Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Chronic Lithium Treatment Alters NMDA and AMPA Receptor Synaptic Availability and Dendritic Spine Organization in the Rat Hippocampus

Author(s): Lucia Caffino, Giorgia Targa, Anne Stephanie Mallien, Francesca Mottarlini, Beatrice Rizzi, Judith R. Homberg, Peter Gass and Fabio Fumagalli*

Volume 22, Issue 12, 2024

Published on: 15 September, 2023

Page: [2045 - 2058] Pages: 14

DOI: 10.2174/1570159X21666230913144420

Price: $65

Abstract

Background: The mechanisms underlying the action of lithium (LiCl) in bipolar disorder (BD) are still far from being completely understood. Previous evidence has revealed that BD is characterized by glutamate hyperexcitability, suggesting that LiCl may act, at least partially, by toning down glutamatergic signaling abnormalities.

Objective: In this study, taking advantage of western blot and confocal microscopy, we used a combination of integrative molecular and morphological approaches in rats exposed to repeated administration of LiCl at a therapeutic dose (between 0.6 and 1.2 mmol/l) and sacrificed at two different time points, i.e., 24 hours and 7 days after the last exposure.

Results: We report that repeated LiCl treatment activates multiple, parallel, but also converging forms of compensatory neuroplasticity related to glutamatergic signaling. More specifically, LiCl promoted a wave of neuroplasticity in the hippocampus, involving the synaptic recruitment of GluN2A-containing NMDA receptors, GluA1-containing AMPA receptors, and the neurotrophin BDNF that are indicative of a more plastic spine. The latter is evidenced by morphological analyses showing changes in dendritic spine morphology, such as increased length and head diameter of such spines. These changes may counteract the potentially negative extra-synaptic movements of GluN2B-containing NMDA receptors as well as the increase in the formation of GluA2-lacking Ca2+-permeable AMPA receptors.

Conclusion: Our findings highlight a previously unknown cohesive picture of the glutamatergic implications of LiCl action that persist long after the end of its administration, revealing for the first time a profound and persistent reorganization of the glutamatergic postsynaptic density receptor composition and structure.

Keywords: Bipolar disorder, lithium, glutamate, NMDA receptor, AMPA receptor, hippocampus, BDNF.

Graphical Abstract
[1]
Young, A.H.; MacPherson, H. Detection of bipolar disorder. Br. J. Psychiatry, 2011, 199(1), 3-4.
[http://dx.doi.org/10.1192/bjp.bp.110.089128] [PMID: 21719873]
[2]
Kavalali, E.T.; Monteggia, L.M. Targeting homeostatic synaptic plasticity for treatment of mood disorders. Neuron, 2020, 106(5), 715-726.
[http://dx.doi.org/10.1016/j.neuron.2020.05.015] [PMID: 32497508]
[3]
Vieta, E.; Valentí, M. Pharmacological management of bipolar depression: acute treatment, maintenance, and prophylaxis. CNS Drugs, 2013, 27(7), 515-529.
[http://dx.doi.org/10.1007/s40263-013-0073-y] [PMID: 23749421]
[4]
Malhi, G.S.; Outhred, T. Therapeutic mechanisms of lithium in bipolar disorder: Recent advances and current understanding. CNS Drugs, 2016, 30(10), 931-949.
[http://dx.doi.org/10.1007/s40263-016-0380-1] [PMID: 27638546]
[5]
Zanni, G.; Michno, W.; Di Martino, E.; Tjärnlund-Wolf, A.; Pettersson, J.; Mason, C.E.; Hellspong, G.; Blomgren, K.; Hanrieder, J. Lithium accumulates in neurogenic brain regions as revealed by high resolution ion imaging. Sci. Rep., 2017, 7(1), 40726.
[http://dx.doi.org/10.1038/srep40726] [PMID: 28098178]
[6]
Stout, J.; Hozer, F.; Coste, A.; Mauconduit, F.; Djebrani-Oussedik, N.; Sarrazin, S.; Poupon, J.; Meyrel, M.; Romanzetti, S.; Etain, B.; Rabrait-Lerman, C.; Houenou, J.; Bellivier, F.; Duchesnay, E.; Boumezbeur, F. Accumulation of lithium in the hippocampus of patients with bipolar disorder: A lithium-7 magnetic resonance imaging study at 7 tesla. Biol. Psychiatry, 2020, 88(5), 426-433.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.1181] [PMID: 32340717]
[7]
Hajek, T.; Kopecek, M.; Höschl, C.; Alda, M. Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. J. Psychiatry Neurosci., 2012, 37(5), 333-343.
[http://dx.doi.org/10.1503/jpn.110143] [PMID: 22498078]
[8]
Michael, N.; Erfurth, A.; Ohrmann, P.; Gössling, M.; Arolt, V.; Heindel, W.; Pfleiderer, B. Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex. Psychopharmacology (Berl.), 2003, 168(3), 344-346.
[http://dx.doi.org/10.1007/s00213-003-1440-z] [PMID: 12684737]
[9]
Öngür, D.; Jensen, J.E.; Prescot, A.P.; Stork, C.; Lundy, M.; Cohen, B.M.; Renshaw, P.F. Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol. Psychiatry, 2008, 64(8), 718-726.
[http://dx.doi.org/10.1016/j.biopsych.2008.05.014] [PMID: 18602089]
[10]
Lan, M.J.; McLoughlin, G.A.; Griffin, J.L.; Tsang, T.M.; Huang, J.T.J.; Yuan, P.; Manji, H.; Holmes, E.; Bahn, S. Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol. Psychiatry, 2009, 14(3), 269-279.
[http://dx.doi.org/10.1038/sj.mp.4002130] [PMID: 18256615]
[11]
Chitty, K.M.; Lagopoulos, J.; Lee, R.S.C.; Hickie, I.B.; Hermens, D.F. A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. Eur. Neuropsychopharmacol., 2013, 23(11), 1348-1363.
[http://dx.doi.org/10.1016/j.euroneuro.2013.07.007] [PMID: 23968965]
[12]
Mertens, J.; Wang, Q.W.; Kim, Y.; Yu, D.X.; Pham, S.; Yang, B.; Zheng, Y.; Diffenderfer, K.E.; Zhang, J.; Soltani, S.; Eames, T.; Schafer, S.T.; Boyer, L.; Marchetto, M.C.; Nurnberger, J.I.; Calabrese, J.R.; Oedegaard, K.J.; McCarthy, M.J.; Zandi, P.P.; Alda, M.; Nievergelt, C.M.; Mi, S.; Brennand, K.J.; Kelsoe, J.R.; Gage, F.H.; Yao, J. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature, 2015, 527(7576), 95-99.
[http://dx.doi.org/10.1038/nature15526] [PMID: 26524527]
[13]
Nonaka, S.; Hough, C.J.; Chuang, D.M. Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx. Proc. Natl. Acad. Sci. USA, 1998, 95(5), 2642-2647.
[http://dx.doi.org/10.1073/pnas.95.5.2642] [PMID: 9482940]
[14]
Gideons, E.S.; Lin, P.Y.; Mahgoub, M.; Kavalali, E.T.; Monteggia, L.M. Chronic lithium treatment elicits its antimanic effects via BDNF-TrkB dependent synaptic downscaling. eLife, 2017, 6, e25480.
[http://dx.doi.org/10.7554/eLife.25480] [PMID: 28621662]
[15]
Tang, W.; Cory, B.; Lim, K.L.; Fivaz, M. The mood stabilizer lithium slows down synaptic vesicle cycling at glutamatergic synapses. Neuromolecular Med., 2023, 25(1), 125-135.
[http://dx.doi.org/10.1007/s12017-022-08729-8] [PMID: 36436129]
[16]
Liu, Z.; Song, D.; Yan, E.; Verkhratsky, A.; Peng, L. Chronic treatment with anti-bipolar drugs suppresses glutamate release from astroglial cultures. Amino Acids, 2015, 47(5), 1045-1051.
[http://dx.doi.org/10.1007/s00726-015-1936-y] [PMID: 25676933]
[17]
Uezato, A.; Meador-Woodruff, J.H.; McCullumsmith, R.E. Vesicular glutamate transporter mRNA expression in the medial temporal lobe in major depressive disorder, bipolar disorder, and schizophrenia. Bipolar Disord., 2009, 11(7), 711-725.
[http://dx.doi.org/10.1111/j.1399-5618.2009.00752.x] [PMID: 19839996]
[18]
Eastwood, S.L.; Harrison, P.J. Markers of glutamate synaptic transmission and plasticity are increased in the anterior cingulate cortex in bipolar disorder. Biol. Psychiatry, 2010, 67(11), 1010-1016.
[http://dx.doi.org/10.1016/j.biopsych.2009.12.004] [PMID: 20079890]
[19]
Dixon, J.F.; Hokin, L.E. Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex. Proc. Natl. Acad. Sci. USA, 1998, 95(14), 8363-8368.
[http://dx.doi.org/10.1073/pnas.95.14.8363] [PMID: 9653192]
[20]
Du, J.; Gray, N.A.; Falke, C.A.; Chen, W.; Yuan, P.; Szabo, S.T.; Einat, H.; Manji, H.K. Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression. J. Neurosci., 2004, 24(29), 6578-6589.
[http://dx.doi.org/10.1523/JNEUROSCI.1258-04.2004] [PMID: 15269270]
[21]
Khayachi, A.; Ase, A.; Liao, C.; Kamesh, A.; Kuhlmann, N.; Schorova, L.; Chaumette, B.; Dion, P.; Alda, M.; Séguéla, P.; Rouleau, G.; Milnerwood, A. Chronic lithium treatment alters the excitatory/inhibitory balance of synaptic networks and reduces mGluR5–PKC signalling in mouse cortical neurons. J. Psychiatry Neurosci., 2021, 46(3), E402-E414.
[http://dx.doi.org/10.1503/jpn.200185] [PMID: 34077150]
[22]
Roberts-Wolfe, D.; Kalivas, P. Glutamate transporter GLT-1 as a therapeutic target for substance use disorders. CNS Neurol. Disord. Drug Targets, 2015, 14(6), 745-756.
[http://dx.doi.org/10.2174/1871527314666150529144655] [PMID: 26022265]
[23]
Bridges, R.; Lutgen, V.; Lobner, D.; Baker, D.A. Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol. Rev., 2012, 64(3), 780-802.
[http://dx.doi.org/10.1124/pr.110.003889] [PMID: 22759795]
[24]
Vickers, C.A.; Stephens, B.; Bowen, J.; Arbuthnott, G.W.; Grant, S.G.N.; Ingham, C.A. Neurone specific regulation of dendritic spines in vivo by post synaptic density 95 protein (PSD-95). Brain Res., 2006, 1090(1), 89-98.
[http://dx.doi.org/10.1016/j.brainres.2006.03.075] [PMID: 16677619]
[25]
Haas, K.T.; Compans, B.; Letellier, M.; Bartol, T.M.; Grillo-Bosch, D.; Sejnowski, T.J.; Sainlos, M.; Choquet, D.; Thoumine, O.; Hosy, E. Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. eLife, 2018, 7, e31755.
[http://dx.doi.org/10.7554/eLife.31755] [PMID: 30044218]
[26]
Blacker, C.J.; Lewis, C.P.; Frye, M.A.; Veldic, M. Metabotropic glutamate receptors as emerging research targets in bipolar disorder. Psychiatry Res., 2017, 257, 327-337.
[http://dx.doi.org/10.1016/j.psychres.2017.07.059] [PMID: 28800512]
[27]
Yasuda, R.; Hayashi, Y.; Hell, J.W. CαMKII: A central molecular organizer of synaptic plasticity, learning and memory. Nat. Rev. Neurosci., 2022, 23(11), 666-682.
[http://dx.doi.org/10.1038/s41583-022-00624-2] [PMID: 36056211]
[28]
Martin, J.L.; Finsterwald, C. Cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development. Commun. Integr. Biol., 2011, 4(1), 14-16.
[http://dx.doi.org/10.4161/cib.13761] [PMID: 21509169]
[29]
Popović, N.; Stojiljković, V.; Pejić, S.; Todorović, A.; Pavlović, I.; Gavrilović, L.; Pajović, S.B. Modulation of hippocampal antioxidant defense system in chronically stressed rats by lithium. Oxid. Med. Cell. Longev., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/8745376] [PMID: 30911352]
[30]
Wijeratne, C.; Draper, B. Reformulation of current recommendations for target serum lithium concentration according to clinical indication, age and physical comorbidity. Aust. N. Z. J. Psychiatry, 2011, 45(12), 1026-1032.
[http://dx.doi.org/10.3109/00048674.2011.610296] [PMID: 21961481]
[31]
Gass, P.; Prior, P.; Kiessling, M. Correlation stress protein between seizure intensity and expression after limbic epilepsy in the rat brain. Neuroscience, 1995, 65(l), 27-36.
[http://dx.doi.org/10.1016/0306-4522(95)92049-P] [PMID: 7753400]
[32]
Caffino, L.; Giannotti, G.; Messa, G.; Mottarlini, F.; Fumagalli, F. Repeated cocaine exposure dysregulates BDNF expression and signaling in the mesocorticolimbic pathway of the adolescent rat. World J. Biol. Psychiatry, 2019, 20(7), 531-544.
[http://dx.doi.org/10.1080/15622975.2018.1433328] [PMID: 29380665]
[33]
Piva, A.; Caffino, L.; Padovani, L.; Pintori, N.; Mottarlini, F.; Sferrazza, G.; Paolone, G.; Fumagalli, F.; Chiamulera, C. The metaplastic effects of ketamine on sucrose renewal and contextual memory reconsolidation in rats. Behav. Brain Res., 2020, 379, 112347.
[http://dx.doi.org/10.1016/j.bbr.2019.112347] [PMID: 31706797]
[34]
Caffino, L.; Verheij, M.M.M.; Roversi, K.; Targa, G.; Mottarlini, F.; Popik, P.; Nikiforuk, A.; Golebiowska, J.; Fumagalli, F.; Homberg, J.R. Hypersensitivity to amphetamine’s psychomotor and reinforcing effects in serotonin transporter knockout rats: Glutamate in the nucleus accumbens. Br. J. Pharmacol., 2020, 177(19), 4532-4547.
[http://dx.doi.org/10.1111/bph.15211] [PMID: 32721055]
[35]
Caffino, L.; Giannotti, G.; Malpighi, C.; Racagni, G.; Fumagalli, F. Short-term withdrawal from developmental exposure to cocaine activates the glucocorticoid receptor and alters spine dynamics. Eur. Neuropsychopharmacol., 2015, 25(10), 1832-1841.
[http://dx.doi.org/10.1016/j.euroneuro.2015.05.002] [PMID: 26004981]
[36]
Mottarlini, F.; Targa, G.; Bottan, G.; Tarenzi, B.; Fumagalli, F.; Caffino, L. Cortical reorganization of the glutamate synapse in the activity‐based anorexia rat model: Impact on cognition. J. Neurochem., 2022, 161(4), 350-365.
[http://dx.doi.org/10.1111/jnc.15605] [PMID: 35257377]
[37]
Harris, K.M.; Jensen, F.E.; Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [published erratum appears in J Neurosci 1992; 12(8): Following table of contents]. J. Neurosci., 1992, 12(7), 2685-2705.
[http://dx.doi.org/10.1523/JNEUROSCI.12-07-02685.1992] [PMID: 1613552]
[38]
Gardoni, F.; Di Luca, M.; Malinverno, M.; Marcello, E.; Verpelli, C.; Sala, C.; Di Luca, M. The neuropeptide PACAP38 induces dendritic spine remodeling through ADAM10/N-Cadherin signaling pathway. J. Cell Sci., 2012, 125(Pt 6), jcs.097576.
[http://dx.doi.org/10.1242/jcs.097576] [PMID: 22328515]
[39]
Franchini, L.; Carrano, N.; Di Luca, M.; Gardoni, F. Synaptic GluN2A-containing NMDA receptors: From physiology to pathological synaptic plasticity. Int. J. Mol. Sci., 2020, 21(4), 1538.
[http://dx.doi.org/10.3390/ijms21041538] [PMID: 32102377]
[40]
Shipton, O.A.; Paulsen, O. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1633, 2013, 369.
[http://dx.doi.org/10.1098/rstb.2013.0163] [PMID: 24298164]
[41]
Hardingham, G.E.; Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci., 2010, 11(10), 682-696.
[http://dx.doi.org/10.1038/nrn2911] [PMID: 20842175]
[42]
Gebhardt, C.; Cull-Candy, S.G. Lithium acts as a potentiator of AMPAR currents in hippocampal CA1 cells by selectively increasing channel open probability. J. Physiol., 2010, 588(20), 3933-3941.
[http://dx.doi.org/10.1113/jphysiol.2010.195115] [PMID: 20807790]
[43]
Man, H.Y. GluA2-lacking, calcium-permeable AMPA receptors — inducers of plasticity? Curr. Opin. Neurobiol., 2011, 21(2), 291-298.
[http://dx.doi.org/10.1016/j.conb.2011.01.001] [PMID: 21295464]
[44]
Sourial-Bassillious, N.; Rydelius, P.A.; Aperia, A.; Aizman, O. Glutamate-mediated calcium signaling: A potential target for lithium action. Neuroscience, 2009, 161(4), 1126-1134.
[http://dx.doi.org/10.1016/j.neuroscience.2009.04.013] [PMID: 19362133]
[45]
Borroto-Escuela, D.O.; Tarakanov, A.O.; Brito, I.; Fuxe, K. Glutamate heteroreceptor complexes in the brain. Pharmacol. Rep., 2018, 70(5), 936-950.
[http://dx.doi.org/10.1016/j.pharep.2018.04.002] [PMID: 30103174]
[46]
Spampinato, S.F.; Copani, A.; Nicoletti, F.; Sortino, M.A.; Caraci, F. Metabotropic glutamate receptors in glial cells: A new potential target for neuroprotection? Front. Mol. Neurosci., 2018, 11, 414.
[http://dx.doi.org/10.3389/fnmol.2018.00414] [PMID: 30483053]
[47]
De Bundel, D.; Schallier, A.; Loyens, E.; Fernando, R.; Miyashita, H.; Van Liefferinge, J.; Vermoesen, K.; Bannai, S.; Sato, H.; Michotte, Y.; Smolders, I.; Massie, A. Loss of system x(c)- does not induce oxidative stress but decreases extracellular glutamate in hippocampus and influences spatial working memory and limbic seizure susceptibility. J. Neurosci., 2011, 31(15), 5792-5803.
[http://dx.doi.org/10.1523/JNEUROSCI.5465-10.2011] [PMID: 21490221]
[48]
Léveillé, F.; gaamouch, F.E.; Gouix, E.; Lecocq, M.; Lobner, D.; Nicole, O.; Buisson, A. Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J., 2008, 22(12), 4258-4271.
[http://dx.doi.org/10.1096/fj.08-107268] [PMID: 18711223]
[49]
Liu, Y.; Wong, T.P.; Aarts, M.; Rooyakkers, A.; Liu, L.; Lai, T.W.; Wu, D.C.; Lu, J.; Tymianski, M.; Craig, A.M.; Wang, Y.T. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J. Neurosci., 2007, 27(11), 2846-2857.
[http://dx.doi.org/10.1523/JNEUROSCI.0116-07.2007] [PMID: 17360906]
[50]
Parekh, P.K.; Becker-Krail, D.; Sundaravelu, P.; Ishigaki, S.; Okado, H.; Sobue, G.; Huang, Y.; McClung, C.A. Altered GluA1 (Gria1) Function and Accumbal Synaptic Plasticity in the ClockΔ19 Model of Bipolar Mania. Biol. Psychiatry, 2018, 84(11), 817-826.
[http://dx.doi.org/10.1016/j.biopsych.2017.06.022] [PMID: 28780133]
[51]
Xiao, D.; Liu, L.; Li, Y.; Ruan, J.; Wang, H.; Licorisoflavan, A. Licorisoflavan A Exerts Antidepressant-Like Effect in Mice: Involvement of BDNF-TrkB Pathway and AMPA Receptors. Neurochem. Res., 2019, 44(9), 2044-2056.
[http://dx.doi.org/10.1007/s11064-019-02840-2] [PMID: 31278631]
[52]
Jacot-Descombes, S.; Keshav, N.U.; Dickstein, D.L.; Wicinski, B.; Janssen, W.G.M.; Hiester, L.L.; Sarfo, E.K.; Warda, T.; Fam, M.M.; Harony-Nicolas, H.; Buxbaum, J.D.; Hof, P.R.; Varghese, M. Altered synaptic ultrastructure in the prefrontal cortex of Shank3-deficient rats. Mol. Autism, 2020, 11(1), 89.
[http://dx.doi.org/10.1186/s13229-020-00393-8] [PMID: 33203459]
[53]
Bourne, J.; Harris, K.M. Do thin spines learn to be mushroom spines that remember? Curr. Opin. Neurobiol., 2007, 17(3), 381-386.
[http://dx.doi.org/10.1016/j.conb.2007.04.009] [PMID: 17498943]
[54]
Bosch, M.; Hayashi, Y. Structural plasticity of dendritic spines. Curr. Opin. Neurobiol., 2012, 22(3), 383-388.
[http://dx.doi.org/10.1016/j.conb.2011.09.002] [PMID: 21963169]
[55]
Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; Garner, P.; Holgate, S.T.; Howells, D.W.; Karp, N.A.; Lazic, S.E.; Lidster, K.; MacCallum, C.J.; Macleod, M.; Pearl, E.J.; Petersen, O.H.; Rawle, F.; Reynolds, P.; Rooney, K.; Sena, E.S.; Silberberg, S.D.; Steckler, T.; Würbel, H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br. J. Pharmacol., 2020, 177(16), 3617-3624.
[http://dx.doi.org/10.1111/bph.15193] [PMID: 32662519]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy