcinoma. Acta Oncol 2022; 61(4): 505-15.
[http://dx.doi.org/10.1080/0284186X.2021.2009564] [PMID: 34879791]
[71]
Tong CCL, Koptyra M, Raman P, et al. Targeted gene expression profiling of inverted papilloma and squamous cell carcinoma. Int Forum Allergy Rhinol 2022; 12(2): 200-9.
[http://dx.doi.org/10.1002/alr.22882] [PMID: 34510780]
[72]
Gómez-Macías GS, Garza-Rodríguez ML, Garza-Guajardo R, et al. Overexpression of the matrix metalloproteinase 11 gene is a potential biomarker for type 1 endometrial cancer. Oncol Lett 2018; 16(1): 1073-8.
[PMID: 29963184]
[73]
Governini L, Marrocco C, Semplici B, et al. Extracellular matrix remodeling and inflammatory pathway in human endometrium: Insights from uterine leiomyomas. Fertil Steril 2021; 116(5): 1404-14.
[http://dx.doi.org/10.1016/j.fertnstert.2021.06.023] [PMID: 34256950]
[74]
Xu J, Fang Y, Chen K, et al. Single-cell RNA sequencing reveals the tissue architecture in human high-grade serous ovarian cancer. Clin Cancer Res 2022; 28(16): 3590-602.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-0296] [PMID: 35675036]
[75]
Greco M, Arcidiacono B, Chiefari E, Vitagliano T, et al. HMGA1 and MMP-11 are overexpressed in human non-melanoma skin cancer. Anticancer Res 2018; 38(2): 771-8.
[76]
Chen YT, Chen WT, Huang WT, Wu CC, Chai CY. Expression of MMP‐2, MMP‐9 and MMP-11 in dermatofibroma and dermatofibrosarcoma protuberans. Kaohsiung J Med Sci 2012; 28(10): 545-9.
[http://dx.doi.org/10.1016/j.kjms.2012.04.017] [PMID: 23089320]
[77]
Wang T, Zhang Y, Bai J, Xue Y, Peng Q. MMP1 and MMP9 are potential prognostic biomarkers and targets for uveal melanoma. BMC Cancer 2021; 21(1): 1068.
[http://dx.doi.org/10.1186/s12885-021-08788-3] [PMID: 34587931]
[78]
Brasse D, Mathelin C, Leroux K, et al. Matrix metalloproteinase 11/stromelysin-3 exerts both activator and repressor functions during the hematogenous metastatic process in mice. Int J Cancer 2010; 127(6): 1347-55.
[http://dx.doi.org/10.1002/ijc.25309] [PMID: 20209494]
[79]
Eiro N, Cid S, Fernández B, et al. MMP11 expression in intratumoral inflammatory cells in breast cancer. Histopathology 2019; 75(6): 916-30.
[http://dx.doi.org/10.1111/his.13956] [PMID: 31342542]
[80]
Yang H, Jiang P, Liu D, et al. Matrix metalloproteinase 11 is a potential therapeutic target in lung adenocarcinoma. Mol Ther Oncolytics 2019; 14: 82-93.
[http://dx.doi.org/10.1016/j.omto.2019.03.012] [PMID: 31024988]
[81]
Peruzzi D, Mori F, Conforti A, et al. MMP11: A novel target antigen for cancer immunotherapy. Clin Cancer Res 2009; 15(12): 4104-13.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-3226]
[82]
Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 2001; 93(3): 178-93.
[http://dx.doi.org/10.1093/jnci/93.3.178] [PMID: 11158186]
[83]
Sathyanarayanan A, Natarajan A, Paramasivam OR, Gopinath P, Gopal G. Comprehensive analysis of genomic alterations, clinical outcomes, putative functions and potential therapeutic value of MMP11 in human breast cancer. Gene Rep 2020; 21: 100852.
[http://dx.doi.org/10.1016/j.genrep.2020.100852]
[84]
Roscilli G, Cappelletti M, De Vitis C, et al. Circulating MMP11 and specific antibody immune response in breast and prostate cancer patients. J Transl Med 2014; 12(1): 54.
[http://dx.doi.org/10.1186/1479-5876-12-54] [PMID: 24564996]
[85]
Han H-B, Gu J, Zuo H-J, et al. Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer. J Pathol 2011; 226(3): 544-55.
[86]
Yang L, Si H, Ma M, et al. LINC00221 silencing prevents the progression of hepatocellular carcinoma through let-7a-5p-targeted inhibition of MMP11. Cancer Cell Int 2021; 21(1): 202.
[http://dx.doi.org/10.1186/s12935-021-01819-w] [PMID: 33836753]
[87]
Liu S, Wu M, Peng M. Circ_0000260 regulates the development and deterioration of gastric adenocarcinoma with cisplatin resistance by upregulating MMP11 via targeting MiR-129-5p. Cancer Manag Res 2020; 12: 10505-19.
[http://dx.doi.org/10.2147/CMAR.S272324] [PMID: 33122949]
[88]
Bi Q, Tang S, Xia L, et al. Ectopic expression of MiR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF. PLoS One 2012; 7(6): 90-e40169.
[89]
Song M, Wang N, Li Z, et al. miR-125a-3p suppresses the growth and progression of papillary thyroid carcinoma cell by targeting MMP11. J Cell Biochem 2020; 121(2): 984-95.
[http://dx.doi.org/10.1002/jcb.29333] [PMID: 31489990]
[90]
Waresijiang N, Sun J, Abuduaini R, Jiang T, Zhou W, Yuan H. The downregulation of miR-125a-5p functions as a tumor suppressor by directly targeting MMP-11 in osteosarcoma. Mol Med Rep 2016; 13(6): 4859-64.
[http://dx.doi.org/10.3892/mmr.2016.5141] [PMID: 27081863]
[91]
Li Z, Chen Z, Feng Y, Hu G, Jiang Y. CircMMP11 acts as a ce-circRNA in breast cancer progression by regulating miR-1204. Am J Transl Res 2020; 12(6): 2585-99.
[PMID: 32655792]
[92]
Wu X, Ren Y, Yao R, Zhou L, Fan R. Circular RNA circ-MMP11 contributes to lapatinib resistance of breast cancer cells by regulating the miR-153-3p/ANLN axis. Front Oncol 2021; 11: 639961.
[http://dx.doi.org/10.3389/fonc.2021.639961] [PMID: 34295807]
[93]
Wang Y, Wei Y, Fan X, et al. MicroRNA -125b as a tumor suppressor by targeting MMP11 in breast cancer. Thorac Cancer 2020; 11(6): 1613-20.
[http://dx.doi.org/10.1111/1759-7714.13441] [PMID: 32291953]
[94]
Xu G, Zhang B, Ye J, et al. Exosomal miRNA-139 in cancer-associated fibroblasts inhibits gastric cancer progression by repressing MMP11 expression. Int J Biol Sci 2019; 15(11): 2320-9.
[http://dx.doi.org/10.7150/ijbs.33750] [PMID: 31595150]
[95]
Wu D, Li M, Wang L, et al. microRNA-145 inhibits cell proliferation, migration and invasion by targeting matrix metallopeptidase-11 in renal cell carcinoma. Mol Med Rep 2014; 10(1): 393-8.
[http://dx.doi.org/10.3892/mmr.2014.2149] [PMID: 24737449]
[96]
Tang L, Wei D, Yan F. MicroRNA-145 functions as a tumor suppressor by targeting matrix metalloproteinase 11 and Rab GTPase family 27a in triple-negative breast cancer. Cancer Gene Ther 2016; 23(8): 258-65.
[http://dx.doi.org/10.1038/cgt.2016.27] [PMID: 27364572]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy