Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Sex-Dependent Synergism of an Edible THC: CBD Formulation in Reducing Anxiety and Depressive-like Symptoms Following Chronic Stress

Author(s): Enzo Pérez-Valenzuela, Roger Hudson, Taygun Uzuneser, Marta De Felice, Hanna Szkudlarek, Walter Rushlow and Steven R. Laviolette*

Volume 22, Issue 12, 2024

Published on: 12 September, 2023

Page: [2059 - 2078] Pages: 20

DOI: 10.2174/1570159X21666230912101441

Price: $65

Abstract

Cannabis has shown therapeutic potential in mood and anxiety-related pathologies. However, the two primary constituents of cannabis, cannabidiol (CBD) and Δ-9-tetrahydrocannabinol (THC) produce distinct effects on molecular pathways in neural circuits associated with affective disorders. Moreover, it has been proposed that the combination of THC: and CBD may have unique synergistic properties. In the present study, the effects of a 1:100 THC: CBD ratio edible formulation were tested in behavioural, neuronal and molecular assays for anxiety and depressive-like endophenotypes. Adult male and female Sprague-Dawley rats were stressed for 14 days. Then, for three weeks, open field, elevated plus maze, light/dark box, social interaction, sucrose preference, and the forced swim test were performed 90 minutes after acute consumption of CBD (30 mg/kg), THC (0.3 mg/kg), or 1:100 combination of THC:CBD. After behavioural tests, in vivo, neuronal electrophysiological analyses were performed in the ventral tegmental area and prefrontal cortex (PFC). Furthermore, western-blot experiments examined the expression of biomarkers associated with mood and anxiety disorders, including protein kinase B (Akt), glycogen synthase kinase-3 (GSK-3), BDNF, mTOR, D1, and D2 receptor in nucleus accumbens (NAc) and PFC.Edible THC:CBD produces significant anxiolytic and antidepressant effects only in stressed male rats. In most cases, the combination of THC and CBD had stronger effects than either phytochemical alone. These synergistic effects are associated with alterations in Akt/GSK3 and D2-R expression in NAc and BDNF expression in PFC. Furthermore, THC:CBD reverses chronic stress-induced alterations in PFC neuronal activity. These findings demonstrate a novel synergistic potential for THC:CBD edible formulations in stress-related pathologies.

Keywords: Cannabis, THC, CBD, anxiety, depression, prefrontal cortex, nucleus accumbens, chronic stress.

Graphical Abstract
[1]
Gorfinkel, L.R.; Stohl, M.; Hasin, D. Association of depression with past-month cannabis use among US adults aged 20 to 59 years, 2005 to 2016. JAMA Netw. Open, 2020, 3(8), e2013802-e2013802.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.13802] [PMID: 32809032]
[2]
Pacek, L.R.; Weinberger, A.H.; Zhu, J.; Goodwin, R.D. Rapid increase in the prevalence of cannabis use among people with depression in the United States, 2005–17: The role of differentially changing risk perceptions. Addiction, 2020, 115(5), 935-943.
[http://dx.doi.org/10.1111/add.14883] [PMID: 31797462]
[3]
Lowe, D.J.E.; Sasiadek, J.D.; Coles, A.S.; George, T.P. Cannabis and mental illness: A review. Eur. Arch. Psychiatry Clin. Neurosci., 2019, 269(1), 107-120.
[http://dx.doi.org/10.1007/s00406-018-0970-7] [PMID: 30564886]
[4]
Bahorik, A.L.; Satre, D.D.; Kline-Simon, A.H.; Weisner, C.M.; Campbell, C.I. Alcohol, cannabis, and opioid use disorders, and disease burden in an integrated health care system. J. Addict. Med., 2017, 11(1), 3-9.
[http://dx.doi.org/10.1097/ADM.0000000000000260] [PMID: 27610582]
[5]
Moitra, E.; Anderson, B.J.; Stein, M.D. Reductions in cannabis use are associated with mood improvement in female emerging adults. Depress. Anxiety, 2016, 33(4), 332-338.
[http://dx.doi.org/10.1002/da.22460] [PMID: 26636547]
[6]
O’Sullivan, S.E.; Stevenson, C.W.; Laviolette, S.R. Could cannabidiol be a treatment for coronavirus disease-19-related anxiety disorders? Cannabis Cannabinoid Res., 2021, 6(1), 7-18.
[http://dx.doi.org/10.1089/can.2020.0102] [PMID: 33614948]
[7]
Wright, M.; Di Ciano, P.; Brands, B. Use of Cannabidiol for the Treatment of Anxiety: A Short Synthesis of Pre-Clinical and Clinical Evidence. Cannabis Cannabinoid Res., 2020, 5(3), 191-196.
[http://dx.doi.org/10.1089/can.2019.0052] [PMID: 32923656]
[8]
Micale, V.; Tabiova, K.; Kucerova, J.; Drago, F. Role of the endocannabinoid system in depression: From preclinical to clinical evidence. In: Cannabinoid Modulation of Emotion, Memory, and Motivation; Springer: New York, 2015; pp. 97-129.
[9]
El-Alfy, A.T.; Ivey, K.; Robinson, K.; Ahmed, S.; Radwan, M.; Slade, D.; Khan, I.; ElSohly, M.; Ross, S. Antidepressant-like effect of Δ9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Pharmacol. Biochem. Behav., 2010, 95(4), 434-442.
[http://dx.doi.org/10.1016/j.pbb.2010.03.004] [PMID: 20332000]
[10]
Réus, G.Z.; Stringari, R.B.; Ribeiro, K.F.; Luft, T.; Abelaira, H.M.; Fries, G.R.; Aguiar, B.W.; Kapczinski, F.; Hallak, J.E.; Zuardi, A.W.; Crippa, J.A.; Quevedo, J. Administration of cannabidiol and imipramine induces antidepressant-like effects in the forced swimming test and increases brain-derived neurotrophic factor levels in the rat amygdala. Acta Neuropsychiatr., 2011, 23(5), 241-248.
[http://dx.doi.org/10.1111/j.1601-5215.2011.00579.x] [PMID: 25379896]
[11]
Schiavon, A.P.; Bonato, J.M.; Milani, H.; Guimarães, F.S.; Weffort de Oliveira, R.M. Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 27-34.
[http://dx.doi.org/10.1016/j.pnpbp.2015.06.017] [PMID: 26187374]
[12]
Zanelati, T.V.; Biojone, C.; Moreira, F.A.; Guimarães, F.S.; Joca, S.R.L. Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors. Br. J. Pharmacol., 2010, 159(1), 122-128.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00521.x] [PMID: 20002102]
[13]
Sales, A.J.; Fogaça, M.V.; Sartim, A.G.; Pereira, V.S.; Wegener, G.; Guimarães, F.S.; Joca, S.R.L. Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex. Mol. Neurobiol., 2019, 56(2), 1070-1081.
[http://dx.doi.org/10.1007/s12035-018-1143-4] [PMID: 29869197]
[14]
Sales, A.J.; Crestani, C.C.; Guimarães, F.S.; Joca, S.R.L. Antidepressant-like effect induced by Cannabidiol is dependent on brain serotonin levels. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 86, 255-261.
[http://dx.doi.org/10.1016/j.pnpbp.2018.06.002] [PMID: 29885468]
[15]
Hen-Shoval, D.; Amar, S.; Shbiro, L.; Smoum, R.; Haj, C.G.; Mechoulam, R.; Zalsman, G.; Weller, A.; Shoval, G. Acute oral cannabidiolic acid methyl ester reduces depression-like behavior in two genetic animal models of depression. Behav. Brain Res., 2018, 351, 1-3.
[http://dx.doi.org/10.1016/j.bbr.2018.05.027] [PMID: 29860002]
[16]
Liu, J.; Burnham, M. The effects of CBD and THC in animal models of depression and anxiety. Clin. Neurophysiol., 2019, 130(8), e118-e119.
[http://dx.doi.org/10.1016/j.clinph.2019.03.023]
[17]
Bambico, F.R.; Hattan, P.R.; Garant, J.P.; Gobbi, G. Effect of delta-9-tetrahydrocannabinol on behavioral despair and on pre- and postsynaptic serotonergic transmission. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 38(1), 88-96.
[http://dx.doi.org/10.1016/j.pnpbp.2012.02.006] [PMID: 22386778]
[18]
Blessing, E.M.; Steenkamp, M.M.; Manzanares, J.; Marmar, C.R. Cannabidiol as a potential treatment for anxiety disorders. Neurotherapeutics, 2015, 12(4), 825-836.
[http://dx.doi.org/10.1007/s13311-015-0387-1] [PMID: 26341731]
[19]
Sharpe, L.; Sinclair, J.; Kramer, A.; de Manincor, M.; Sarris, J. Cannabis, a cause for anxiety? A critical appraisal of the anxiogenic and anxiolytic properties. J. Transl. Med., 2020, 18(1), 374.
[http://dx.doi.org/10.1186/s12967-020-02518-2] [PMID: 33008420]
[20]
Rubino, T.; Sala, M.; Viganò, D.; Braida, D.; Castiglioni, C.; Limonta, V.; Guidali, C.; Realini, N.; Parolaro, D. Cellular mechanisms underlying the anxiolytic effect of low doses of peripheral Δ9-tetrahydrocannabinol in rats. Neuropsychopharmacology, 2007, 32(9), 2036-2045.
[http://dx.doi.org/10.1038/sj.npp.1301330] [PMID: 17287821]
[21]
Braida, D.; Limonta, V.; Malabarba, L.; Zani, A.; Sala, M. 5-HT1A receptors are involved in the anxiolytic effect of Δ9-tetrahydrocannabinol and AM 404, the anandamide transport inhibitor, in sprague-dawley rats. Eur. J. Pharmacol., 2007, 555(2-3), 156-163.
[http://dx.doi.org/10.1016/j.ejphar.2006.10.038] [PMID: 17116299]
[22]
Schramm-Sapyta, N.L.; Cha, Y.M.; Chaudhry, S.; Wilson, W.A.; Swartzwelder, H.S.; Kuhn, C.M. Differential anxiogenic, aversive, and locomotor effects of THC in adolescent and adult rats. Psychopharmacology (Berl.), 2007, 191(4), 867-877.
[http://dx.doi.org/10.1007/s00213-006-0676-9] [PMID: 17211649]
[23]
Brown, G.W.; Harris, T. Social origins of depression: A reply. Psychol. Med., 1978, 8(4), 577-588.
[http://dx.doi.org/10.1017/S0033291700018791] [PMID: 724871]
[24]
Kessler, R.C. The effects of stressful life events on depression. Annu. Rev. Psychol., 1997, 48(1), 191-214.
[http://dx.doi.org/10.1146/annurev.psych.48.1.191] [PMID: 9046559]
[25]
Kendler, K.S.; Karkowski, L.M.; Prescott, C.A. Causal relationship between stressful life events and the onset of major depression. Am. J. Psychiatry, 1999, 156(6), 837-841.
[http://dx.doi.org/10.1176/ajp.156.6.837] [PMID: 10360120]
[26]
Berenbaum, H.; Connelly, J. The effect of stress on hedonic capacity. J. Abnorm. Psychol., 1993, 102(3), 474-481.
[http://dx.doi.org/10.1037/0021-843X.102.3.474] [PMID: 8408960]
[27]
Stanton, C.H.; Holmes, A.J.; Chang, S.W.C.; Joormann, J. From stress to anhedonia: Molecular processes through functional Circuits. Trends Neurosci., 2019, 42(1), 23-42.
[http://dx.doi.org/10.1016/j.tins.2018.09.008] [PMID: 30327143]
[28]
Willner, P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol. Stress, 2017, 6, 78-93.
[http://dx.doi.org/10.1016/j.ynstr.2016.08.002] [PMID: 28229111]
[29]
Calhoon, G.G.; Tye, K.M. Resolving the neural circuits of anxiety. Nat. Neurosci., 2015, 18(10), 1394-1404.
[http://dx.doi.org/10.1038/nn.4101] [PMID: 26404714]
[30]
Daviu, N.; Bruchas, M.R.; Moghaddam, B.; Sandi, C.; Beyeler, A. Neurobiological links between stress and anxiety. Neurobiol. Stress, 2019, 11, 100191.
[http://dx.doi.org/10.1016/j.ynstr.2019.100191] [PMID: 31467945]
[31]
Hill, M.N.; Hellemans, K.G.C.; Verma, P.; Gorzalka, B.B.; Weinberg, J. Neurobiology of chronic mild stress: Parallels to major depression. Neurosci. Biobehav. Rev., 2012, 36(9), 2085-2117.
[http://dx.doi.org/10.1016/j.neubiorev.2012.07.001] [PMID: 22776763]
[32]
Licznerski, P.; Duman, R.S. Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression. Neuroscience, 2013, 251, 33-50.
[http://dx.doi.org/10.1016/j.neuroscience.2012.09.057] [PMID: 23036622]
[33]
Guo, F.; Zhang, Q.; Zhang, B.; Fu, Z.; Wu, B.; Huang, C.; Li, Y. Burst-firing patterns in the prefrontal cortex underlying the neuronal mechanisms of depression probed by antidepressants. Eur. J. Neurosci., 2014, 40(10), 3538-3547.
[http://dx.doi.org/10.1111/ejn.12725] [PMID: 25209309]
[34]
Chang, C.; Grace, A.A. Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol. Psychiatry, 2014, 76(3), 223-230.
[http://dx.doi.org/10.1016/j.biopsych.2013.09.020] [PMID: 24209776]
[35]
Abd El-Fattah, A.A.; Fahim, A.T.; Sadik, N.A.H.; Ali, B.M. Resveratrol and dimethyl fumarate ameliorate depression-like behaviour in a rat model of chronic unpredictable mild stress. Brain Res., 2018, 1701, 227-236.
[http://dx.doi.org/10.1016/j.brainres.2018.09.027] [PMID: 30244113]
[36]
Banasr, M.; Lepack, A.; Fee, C.; Duric, V.; Maldonado-Aviles, J.; DiLeone, R.; Sibille, E.; Duman, R.S.; Sanacora, G. Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression. Chronic Stress (Thousand Oaks), 2017, 1.
[http://dx.doi.org/10.1177/2470547017720459] [PMID: 28835932]
[37]
Crofton, E.J.; Nenov, M.N.; Zhang, Y.; Scala, F.; Page, S.A.; McCue, D.L.; Li, D.; Hommel, J.D.; Laezza, F.; Green, T.A. Glycogen synthase kinase 3 beta alters anxiety-, depression-, and addiction-related behaviors and neuronal activity in the nucleus accumbens shell. Neuropharmacology, 2017, 117, 49-60.
[http://dx.doi.org/10.1016/j.neuropharm.2017.01.020] [PMID: 28126496]
[38]
Liu, X.L.; Luo, L.; Mu, R.H.; Liu, B.B.; Geng, D.; Liu, Q.; Yi, L.T. Fluoxetine regulates mTOR signalling in a region-dependent manner in depression-like mice. Sci. Rep., 2015, 5(1), 16024.
[http://dx.doi.org/10.1038/srep16024] [PMID: 26522512]
[39]
Matrov, D.; Vonk, A.; Herm, L.; Rinken, A.; Harro, J. Activating effects of chronic variable stress in rats with different exploratory activity: Association with dopamine d(1) receptor function in nucleus accumbens. Neuropsychobiology, 2011, 64(2), 110-122.
[http://dx.doi.org/10.1159/000325224] [PMID: 21701229]
[40]
Xu, L.Z.; Xu, D.F.; Han, Y.; Liu, L.J.; Sun, C.Y.; Deng, J.H.; Zhang, R.X.; Yuan, M.; Zhang, S.Z.; Li, Z.M.; Xu, Y.; Li, J.S.; Xie, S.H.; Li, S.X.; Zhang, H.Y.; Lu, L. BDNF-GSK-3β-β-catenin pathway in the mPFC is involved in antidepressant-like effects of Morinda officinalis oligosaccharides in rats. Int. J. Neuropsychopharmacol., 2017, 20(1), 83-93.
[PMID: 27729466]
[41]
Kokras, N.; Dalla, C. Preclinical sex differences in depression and antidepressant response: Implications for clinical research. J. Neurosci. Res., 2017, 95(1-2), 731-736.
[http://dx.doi.org/10.1002/jnr.23861] [PMID: 27870451]
[42]
Caldarone, B.J.; Karthigeyan, K.; Harrist, A.; Hunsberger, J.G.; Wittmack, E.; King, S.L.; Jatlow, P.; Picciotto, M.R. Sex differences in response to oral amitriptyline in three animal models of depression in C57BL/6J mice. Psychopharmacology (Berl.), 2003, 170(1), 94-101.
[http://dx.doi.org/10.1007/s00213-003-1518-7] [PMID: 12879206]
[43]
Allen, P.J.; D’Anci, K.E.; Kanarek, R.B.; Renshaw, P.F. Sex-specific antidepressant effects of dietary creatine with and without sub-acute fluoxetine in rats. Pharmacol. Biochem. Behav., 2012, 101(4), 588-601.
[http://dx.doi.org/10.1016/j.pbb.2012.03.005] [PMID: 22429992]
[44]
Fernández-Guasti, A.; Olivares-Nazario, M.; Reyes, R.; Martínez-Mota, L. Sex and age differences in the antidepressant-like effect of fluoxetine in the forced swim test. Pharmacol. Biochem. Behav., 2017, 152, 81-89.
[http://dx.doi.org/10.1016/j.pbb.2016.01.011] [PMID: 26807812]
[45]
Günther, L.; Rothe, J.; Rex, A.; Voigt, J.P.; Millan, M.J.; Fink, H.; Bert, B. 5-HT1A-receptor over-expressing mice: Genotype and sex dependent responses to antidepressants in the forced swim-test. Neuropharmacology, 2011, 61(3), 433-441.
[http://dx.doi.org/10.1016/j.neuropharm.2011.03.004] [PMID: 21419787]
[46]
Cooper, Z.D.; Craft, R.M. Sex-dependent effects of cannabis and cannabinoids: A translational perspective. Neuropsychopharmacol., 2017, 43, 34-51.
[47]
Silote, G.P.; Gatto, M.C.; Eskelund, A.; Guimarães, F.S.; Wegener, G.; Joca, S.R.L. Strain-, sex-, and time-dependent antidepressant-like effects of cannabidiol. Pharmaceuticals (Basel), 2021, 14(12), 1269.
[http://dx.doi.org/10.3390/ph14121269] [PMID: 34959670]
[48]
Riaz, M.S.; Bohlen, M.O.; Gunter, B.W.; Henry, Q.; Stockmeier, C.A.; Paul, I.A. Attenuation of social interaction-associated ultrasonic vocalizations and spatial working memory performance in rats exposed to chronic unpredictable stress. Physiol. Behav., 2015, 152(Pt A), 128-134.
[http://dx.doi.org/10.1016/j.physbeh.2015.09.005] [PMID: 26367455]
[49]
Bondi, C.O.; Rodriguez, G.; Gould, G.G.; Frazer, A.; Morilak, D.A. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacol., 2007, 33, 320-331.
[50]
Pandey, D.K.; Pati, D.; Joshi, A. Chronic unpredictable stress: Possible animal model of comorbid depression. Int J Preclin Pharm Res., 2010, 1, 54-63.
[51]
Shbiro, L.; Hen-Shoval, D.; Hazut, N.; Rapps, K.; Dar, S.; Zalsman, G.; Mechoulam, R.; Weller, A.; Shoval, G. Effects of cannabidiol in males and females in two different rat models of depression. Physiol. Behav., 2019, 201, 59-63.
[http://dx.doi.org/10.1016/j.physbeh.2018.12.019] [PMID: 30571957]
[52]
Varvel, S.A.; Wiley, J.L.; Yang, R.; Bridgen, D.T.; Long, K.; Lichtman, A.H.; Martin, B.R. Interactions between THC and cannabidiol in mouse models of cannabinoid activity. Psychopharmacology (Berl.), 2006, 186(2), 226-234.
[http://dx.doi.org/10.1007/s00213-006-0356-9] [PMID: 16572263]
[53]
Gatica, R.I.; Pérez-Valenzuela, E.; Sierra-Mercado, D.; Fuentealba, J.A. The expression of amphetamine sensitization is dissociable from anxiety and aversive memory: Effect of an acute injection of amphetamine. Neurosci. Lett., 2017, 638, 21-26.
[http://dx.doi.org/10.1016/j.neulet.2016.12.009] [PMID: 27939979]
[54]
Renard, J.; Rosen, L.G.; Loureiro, M.; De Oliveira, C.; Schmid, S.; Rushlow, W.J.; Laviolette, S.R. Adolescent cannabinoid exposure induces a persistent sub-cortical hyper-dopaminergic state and associated molecular adaptations in the prefrontal cortex. Cereb. Cortex, 2017, 27(2), 1297-1310.
[PMID: 26733534]
[55]
De Felice, M.; Renard, J.; Hudson, R.; Szkudlarek, H.J.; Pereira, B.J.; Schmid, S.; Rushlow, W.J.; Laviolette, S.R. L-theanine prevents long-term affective and cognitive side effects of adolescent Δ-9-tetrahydrocannabinol exposure and blocks associated molecular and neuronal abnormalities in the mesocorticolimbic circuitry. J. Neurosci., 2021, 41(4), 739-750.
[http://dx.doi.org/10.1523/JNEUROSCI.1050-20.2020] [PMID: 33268546]
[56]
Hudson, R.; Green, M.; Wright, D.J.; Renard, J.; Jobson, C.E.L.; Jung, T.; Rushlow, W.; Laviolette, S.R. Adolescent nicotine induces depressive and anxiogenic effects through ERK 1-2 and Akt-GSK-3 pathways and neuronal dysregulation in the nucleus accumbens. Addict. Biol., 2021, 26(2), e12891.
[http://dx.doi.org/10.1111/adb.12891] [PMID: 32135573]
[57]
Armario, A. The forced swim test: Historical, conceptual and methodological considerations and its relationship with individual behavioral traits. Neurosci. Biobehav. Rev., 2021, 128, 74-86.
[http://dx.doi.org/10.1016/j.neubiorev.2021.06.014] [PMID: 34118295]
[58]
Gomes, F.V.; Guimarães, F.S.; Grace, A.A. Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia. Int. J. Neuropsychopharmacol., 2014, 18(2), 1-10.
[PMID: 25522381]
[59]
Pérez-Valenzuela, E.J.; Andrés Coke, M.E.; Grace, A.A.; Fuentealba, E.J.A. Adolescent exposure to WIN 55212-2 render the nigrostriatal dopaminergic pathway activated during adulthood. Int. J. Neuropsychopharmacol., 2020, 23(9), 626-637.
[http://dx.doi.org/10.1093/ijnp/pyaa053] [PMID: 32710782]
[60]
Grace, A.A.; Bunney, B.S. The control of firing pattern in nigral dopamine neurons: Single spike firing. J. Neurosci., 1984, 4(11), 2866-2876.
[http://dx.doi.org/10.1523/JNEUROSCI.04-11-02866.1984] [PMID: 6150070]
[61]
Ungless, M.A.; Grace, A.A. Are you or aren’t you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci., 2012, 35(7), 422-430.
[http://dx.doi.org/10.1016/j.tins.2012.02.003] [PMID: 22459161]
[62]
Hudson, R.; Renard, J.; Norris, C.; Rushlow, W.J.; Laviolette, S.R. Cannabidiol counteracts the psychotropic side-effects of Δ-9-tetrahydrocannabinol in the ventral hippocampus through bidirectional control of ERK1-2 phosphorylation. J. Neurosci., 2019, 39(44), 8762-8777.
[http://dx.doi.org/10.1523/JNEUROSCI.0708-19.2019] [PMID: 31570536]
[63]
Renard, J.; Norris, C.; Rushlow, W.; Laviolette, S.R. Neuronal and molecular effects of cannabidiol on the mesolimbic dopamine system: Implications for novel schizophrenia treatments. Neurosci. Biobehav. Rev., 2017, 75, 157-165.
[http://dx.doi.org/10.1016/j.neubiorev.2017.02.006] [PMID: 28185872]
[64]
Rock, E.M.; Limebeer, C.L.; Petrie, G.N.; Williams, L.A.; Mechoulam, R.; Parker, L.A. Effect of prior foot shock stress and Δ9-tetrahydrocannabinol, cannabidiolic acid, and cannabidiol on anxiety-like responding in the light-dark emergence test in rats. Psychopharmacology (Berl.), 2017, 234(14), 2207-2217.
[http://dx.doi.org/10.1007/s00213-017-4626-5] [PMID: 28424834]
[65]
Di Bartolomeo, M.; Stark, T.; Maurel, O.M.; Iannotti, F.A.; Kuchar, M.; Ruda-Kucerova, J. Crosstalk between the transcriptional regulation of dopamine D2 and cannabinoid CB1 receptors in perinatal Δ9-tetrahydrocannabinol occurs in schizophrenia: Analyses in patients and in animal model of the disease. Pharmacol. Res., 2020, 164.
[66]
Stark, T.; Ruda-Kucerova, J.; Iannotti, F.A.; D’Addario, C.; Di Marco, R.; Pekarik, V.; Drazanova, E.; Piscitelli, F.; Bari, M.; Babinska, Z.; Giurdanella, G.; Di Bartolomeo, M.; Salomone, S.; Sulcova, A.; Maccarrone, M.; Wotjak, C.T.; Starcuk, Z., Jr; Drago, F.; Mechoulam, R.; Di Marzo, V.; Micale, V. Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia. Neuropharmacology, 2019, 146, 212-221.
[http://dx.doi.org/10.1016/j.neuropharm.2018.11.035] [PMID: 30496751]
[67]
Stark, T.; Di Martino, S.; Drago, F.; Wotjak, C.T.; Micale, V. Phytocannabinoids and schizophrenia: Focus on adolescence as a critical window of enhanced vulnerability and opportunity for treatment. Pharmacol. Res., 2021, 174, 105938.
[http://dx.doi.org/10.1016/j.phrs.2021.105938] [PMID: 34655773]
[68]
Stark, T.; Di Bartolomeo, M.; Di Marco, R.; Drazanova, E.; Platania, C.B.M.; Iannotti, F.A.; Ruda-Kucerova, J.; D’Addario, C.; Kratka, L.; Pekarik, V.; Piscitelli, F.; Babinska, Z.; Fedotova, J.; Giurdanella, G.; Salomone, S.; Sulcova, A.; Bucolo, C.; Wotjak, C.T.; Starcuk, Z., Jr; Drago, F.; Mechoulam, R.; Di Marzo, V.; Micale, V. Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochem. Pharmacol., 2020, 177, 114004.
[http://dx.doi.org/10.1016/j.bcp.2020.114004] [PMID: 32360362]
[69]
Salviato, B.Z.; Raymundi, A.M.; Rodrigues da Silva, T.; Salemme, B.W.; Batista, S.J.M.; Araújo, F.S.; Guimarães, F.S.; Bertoglio, L.J.; Stern, C.A. Female but not male rats show biphasic effects of low doses of Δ9-tetrahydrocannabinol on anxiety: Can cannabidiol interfere with these effects? Neuropharmacology, 2021, 196, 108684.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108684] [PMID: 34181978]
[70]
Ledesma-Corvi, S.; Hernández-Hernández, E.; García-Fuster, M.J. Exploring pharmacological options for adolescent depression: A preclinical evaluation with a sex perspective. Transl. Psychiatry, 2022, 12(1), 220.
[http://dx.doi.org/10.1038/s41398-022-01994-y] [PMID: 35650182]
[71]
Matheson, J.; Bourgault, Z.; Le Foll, B. Sex differences in the neuropsychiatric effects and pharmacokinetics of cannabidiol: A scoping review. Biomolecules, 2022, 12(10), 1462.
[http://dx.doi.org/10.3390/biom12101462] [PMID: 36291671]
[72]
Wiley, J.L.; Burston, J.J. Sex differences in Δ9-tetrahydrocanna-binol metabolism and in vivo pharmacology following acute and repeated dosing in adolescent rats. Neurosci. Lett., 2014, 576, 51-55.
[http://dx.doi.org/10.1016/j.neulet.2014.05.057] [PMID: 24909619]
[73]
Bradshaw, H.B.; Rimmerman, N.; Krey, J.F.; Walker, J.M. Sex and hormonal cycle differences in rat brain levels of pain-related cannabimimetic lipid mediators. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 291(2), R349-R358.
[http://dx.doi.org/10.1152/ajpregu.00933.2005] [PMID: 16556899]
[74]
Riebe, C.J.N.; Hill, M.N.; Lee, T.T.Y.; Hillard, C.J.; Gorzalka, B.B. Estrogenic regulation of limbic cannabinoid receptor binding. Psychoneuroendocrinology, 2010, 35(8), 1265-1269.
[http://dx.doi.org/10.1016/j.psyneuen.2010.02.008] [PMID: 20207489]
[75]
Zhang, L.; Ma, W.; Barker, J.L.; Rubinow, D.R. Sex differences in expression of serotonin receptors (subtypes 1A and 2A) in rat brain: A possible role of testosterone. Neuroscience, 1999, 94(1), 251-259.
[http://dx.doi.org/10.1016/S0306-4522(99)00234-1] [PMID: 10613515]
[76]
Fattore, L.; Fratta, W. How important are sex differences in cannabinoid action? Br. J. Pharmacol., 2010, 160(3), 544-548.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00776.x] [PMID: 20590564]
[77]
Taffe, M.A.; Creehan, K.M.; Vandewater, S.A. Cannabidiol fails to reverse hypothermia or locomotor suppression induced by Δ9-tetrahydrocannabinol in Sprague-Dawley rats. Br. J. Pharmacol., 2015, 172(7), 1783-1791.
[http://dx.doi.org/10.1111/bph.13024] [PMID: 25425111]
[78]
McMahon, L.R. Enhanced discriminative stimulus effects of Δ9-THC in the presence of cannabidiol and 8-OH-DPAT in rhesus monkeys. Drug Alcohol Depend., 2016, 165, 87-93.
[http://dx.doi.org/10.1016/j.drugalcdep.2016.05.016] [PMID: 27289270]
[79]
Klein, C.; Karanges, E.; Spiro, A.; Wong, A.; Spencer, J.; Huynh, T.; Gunasekaran, N.; Karl, T.; Long, L.E.; Huang, X.F.; Liu, K.; Arnold, J.C.; McGregor, I.S. Cannabidiol potentiates Δ9-tetra-hydrocannabinol (THC) behavioural effects and alters THC pharmacokinetics during acute and chronic treatment in adolescent rats. Psychopharmacology (Berl.), 2011, 218(2), 443-457.
[http://dx.doi.org/10.1007/s00213-011-2342-0] [PMID: 21667074]
[80]
Bornheim, L.M.; Kim, K.Y.; Li, J.; Perotti, B.Y.T.; Benet, L.Z. Effect of cannabidiol pretreatment on the kinetics of tetrahydrocannabinol metabolites in mouse brain. Drug Metab. Dispos., 1995, 23(8), 825-831.
[PMID: 7493549]
[81]
Bessa, J.M.; Ferreira, D.; Melo, I.; Marques, F.; Cerqueira, J.J.; Palha, J.A.; Almeida, O F X.; Sousa, N. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol. Psychiatry, 2009, 14(8), 764-773, 739.
[http://dx.doi.org/10.1038/mp.2008.119] [PMID: 18982002]
[82]
Caldecott-Hazard, S.; Mazziotta, J.; Phelps, M. Cerebral correlates of depressed behavior in rats, visualized using 14C-2-deoxyglucose autoradiography. J. Neurosci., 1988, 8(6), 1951-1961.
[http://dx.doi.org/10.1523/JNEUROSCI.08-06-01951.1988] [PMID: 3385484]
[83]
Lee, Y.A.; Goto, Y. Chronic stress modulation of prefrontal cortical NMDA receptor expression disrupts limbic structure-prefrontal cortex interaction. Eur. J. Neurosci., 2011, 34(3), 426-436.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07750.x] [PMID: 21692885]
[84]
Covington, H.E., III; Lobo, M.K.; Maze, I.; Vialou, V.; Hyman, J.M.; Zaman, S.; LaPlant, Q.; Mouzon, E.; Ghose, S.; Tamminga, C.A.; Neve, R.L.; Deisseroth, K.; Nestler, E.J. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J. Neurosci., 2010, 30(48), 16082-16090.
[http://dx.doi.org/10.1523/JNEUROSCI.1731-10.2010] [PMID: 21123555]
[85]
Hare, B.D.; Shinohara, R.; Liu, R.J.; Pothula, S.; DiLeone, R.J.; Duman, R.S. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat. Commun., 2019, 10(1), 223.
[http://dx.doi.org/10.1038/s41467-018-08168-9] [PMID: 30644390]
[86]
Pistis, M.; Ferraro, L.; Pira, L.; Flore, G.; Tanganelli, S.; Gessa, G.L.; Devoto, P. Δ9-Tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: An in vivo microdialysis study. Brain Res., 2002, 948(1-2), 155-158.
[http://dx.doi.org/10.1016/S0006-8993(02)03055-X] [PMID: 12383968]
[87]
Renard, J.; Szkudlarek, H.J.; Kramar, C.P.; Jobson, C.E.L.; Moura, K.; Rushlow, W.J.; Laviolette, S.R. Adolescent THC exposure causes enduring prefrontal cortical disruption of GABAergic inhibition and dysregulation of sub-cortical dopamine function. Sci. Rep., 2017, 7(1), 11420.
[http://dx.doi.org/10.1038/s41598-017-11645-8] [PMID: 28900286]
[88]
Linge, R.; Jiménez-Sánchez, L.; Campa, L.; Pilar-Cuéllar, F.; Vidal, R.; Pazos, A.; Adell, A.; Díaz, Á. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/]glutamate neurotransmission: Role of 5-HT1A receptors. Neuropharmacology, 2016, 103, 16-26.
[http://dx.doi.org/10.1016/j.neuropharm.2015.12.017] [PMID: 26711860]
[89]
Tye, K.M.; Mirzabekov, J.J.; Warden, M.R.; Ferenczi, E.A.; Tsai, H.C.; Finkelstein, J.; Kim, S.Y.; Adhikari, A.; Thompson, K.R.; Andalman, A.S.; Gunaydin, L.A.; Witten, I.B.; Deisseroth, K. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature, 2013, 493(7433), 537-541.
[http://dx.doi.org/10.1038/nature11740] [PMID: 23235822]
[90]
Covey, D.P.; Mateo, Y.; Sulzer, D.; Cheer, J.F.; Lovinger, D.M. Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology, 2017, 124, 52-61.
[http://dx.doi.org/10.1016/j.neuropharm.2017.04.033] [PMID: 28450060]
[91]
Fitoussi, A.; Zunder, J.; Tan, H.; Laviolette, S.R. Delta-9-tetrahydrocannabinol potentiates fear memory salience through functional modulation of mesolimbic dopaminergic activity states. Eur. J. Neurosci., 2018, 47(11), 1385-1400.
[http://dx.doi.org/10.1111/ejn.13951] [PMID: 29776015]
[92]
Sperlágh, B.; Windisch, K.; Andó, R.D.; Sylvester Vizi, E. Neurochemical evidence that stimulation of CB1 cannabinoid receptors on GABAergic nerve terminals activates the dopaminergic reward system by increasing dopamine release in the rat nucleus accumbens. Neurochem. Int., 2009, 54(7), 452-457.
[http://dx.doi.org/10.1016/j.neuint.2009.01.017] [PMID: 19428788]
[93]
Renard, J.; Loureiro, M.; Rosen, L.G.; Zunder, J.; de Oliveira, C.; Schmid, S.; Rushlow, W.J.; Laviolette, S.R. Cannabidiol counteracts amphetamine-induced neuronal and behavioral sensitization of the mesolimbic dopamine pathway through a novel mTOR/p70S6 kinase signaling pathway. J. Neurosci., 2016, 36(18), 5160-5169.
[http://dx.doi.org/10.1523/JNEUROSCI.3387-15.2016] [PMID: 27147666]
[94]
Norris, C.; Loureiro, M.; Kramar, C.; Zunder, J.; Renard, J.; Rushlow, W.; Laviolette, S.R. Cannabidiol modulates fear memory formation through interactions with serotonergic transmission in the mesolimbic system. Neuropsychopharmacology, 2016, 41(12), 2839-2850.
[http://dx.doi.org/10.1038/npp.2016.93] [PMID: 27296152]
[95]
Lu, Q.; Mouri, A.; Yang, Y.; Kunisawa, K.; Teshigawara, T.; Hirakawa, M.; Mori, Y.; Yamamoto, Y.; Libo, Z.; Nabeshima, T.; Saito, K. Chronic unpredictable mild stress-induced behavioral changes are coupled with dopaminergic hyperfunction and serotonergic hypofunction in mouse models of depression. Behav. Brain Res., 2019, 372, 112053.
[http://dx.doi.org/10.1016/j.bbr.2019.112053] [PMID: 31288060]
[96]
Karege, F.; Perroud, N.; Burkhardt, S.; Schwald, M.; Ballmann, E.; La Harpe, R.; Malafosse, A. Alteration in kinase activity but not in protein levels of protein kinase B and glycogen synthase kinase-3β in ventral prefrontal cortex of depressed suicide victims. Biol. Psychiatry, 2007, 61(2), 240-245.
[http://dx.doi.org/10.1016/j.biopsych.2006.04.036] [PMID: 16876135]
[97]
Ren, X.; Rizavi, H.S.; Khan, M.A.; Dwivedi, Y.; Pandey, G.N. Altered Wnt signalling in the teenage suicide brain: Focus on glycogen synthase kinase-3β and β-catenin. Int. J. Neuropsychopharmacol., 2013, 16(5), 945-955.
[http://dx.doi.org/10.1017/S1461145712001010] [PMID: 23110823]
[98]
Hudson, R.; Norris, C.; Szkudlarek, H.J.; Khan, D.; Schmid, S.; Rushlow, W.J.; Laviolette, S.R. Anxiety and cognitive-related effects of Δ 9-tetrahydrocannabinol (THC) are differentially mediated through distinct GSK-3 vs. Akt-mTOR pathways in the nucleus accumbens of male rats. Psychopharmacology (Berl.), 2022, 239(2), 509-524.
[http://dx.doi.org/10.1007/s00213-021-06029-w] [PMID: 34860284]
[99]
Dwivedi, Y.; Rizavi, H.S.; Conley, R.R.; Roberts, R.C.; Tamminga, C.A.; Pandey, G.N. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch. Gen. Psychiatry, 2003, 60(8), 804-815.
[http://dx.doi.org/10.1001/archpsyc.60.8.804] [PMID: 12912764]
[100]
Duman, R.S.; Monteggia, L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry, 2006, 59(12), 1116-1127.
[http://dx.doi.org/10.1016/j.biopsych.2006.02.013] [PMID: 16631126]
[101]
Duman, R.S.; Deyama, S.; Fogaça, M.V. Role of BDNF in the pathophysiology and treatment of depression: Activity-dependent effects distinguish rapid-acting antidepressants. Eur. J. Neurosci., 2021, 53(1), 126-139.
[http://dx.doi.org/10.1111/ejn.14630] [PMID: 31811669]
[102]
Castrén, E.; Kojima, M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol. Dis., 2017, 97(Pt B), 119-126.
[http://dx.doi.org/10.1016/j.nbd.2016.07.010] [PMID: 27425886]
[103]
Blázquez, C.; Chiarlone, A.; Bellocchio, L.; Resel, E.; Pruunsild, P.; García-Rincón, D.; Sendtner, M.; Timmusk, T.; Lutz, B.; Galve-Roperh, I.; Guzmán, M. The CB1 cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway. Cell Death Differ., 2015, 22(10), 1618-1629.
[http://dx.doi.org/10.1038/cdd.2015.11] [PMID: 25698444]
[104]
Derkinderen, P.; Valjent, E.; Toutant, M.; Corvol, J.C.; Enslen, H.; Ledent, C.; Trzaskos, J.; Caboche, J.; Girault, J.A. Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J. Neurosci., 2003, 23(6), 2371-2382.
[http://dx.doi.org/10.1523/JNEUROSCI.23-06-02371.2003] [PMID: 12657697]
[105]
Fishbein, M.; Gov, S.; Assaf, F.; Gafni, M.; Keren, O.; Sarne, Y. Long-term behavioral and biochemical effects of an ultra-low dose of Δ9-tetrahydrocannabinol (THC): neuroprotection and ERK signaling. Exp. Brain Res., 2012, 221(4), 437-448.
[http://dx.doi.org/10.1007/s00221-012-3186-5] [PMID: 22821081]
[106]
Berton, O; McClung, CA; DiLeone, RJ; Krishnan, V; Renthal, W; Russo, SJ Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science (80-), 2006, 311, 864-868.
[http://dx.doi.org/10.1126/science.1120972]
[107]
Eisch, A.J.; Bolaños, C.A.; de Wit, J.; Simonak, R.D.; Pudiak, C.M.; Barrot, M.; Verhaagen, J.; Nestler, E.J. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: A role in depression. Biol. Psychiatry, 2003, 54(10), 994-1005.
[http://dx.doi.org/10.1016/j.biopsych.2003.08.003] [PMID: 14625141]
[108]
Wei, J.; Yuen, E.Y.; Liu, W.; Li, X.; Zhong, P.; Karatsoreos, I.N.; McEwen, B.S.; Yan, Z. Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition. Mol. Psychiatry, 2014, 19(5), 588-598.
[http://dx.doi.org/10.1038/mp.2013.83] [PMID: 23835908]
[109]
Bowman, R.E.; Bowman, R.E. Stress-induced changes in spatial memory are sexually differentiated and vary across the lifespan. J. Neuroendocrinol., 2005, 17(8), 526-535.
[http://dx.doi.org/10.1111/j.1365-2826.2005.01335.x] [PMID: 16011489]
[110]
Barr, J.L.; Unterwald, E.M. Glycogen synthase kinase-3 signaling in cellular and behavioral responses to psychostimulant drugs. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(9), 118746.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118746] [PMID: 32454064]
[111]
Martin, J.L.; Finsterwald, C. Cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development. Commun. Integr. Biol., 2011, 4(1), 14-16.
[http://dx.doi.org/10.4161/cib.13761] [PMID: 21509169]
[112]
Grisouard, J.; Medunjanin, S.; Hermani, A.; Shukla, A.; Mayer, D. Glycogen synthase kinase-3 protects estrogen receptor α from proteasomal degradation and is required for full transcriptional activity of the receptor. Mol. Endocrinol., 2007, 21(10), 2427-2439.
[http://dx.doi.org/10.1210/me.2007-0129] [PMID: 17609434]
[113]
Scharfman, H.E.; MacLusky, N.J. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: Complexity of steroid hormone-growth factor interactions in the adult CNS. Front. Neuroendocrinol., 2006, 27(4), 415-435.
[http://dx.doi.org/10.1016/j.yfrne.2006.09.004] [PMID: 17055560]
[114]
Szkudlarek, H.J.; Desai, S.J.; Renard, J.; Pereira, B.; Norris, C.; Jobson, C.E.L.; Rajakumar, N.; Allman, B.L.; Laviolette, S.R. Δ-9-Tetrahydrocannabinol and Cannabidiol produce dissociable effects on prefrontal cortical executive function and regulation of affective behaviors. Neuropsychopharmacology, 2019, 44(4), 817-825.
[http://dx.doi.org/10.1038/s41386-018-0282-7] [PMID: 30538288]
[115]
Rossi, D.V.; Dai, Y.; Thomas, P.; Carrasco, G.A.; DonCarlos, L.L.; Muma, N.A.; Li, Q. Estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus is independent of estrogen receptor-beta. Psychoneuroendocrinology, 2010, 35(7), 1023-1033.
[http://dx.doi.org/10.1016/j.psyneuen.2010.01.003] [PMID: 20138435]
[116]
Takei, N.; Inamura, N.; Kawamura, M.; Namba, H.; Hara, K.; Yonezawa, K.; Nawa, H. Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J. Neurosci., 2004, 24(44), 9760-9769.
[http://dx.doi.org/10.1523/JNEUROSCI.1427-04.2004] [PMID: 15525761]
[117]
Papp, M.; Klimek, V.; Willner, P. Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology (Berl.), 1994, 115(4), 441-446.
[http://dx.doi.org/10.1007/BF02245566] [PMID: 7871087]
[118]
Mizoguchi, K.; Yuzurihara, M.; Ishige, A.; Sasaki, H.; Chui, D.H.; Tabira, T. Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J. Neurosci., 2000, 20(4), 1568-1574.
[http://dx.doi.org/10.1523/JNEUROSCI.20-04-01568.2000] [PMID: 10662846]
[119]
Dziedzicka-Wasylewska, M.; Willner, P.; Papp, M. Changes in dopamine receptor mRNA expression following chronic mild stress and chronic antidepressant treatment. Behav. Pharmacol., 1997, 8(6), 607-618.
[http://dx.doi.org/10.1097/00008877-199711000-00017] [PMID: 9832973]
[120]
Lucas, L.R.; Celen, Z.; Tamashiro, K.L.K.; Blanchard, R.J.; Blanchard, D.C.; Markham, C.; Sakai, R.R.; McEwen, B.S. Repeated exposure to social stress has long-term effects on indirect markers of dopaminergic activity in brain regions associated with motivated behavior. Neuroscience, 2004, 124(2), 449-457.
[http://dx.doi.org/10.1016/j.neuroscience.2003.12.009] [PMID: 14980394]
[121]
Scheggi, S.; Leggio, B.; Masi, F.; Grappi, S.; Gambarana, C.; Nanni, G.; Rauggi, R.; De Montis, M.G. Selective modifications in the nucleus accumbens of dopamine synaptic transmission in rats exposed to chronic stress. J. Neurochem., 2002, 83(4), 895-903.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01193.x] [PMID: 12421362]
[122]
Gambarana, C.; Masi, F.; Tagliamonte, A.; Scheggi, S.; Ghiglieri, O.; Graziella De Montis, M. A chronic stress that impairs reactivity in rats also decreases dopaminergic transmission in the nucleus accumbens: A microdialysis study. J. Neurochem., 1999, 72(5), 2039-2046.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0722039.x] [PMID: 10217282]
[123]
Mangiavacchi, S.; Masi, F.; Scheggi, S.; Leggio, B.; De Montis, M.G.; Gambarana, C. Long-term behavioral and neurochemical effects of chronic stress exposure in rats. J. Neurochem., 2001, 79(6), 1113-1121.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00665.x] [PMID: 11752052]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy