Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Pharmacological Potential of Bioactive Peptides for the Treatment of Diseases Associated with Alzheimer's and Brain Disorders

Author(s): Jeetendra Kumar Gupta and Kuldeep Singh*

Volume 24, Issue 8, 2024

Published on: 09 September, 2023

Page: [962 - 979] Pages: 18

DOI: 10.2174/1566524023666230907115753

Price: $65

Open Access Journals Promotions 2
Abstract

Bioactive peptides are a promising class of therapeutics for the treatment of diseases associated with Alzheimer's and brain disorders. These peptides are derived from naturally occurring proteins and have been shown to possess a variety of beneficial properties. They may modulate neurotransmitter systems, reduce inflammation, and improve cognitive performance. In addition, bioactive peptides have the potential to target specific molecular pathways involved in the pathogenesis of Alzheimer's and brain disorders. For example, peptides have been shown to interact with amyloid-beta, a major component of amyloid plaques found in Alzheimer's disease, and have been shown to reduce its accumulation in the brain. Furthermore, peptides have been found to modulate the activity of glutamate receptors, which are important for memory and learning, as well as to inhibit the activity of enzymes involved in the formation of toxic amyloid-beta aggregates. Finally, bioactive peptides have the potential to reduce oxidative stress and inflammation, two major components of many neurological disorders. These peptides could be used alone or in combination with traditional pharmacological treatments to improve the management of diseases associated with Alzheimer's and brain disorders.

Keywords: Bioactive peptides, naturally occurring proteins, beneficial properties, alzheimer's and brain disorders, traditional pharmacological treatments.

« Previous
[1]
Jahn H. Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci 2013; 15(4): 445-54.
[http://dx.doi.org/10.31887/DCNS.2013.15.4/hjahn] [PMID: 24459411]
[2]
Dubey H, Gulati K, Ray A. Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: Focus on epigenetic factors and histone deacetylase. Rev Neurosci 2018; 29(3): 241-60.
[http://dx.doi.org/10.1515/revneuro-2017-0049] [PMID: 29397389]
[3]
Fan L, Mao C, Hu X, et al. New insights into the pathogenesis of Alzheimer’s disease. Front Neurol 2020; 10: 1312.
[http://dx.doi.org/10.3389/fneur.2019.01312] [PMID: 31998208]
[4]
Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers 2015; 1(1): 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[5]
Pangalos MN, Schechter LE, Hurko O. Drug development for CNS disorders: Strategies for balancing risk and reducing attrition. Nat Rev Drug Discov 2007; 6(7): 521-32.
[http://dx.doi.org/10.1038/nrd2094] [PMID: 17599084]
[6]
Fish PV, Steadman D, Bayle ED, Whiting P. New approaches for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2019; 29(2): 125-33.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.034] [PMID: 30501965]
[7]
Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 2013; 6(1): 19-33.
[http://dx.doi.org/10.1177/1756285612461679] [PMID: 23277790]
[8]
Bioactive peptides and their potential use for the prevention of diseases associated with Alzheimer’s disease and mental health disorders. Available from: https://www.researchgate.net/publication/276062879_Bioactive_peptides_and_their_potential_use_for_the_prevention_of_diseases_associated_with_Alzheimer’s_disease_and_mental_health_disorders
[9]
Chakrabarti S, Guha S, Majumder K. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 2018; 10(11): 1738.
[http://dx.doi.org/10.3390/nu10111738] [PMID: 30424533]
[10]
Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int J Mol Sci 2022; 23(3): 1445.
[http://dx.doi.org/10.3390/ijms23031445] [PMID: 35163367]
[11]
Malta SM, Batista LL, Silva HCG, et al. Identification of bioactive peptides from a Brazilian kefir sample, and their anti-Alzheimer potential in Drosophila melanogaster. Sci Rep 2022; 12(1): 11065.
[http://dx.doi.org/10.1038/s41598-022-15297-1] [PMID: 35773306]
[12]
Shandilya S, Kumar S, Kumar JN, Kumar KK, Ruokolainen J. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J Adv Res 2022; 38: 223-44.
[http://dx.doi.org/10.1016/j.jare.2021.09.005] [PMID: 35572407]
[13]
Yeo XY, Cunliffe G, Ho RC, Lee SS, Jung S. Potentials of neuropeptides as therapeutic agents for neurological diseases. Biomedicines 2022; 10(2): 343.
[http://dx.doi.org/10.3390/biomedicines10020343] [PMID: 35203552]
[14]
Russo A, Manna S, Morelli G, Novellino E, Marasco D. Peptide agonists and antagonists with potential application in neurological disorders. Recent Patents CNS Drug Discov 2016; 10(2): 76-89.
[http://dx.doi.org/10.2174/1574889810666160425121833] [PMID: 27108811]
[15]
Daliri E, Oh D, Lee B. Bioactive peptides. Foods 2017; 6(5): 32.
[http://dx.doi.org/10.3390/foods6050032] [PMID: 28445415]
[16]
Marcone S, Belton O, Fitzgerald DJ. Milk-derived bioactive peptides and their health promoting effects: A potential role in atherosclerosis. Br J Clin Pharmacol 2017; 83(1): 152-62.
[http://dx.doi.org/10.1111/bcp.13002] [PMID: 27151091]
[17]
Sánchez A, Vázquez A. Bioactive peptides: A review. Food Quality and Safety 2017; 1(1): 29-46.
[http://dx.doi.org/10.1093/fqs/fyx006]
[18]
Tawalbeh D, Al-U’datt MH, Wan Ahmad WAN, Ahmad F, Sarbon NM. Recent advances in in vitro and in vivo studies of antioxidant, ACE-inhibitory and anti-inflammatory peptides from legume protein hydrolysates. Molecules 2023; 28(6): 2423.
[http://dx.doi.org/10.3390/molecules28062423] [PMID: 36985395]
[19]
Gasmi A, Nasreen A, Menzel A, et al. Neurotransmitters regulation and food intake: The role of dietary sources in neurotransmission. Molecules 2022; 28(1): 210.
[http://dx.doi.org/10.3390/molecules28010210] [PMID: 36615404]
[20]
Gokhale AS, Satyanarayanajois S. Peptides and peptidomimetics as immunomodulators. Immunotherapy 2014; 6(6): 755-74.
[http://dx.doi.org/10.2217/imt.14.37] [PMID: 25186605]
[21]
Mirzapour-Kouhdasht A, McClements DJ, Taghizadeh MS, Niazi A, Garcia-Vaquero M. Strategies for oral delivery of bioactive peptides with focus on debittering and masking. Npj Sci Food 2023; 7(1): 1-20.
[22]
Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2013; 8(21): 2003-14.
[PMID: 25206509]
[23]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[24]
Lee SY, Hur SJ. Mechanisms of neuroprotective effects of peptides derived from natural materials and their production and assessment. Compr Rev Food Sci Food Saf 2019; 18(4): 923-35.
[http://dx.doi.org/10.1111/1541-4337.12451] [PMID: 33336993]
[25]
Koya RC, Fujita H, Shimizu S, et al. Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J Biol Chem 2000; 275(20): 15343-9.
[http://dx.doi.org/10.1074/jbc.275.20.15343] [PMID: 10809769]
[26]
Rocha M, Hernandez-Mijares A, Garcia-Malpartida K, Bañuls C, Bellod L, Victor VM. Mitochondria-targeted antioxidant peptides. Curr Pharm Des 2010; 16(28): 3124-31.
[http://dx.doi.org/10.2174/138161210793292519] [PMID: 20687871]
[27]
Zhao W, Xu Z, Cao J, et al. Elamipretide (SS-31) improves mitochondrial dysfunction, synaptic and memory impairment induced by lipopolysaccharide in mice. J Neuroinflammation 2019; 16(1): 230.
[http://dx.doi.org/10.1186/s12974-019-1627-9] [PMID: 31747905]
[28]
Akbar M, Essa MM, Daradkeh G, et al. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637: 34-55.
[http://dx.doi.org/10.1016/j.brainres.2016.02.016] [PMID: 26883165]
[29]
Dong X, Wang Y, Qin Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 2009; 30(4): 379-87.
[http://dx.doi.org/10.1038/aps.2009.24] [PMID: 19343058]
[30]
Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 2012; 4(6): a005710.
[http://dx.doi.org/10.1101/cshperspect.a005710] [PMID: 22510460]
[31]
Meloni BP, Mastaglia FL, Knuckey NW. Cationic arginine-rich peptides (Carps): A novel class of neuroprotective agents with a multimodal mechanism of action. Front Neurol 2020; 11: 108.
[http://dx.doi.org/10.3389/fneur.2020.00108] [PMID: 32158425]
[32]
Wu QJ, Tymianski M. Targeting NMDA receptors in stroke: new hope in neuroprotection. Mol Brain 2018; 11(1): 15.
[http://dx.doi.org/10.1186/s13041-018-0357-8] [PMID: 29534733]
[33]
Jakubczyk A. Karaś M, Rybczyńska-Tkaczyk K, Zielińska E, Zieliński D. Current trends of bioactive peptides—new sources and therapeutic effect. Foods 2020; 9(7): 846.
[http://dx.doi.org/10.3390/foods9070846] [PMID: 32610520]
[34]
Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005; 73(4): 1907-16.
[http://dx.doi.org/10.1128/IAI.73.4.1907-1916.2005] [PMID: 15784530]
[35]
Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[36]
Ware CF. Tumor Necrosis Factors. Encycl Cancer 2002; pp. 475-89.
[37]
O’Brien MA, Kirby R. Apoptosis: A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J Vet Emerg Crit Care 2008; 18(6): 572-85.
[http://dx.doi.org/10.1111/j.1476-4431.2008.00363.x]
[38]
Hashimoto Y, Ito Y, Niikura T, et al. Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun 2001; 283(2): 460-8.
[http://dx.doi.org/10.1006/bbrc.2001.4765] [PMID: 11327724]
[39]
Zapała B, Kaczyński Ł, Kieć-Wilk B, et al. Humanins, the neuroprotective and cytoprotective peptides with antiapoptotic and anti-inflammatory properties. Pharmacol Rep 2010; 62(5): 767-77.
[http://dx.doi.org/10.1016/S1734-1140(10)70337-6] [PMID: 21098860]
[40]
Yenjerla M, LaPointe NE, Lopus M, et al. The neuroprotective peptide NAP does not directly affect polymerization or dynamics of reconstituted neural microtubules. J Alzheimers Dis 2010; 19(4): 1377-86.
[http://dx.doi.org/10.3233/JAD-2010-1335] [PMID: 20061604]
[41]
Tarawneh R, Galvin JE. Potential future neuroprotective therapies for neurodegenerative disorders and stroke. Clin Geriatr Med 2010; 26(1): 125-47.
[http://dx.doi.org/10.1016/j.cger.2009.12.003] [PMID: 20176298]
[42]
Dubey H, Dubey A, Gulati K, Ray A. Protective effects of L-arginine on cognitive deficits and biochemical parameters in an experimental model of type-2 diabetes mellitus induced Alzheimer’s disease in rats. J Physiol Pharmacol 2022; 73(1)
[PMID: 35639033]
[43]
de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2008; 2(6): 1101-13.
[http://dx.doi.org/10.1177/193229680800200619] [PMID: 19885299]
[44]
Lipinski B. Pathophysiology of oxidative stress in diabetes mellitus. J Diabetes Complications 2001; 15(4): 203-10.
[http://dx.doi.org/10.1016/S1056-8727(01)00143-X] [PMID: 11457673]
[45]
Nan YH, Park KH, Park Y, et al. Investigating the effects of positive charge and hydrophobicity on the cell selectivity, mechanism of action and anti-inflammatory activity of a Trp-rich antimicrobial peptide indolicidin. FEMS Microbiol Lett 2009; 292(1): 134-40.
[http://dx.doi.org/10.1111/j.1574-6968.2008.01484.x] [PMID: 19191872]
[46]
The soy peptide Phe-Leu-Val reduces TNFα-induced inflammatory response and insulin resistance in adipocytes. J Med Food 2016; 7(19): 678-85.
[47]
Zheng G, Xu X, Zheng J, Liu A. Protective effect of seleno-β-lactoglobulin (Se-β-lg) against oxidative stress in D-galactose-induced aging mice. J Funct Foods 2016; 27: 310-8.
[http://dx.doi.org/10.1016/j.jff.2016.09.015]
[48]
Vo TS, Ryu B, Kim SK. Purification of novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima. J Funct Foods 2013; 5(3): 1336-46.
[http://dx.doi.org/10.1016/j.jff.2013.05.001]
[49]
Hawkins BT, Egleton RD. Fluorescence imaging of blood–brain barrier disruption. J Neurosci Methods 2006; 151(2): 262-7.
[http://dx.doi.org/10.1016/j.jneumeth.2005.08.006] [PMID: 16181683]
[50]
Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev 2012; 6(12): 81-90.
[http://dx.doi.org/10.4103/0973-7847.99898] [PMID: 23055633]
[51]
Guzzetta KE, Cryan JF, O’Leary OF. Microbiota-gut-brain axis regulation of adult hippocampal neurogenesis. Brain Plast 2022; 8(1): 97-119.
[http://dx.doi.org/10.3233/BPL-220141] [PMID: 36448039]
[52]
Di Meo F, Valentino A, Petillo O, Peluso G, Filosa S, Crispi S. Bioactive polyphenols and neuromodulation: Molecular mechanisms in neurodegeneration. Int J Mol Sci 2020; 21(7): 2564.
[http://dx.doi.org/10.3390/ijms21072564] [PMID: 32272735]
[53]
Antony P, Vijayan R. Bioactive peptides as potential nutraceuticals for diabetes therapy: A comprehensive review. Int J Mol Sci 2021; 22(16): 9059.
[http://dx.doi.org/10.3390/ijms22169059] [PMID: 34445765]
[54]
Durães F, Pinto M, Sousa E. Old drugs as new treatments for neurodegenerative diseases. Pharm 2018; 11(2): 44.
[http://dx.doi.org/10.3390/ph11020044]
[55]
Yabe T, Sanagi T, Yamada H. The neuroprotective role of PEDF: Implication for the therapy of neurological disorders. Curr Mol Med 2010; 10(3): 259-66.
[http://dx.doi.org/10.2174/156652410791065354] [PMID: 20236058]
[56]
Tyagi A, Daliri EBM, Kwami Ofosu F, Yeon SJ, Oh DH. Food-derived opioid peptides in human health: A review. Int J Mol Sci 2020; 21(22): 8825.
[http://dx.doi.org/10.3390/ijms21228825] [PMID: 33233481]
[57]
Superti F. Lactoferrin from bovine milk: A protective companion for life. Nutrients 2020; 12(9): 2562.
[http://dx.doi.org/10.3390/nu12092562] [PMID: 32847014]
[58]
Layman DK, Lönnerdal B, Fernstrom JD. Applications for α-lactalbumin in human nutrition. Nutr Rev 2018; 76(6): 444-60.
[http://dx.doi.org/10.1093/nutrit/nuy004] [PMID: 29617841]
[59]
Trivedi M, Zhang Y, Lopez-Toledano M, Clarke A, Deth R. Differential neurogenic effects of casein-derived opioid peptides on neuronal stem cells: Implications for redox-based epigenetic changes. J Nutr Biochem 2016; 37: 39-46.
[http://dx.doi.org/10.1016/j.jnutbio.2015.10.012] [PMID: 27611101]
[60]
Pruimboom L, de Punder K. The opioid effects of gluten exorphins: Asymptomatic celiac disease. J Health Popul Nutr 2015; 33(1): 24.
[http://dx.doi.org/10.1186/s41043-015-0032-y] [PMID: 26825414]
[61]
Iwasaki M, Akiba Y, Kaunitz JD. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: Focus on the gastrointestinal system. F1000 Res 2019; 8: 1629.
[http://dx.doi.org/10.12688/f1000research.18039.1] [PMID: 31559013]
[62]
St-Gelais F, Jomphe C, Trudeau LÉ. The role of neurotensin in central nervous system pathophysiology: What is the evidence? J Psychiatry Neurosci 2006; 31(4): 229-45.
[PMID: 16862241]
[63]
Lundström L, Elmquist A, Bartfai T, Langel Ü. Galanin and its receptors in neurological disorders. Neuromolecular Med 2005; 7(1-2): 157-80.
[http://dx.doi.org/10.1385/NMM:7:1-2:157] [PMID: 16052044]
[64]
Vickers SP, Jackson HC, Cheetham SC. The utility of animal models to evaluate novel anti-obesity agents. Br J Pharmacol 2011; 164(4): 1248-62.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01245.x] [PMID: 21265828]
[65]
Danysz W, Parsons CG. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine - searching for the connections. Br J Pharmacol 2012; 167(2): 324-52.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02057.x] [PMID: 22646481]
[66]
Schaffer S, Kim HW. Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther 2018; 26(3): 225-41.
[http://dx.doi.org/10.4062/biomolther.2017.251] [PMID: 29631391]
[67]
Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: Disease models and outcome measures. J Pain 2013; 14(11): 1255-69.
[http://dx.doi.org/10.1016/j.jpain.2013.06.008] [PMID: 24035349]
[68]
Vimal A, Kumar A. Transforming the healthcare system through therapeutic enzymes. Enzym Food Biotechnol Prod Appl Futur Prospect 2018; 1: 603-25.
[69]
Liu CC, Kanekiyo T, Xu H, Bu G, Bu G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat Rev Neurol 2013; 9(2): 106-18.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[70]
Beck B. Neuropeptide Y in normal eating and in genetic and dietary-induced obesity. Philos Trans R Soc Lond B Biol Sci 2006; 361(1471): 1159-85.
[http://dx.doi.org/10.1098/rstb.2006.1855] [PMID: 16874931]
[71]
Orosco M, Rouch C, Beslot F, Feurte S, Regnault A, Dauge V. Alpha-lactalbumin-enriched diets enhance serotonin release and induce anxiolytic and rewarding effects in the rat. Behav Brain Res 2004; 148(1-2): 1-10.
[http://dx.doi.org/10.1016/S0166-4328(03)00153-0] [PMID: 14684242]
[72]
Torii K, Uneyama H, Nakamura E. Physiological roles of dietary glutamate signaling via gut–brain axis due to efficient digestion and absorption. J Gastroenterol 2013; 48(4): 442-51.
[http://dx.doi.org/10.1007/s00535-013-0778-1] [PMID: 23463402]
[73]
Vasdev S, Gill V. The antihypertensive effect of arginine. Int J Angiol 2008; 17(1): 07-22.
[http://dx.doi.org/10.1055/s-0031-1278274] [PMID: 22477366]
[74]
Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y. Current research on opioid receptor function. Curr Drug Targets 2012; 13(2): 230-46.
[http://dx.doi.org/10.2174/138945012799201612] [PMID: 22204322]
[75]
Larson CM, Wilcox GL, Fairbanks CA. The study of pain in rats and mice. Comp Med 2019; 69(6): 555-70.
[http://dx.doi.org/10.30802/AALAS-CM-19-000062] [PMID: 31822322]
[76]
Manandhar B, Ahn JM. Glucagon-like peptide-1 (GLP-1) analogs: Recent advances, new possibilities, and therapeutic implications. J Med Chem 2015; 58(3): 1020-37.
[http://dx.doi.org/10.1021/jm500810s] [PMID: 25349901]
[77]
Cammalleri M, Bagnoli P, Bigiani A. Molecular and cellular mechanisms underlying somatostatin-based signaling in two model neural networks, the retina and the hippocampus. Int J Mol Sci 2019; 20(10): 2506.
[http://dx.doi.org/10.3390/ijms20102506] [PMID: 31117258]
[78]
Guan J, Gluckman PD. IGF-1 derived small neuropeptides and analogues: A novel strategy for the development of pharmaceuticals for neurological conditions. Br J Pharmacol 2009; 157(6): 881-91.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00256.x] [PMID: 19438508]
[79]
Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med 2018; 54(4): 287-93.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[80]
Katayama S, Nakamura S. Emerging roles of bioactive peptides on brain health promotion. Int J Food Sci Technol 2019; 54(6): 1949-55.
[http://dx.doi.org/10.1111/ijfs.14076]
[81]
Wang S, Sun-Waterhouse D, Neil Waterhouse GI, Zheng L, Su G, Zhao M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci Technol 2021; 116: 712-32.
[http://dx.doi.org/10.1016/j.tifs.2021.04.056]
[82]
Karatas H, Yemisci M, Eren-Kocak E, Dalkara T. Brain peptides for the treatment of neuropsychiatric disorders. Curr Pharm Des 2019; 24(33): 3905-17.
[http://dx.doi.org/10.2174/1381612824666181112112309] [PMID: 30417776]
[83]
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017; 2017: 8416763.
[84]
Zaky AA, Simal-Gandara J, Eun JB, Shim JH, Abd El-Aty AM. Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Front Nutr 2022; 8: 815640.
[http://dx.doi.org/10.3389/fnut.2021.815640] [PMID: 35127796]
[85]
Fukai T, Ushio-Fukai M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 2011; 15(6): 1583-606.
[http://dx.doi.org/10.1089/ars.2011.3999] [PMID: 21473702]
[86]
Salehi B, Azzini E, Zucca P, Varoni EM, Kumar NVA, Dini L. Plant-derived bioactives and oxidative stress-related disorders: A key trend towards healthy aging and longevity promotion. Appl Sci 2020; 10(3): 947.
[http://dx.doi.org/10.3390/app10030947]
[87]
Sivakamavalli J, Arthur James R, Park K, Kwak IS, Vaseeharan B. Purification of WAP domain-containing antimicrobial peptides from green tiger shrimp Peaneaus semisulcatus. Microb Pathog 2020; 140: 103920.
[http://dx.doi.org/10.1016/j.micpath.2019.103920] [PMID: 31843546]
[88]
Myöhänen TT, García-Horsman JA, Tenorio-Laranga J, Männistö PT. Issues about the physiological functions of prolyl oligopeptidase based on its discordant spatial association with substrates and inconsistencies among mRNA, protein levels, and enzymatic activity. J Histochem Cytochem 2009; 57(9): 831-48.
[http://dx.doi.org/10.1369/jhc.2009.953711] [PMID: 19687473]
[89]
Tenorio-Laranga J, Venäläinen JI, Männistö PT, García-Horsman JA. Characterization of membrane-bound prolyl endopeptidase from brain. FEBS J 2008; 275(17): 4415-27.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06587.x] [PMID: 18657187]
[90]
Usuda K, Kawase T, Shigeno Y, et al. Hippocampal metabolism of amino acids by L-amino acid oxidase is involved in fear learning and memory. Sci Rep 2018; 8(1): 11073.
[http://dx.doi.org/10.1038/s41598-018-28885-x] [PMID: 30038322]
[91]
Elder GA, Gama Sosa MA, De Gasperi R. Transgenic mouse models of Alzheimer’s disease. Mt Sinai J Med 2010; 77(1): 69-81.
[http://dx.doi.org/10.1002/msj.20159] [PMID: 20101721]
[92]
Chen XY, Du YF, Chen L. Neuropeptides exert neuroprotective effects in Alzheimer’s Disease. Front Mol Neurosci 2018; 11: 493.
[PMID: 30687008]
[93]
Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021; 9(10): 2041.
[http://dx.doi.org/10.3390/microorganisms9102041] [PMID: 34683362]
[94]
Martorell P, Bataller E, Llopis S, et al. A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity. PLoS One 2013; 8(5): e63283.
[http://dx.doi.org/10.1371/journal.pone.0063283] [PMID: 23675471]
[95]
Aillaud I, Funke SA. Tau aggregation inhibiting peptides as potential therapeutics for Alzheimer Disease. Cell Mol Neurobiol 2023; 43(3): 951-61.
[http://dx.doi.org/10.1007/s10571-022-01230-7] [PMID: 35596819]
[96]
Patil P, Mandal S, Tomar SK, Anand S. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur J Nutr 2015; 54(6): 863-80.
[http://dx.doi.org/10.1007/s00394-015-0974-2] [PMID: 26154777]
[97]
Wang X, Ke J, Zhu Y, et al. Dipeptidyl peptidase-4 (DPP4) inhibitor sitagliptin alleviates liver inflammation of diabetic mice by acting as a ROS scavenger and inhibiting the NFκB pathway. Cell Death Discov 2021; 7(1): 236.
[http://dx.doi.org/10.1038/s41420-021-00625-7] [PMID: 33414425]
[98]
Tao Q, Zhu H, Chen X, et al. Pramlintide: The effects of a single drug injection on blood phosphatidylcholine profile for Alzheimer’s disease. J Alzheimers Dis 2018; 62(2): 597-609.
[http://dx.doi.org/10.3233/JAD-170948] [PMID: 29480193]
[99]
Harnedy-Rothwell PA, Khatib N, Sharkey S, et al. Physicochemical, nutritional and in vitro antidiabetic characterisation of blue whiting (Micromesistius poutassou) protein hydrolysates. Mar Drugs 2021; 19(7): 383.
[http://dx.doi.org/10.3390/md19070383] [PMID: 34356808]
[100]
Hayes M, Tiwari B. Bioactive carbohydrates and peptides in foods: An overview of sources, downstream processing steps and associated bioactivities. Int J Mol Sci 2015; 16(9): 22485-508.
[http://dx.doi.org/10.3390/ijms160922485] [PMID: 26393573]
[101]
Tanguturi P, Streicher JM. The role of opioid receptors in modulating Alzheimer’s Disease. Front Pharmacol 2023; 14: 1056402.
[http://dx.doi.org/10.3389/fphar.2023.1056402] [PMID: 36937877]
[102]
Ajenikoko MK, Ajagbe AO, Onigbinde OA, Okesina AA, Tijani AA. Review of Alzheimer’s disease drugs and their relationship with neuron-glia interaction. IBRO Neuroscience Reports 2023; 14: 64-76.
[http://dx.doi.org/10.1016/j.ibneur.2022.11.005] [PMID: 36593897]
[103]
Fagiolo U, Cossarizza A, Scala E, et al. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol 1993; 23(9): 2375-8.
[http://dx.doi.org/10.1002/eji.1830230950] [PMID: 8370415]
[104]
A proline-rich polypeptide complex-its influence on cytokine induction in the blood of Alzheimer’s Patients . Available from: https://www.researchgate.net/publication/228484034_A_Proline-Rich_Polypeptide_Complex-Its_Influence_on_Cytokine_Induction_in_the_Blood_of_Alzheimer’s_Patients
[105]
Yeon SW, You YS, Kwon HS, et al. Fermented milk of Lactobacillus helveticus IDCC3801 reduces beta-amyloid and attenuates memory deficit. J Funct Foods 2010; 2(2): 143-52.
[http://dx.doi.org/10.1016/j.jff.2010.04.002]
[106]
Yadang FSA, Nguezeye Y, Kom CW, Betote PHD, Mamat A, Tchokouaha LRY. Scopolamine-induced memory impairment in mice: Neuroprotective effects of carissa edulis (Forssk.) Valh (Apocynaceae) aqueous extract. Int J Alzheimers Dis 2020; 2020: 6372059.
[107]
Kita M, Obara K, Kondo S, Umeda S, Ano Y. Effect of supplementation of a whey peptide rich in tryptophan-tyrosine-related peptides on cognitive performance in healthy adults: A randomized, double-blind, placebo-controlled study. Nutrients 2018; 10(7): 899.
[http://dx.doi.org/10.3390/nu10070899] [PMID: 30011836]
[108]
Cai L, Tao Q, Li W, Zhu X, Cui C. The anti-anxiety/depression effect of a combined complex of casein hydrolysate and γ-aminobutyric acid on C57BL/6 mice. Front Nutr 2022; 9: 971853.
[http://dx.doi.org/10.3389/fnut.2022.971853] [PMID: 36245498]
[109]
Kim IS, Yang WS, Kim CH. Beneficial effects of soybean-derived bioactive peptides. Int J Mol Sci 2021; 22(16): 8570.
[http://dx.doi.org/10.3390/ijms22168570] [PMID: 34445273]
[110]
Mostashari P. Marszałek K, Aliyeva A, Mousavi Khaneghah A. The impact of processing and extraction methods on the allergenicity of targeted protein quantification as well as bioactive peptides derived from egg. Molecules 2023; 28(6): 2658.
[http://dx.doi.org/10.3390/molecules28062658] [PMID: 36985630]
[111]
Galland F, de Espindola JS, Lopes DS, Taccola MF, Pacheco MTB. Food-derived bioactive peptides: Mechanisms of action underlying inflammation and oxidative stress in the central nervous system. Food Chemistry Advances 2022; 1: 100087.
[http://dx.doi.org/10.1016/j.focha.2022.100087]
[112]
Jukić I, Kolobarić N, Stupin A, et al. Carnosine, small but mighty—prospect of use as functional ingredient for functional food formulation Antioxidants 2021; 10(7): 1037.
[http://dx.doi.org/10.3390/antiox10071037] [PMID: 34203479]
[113]
Mamsa SSA, Meloni BP. Arginine and arginine-rich peptides as modulators of protein aggregation and cytotoxicity associated with Alzheimer’s Disease. Front Mol Neurosci 2021; 14: 759729.
[http://dx.doi.org/10.3389/fnmol.2021.759729] [PMID: 34776866]
[114]
Rodriguez-Martin NM, Montserrat-de la Paz S, Toscano R, et al. Hemp (Cannabis sativa L.) protein hydrolysates promote anti-inflammatory response in primary human monocytes. Biomolecules 2020; 10(5): 803.
[http://dx.doi.org/10.3390/biom10050803] [PMID: 32456009]
[115]
Kim EY, Choi YH, Nam TJ. Identification and antioxidant activity of synthetic peptides from phycobiliproteins of Pyropia yezoensis. Int J Mol Med 2018; 42(2): 789-98.
[http://dx.doi.org/10.3892/ijmm.2018.3650] [PMID: 29717771]
[116]
Chou MY, Chen YJ, Lin LH, et al. Protective effects of hydrolyzed chicken extract (Probeptigen®/Cmi-168) on memory retention and brain oxidative stress in senescence-accelerated mice. Nutrients 2019; 11(8): 1870.
[http://dx.doi.org/10.3390/nu11081870] [PMID: 31408929]
[117]
Koizumi S, Inoue N, Sugihara F, Igase M. Effects of collagen hydrolysates on human brain structure and cognitive function: A pilot clinical study. Nutrients 2019; 12(1): 50.
[http://dx.doi.org/10.3390/nu12010050] [PMID: 31878021]
[118]
Sur R, Nigam A, Grote D, Liebel F, Southall MD. Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch Dermatol Res 2008; 300(10): 569-74.
[http://dx.doi.org/10.1007/s00403-008-0858-x] [PMID: 18461339]
[119]
Ju DT. K AK, Kuo WW, et al. Bioactive peptide vhvv upregulates the long-term memory-related biomarkers in adult spontaneously hypertensive rats. Int J Mol Sci 2019; 20(12): 3069.
[http://dx.doi.org/10.3390/ijms20123069] [PMID: 31234585]
[120]
Ofosu FK, Mensah DJF, Daliri EBM, Oh DH. Exploring molecular insights of cereal peptidic antioxidants in metabolic syndrome prevention. Antioxidants 2021; 10(4): 518.
[http://dx.doi.org/10.3390/antiox10040518] [PMID: 33810450]
[121]
Batool M, Ranjha MMAN, Roobab U, et al. Nutritional value, phytochemical potential, and therapeutic benefits of pumpkin (Cucurbita sp.). Plants 2022; 11(11): 1394.
[http://dx.doi.org/10.3390/plants11111394] [PMID: 35684166]
[122]
Velliquette RA, Fast DJ, Maly ER, Alashi AM, Aluko RE. Enzymatically derived sunflower protein hydrolysate and peptides inhibit NFκB B and promote monocyte differentiation to a dendritic cell phenotype. Food Chem 2020; 319: 126563.
[http://dx.doi.org/10.1016/j.foodchem.2020.126563] [PMID: 32172048]
[123]
Rezvankhah A, Yarmand MS, Ghanbarzadeh B, Mirzaee H. Development of lentil peptides with potent antioxidant, antihypertensive, and antidiabetic activities along with umami taste. Food Sci Nutr 2023; 11(6): 2974-89.
[http://dx.doi.org/10.1002/fsn3.3279] [PMID: 37324857]
[124]
Guo H, Hao Y, Yang X, Ren G, Richel A. Exploration on bioactive properties of quinoa protein hydrolysate and peptides: a review. Crit Rev Food Sci Nutr 2023; 63(16): 2896-909.
[http://dx.doi.org/10.1080/10408398.2021.1982860] [PMID: 34581209]
[125]
Aguilar-Toalá JE, Deering AJ, Liceaga AM. New insights into the antimicrobial properties of hydrolysates and peptide fractions derived from chia seed (salvia hispanica L.). Probiotics Antimicrob Proteins 2020; 12(4): 1571-81.
[http://dx.doi.org/10.1007/s12602-020-09653-8] [PMID: 32385579]
[126]
Parikh M, Maddaford TG, Austria JA, Aliani M, Netticadan T, Pierce GN. Dietary flaxseed as a strategy for improving human health. Nutrients 2019; 11(5): 1171.
[http://dx.doi.org/10.3390/nu11051171] [PMID: 31130604]
[127]
Ciccone L, Nencetti S, Rossello A, Orlandini E, Nencetti S, Rossello A. Pomegranate: A source of multifunctional bioactive compounds potentially beneficial in Alzheimer’s Disease. Pharmaceuticals 2023; 16(7): 1036.
[http://dx.doi.org/10.3390/ph16071036] [PMID: 37513947]
[128]
Gianfranceschi GL, Gianfranceschi G, Quassinti L, Bramucci M. Biochemical requirements of bioactive peptides for nutraceutical efficacy. J Funct Foods 2018; 47: 252-63.
[http://dx.doi.org/10.1016/j.jff.2018.05.034]
[129]
Diao J, Miao X, Chen H. Anti-inflammatory effects of mung bean protein hydrolysate on the lipopolysaccharide- induced RAW264.7 macrophages. Food Sci Biotechnol 2022; 31(7): 849-56.
[http://dx.doi.org/10.1007/s10068-022-01104-0] [PMID: 35720459]
[130]
Mandalari G, Barreca D, Gervasi T, et al. Pistachio nuts (Pistacia vera L.): Production, nutrients, bioactives and novel health effects. Plants 2021; 11(1): 18.
[http://dx.doi.org/10.3390/plants11010018] [PMID: 35009022]
[131]
Tan B, Wang Y, Zhang X, Sun X. Recent studies on protective effects of walnuts against neuroinflammation. Nutrients 2022; 14(20): 4360.
[http://dx.doi.org/10.3390/nu14204360] [PMID: 36297047]
[132]
Nagaoka S, Takeuchi A, Banno A. Plant-derived peptides improving lipid and glucose metabolism. Peptides 2021; 142: 170577.
[http://dx.doi.org/10.1016/j.peptides.2021.170577] [PMID: 34033874]
[133]
Wattanathorn J, Thukham-Mee W, Muchimapura S, Wannanon P, Tong-Un T, Tiamkao S. Preventive effect of cashew-derived protein hydrolysate with high fiber on cerebral ischemia. BioMed Res Int 2017; 2017: 6135023.
[http://dx.doi.org/10.1155/2017/6135023]
[134]
Pizarroso N, Fuciños P, Gonçalves C, Pastrana L, Amado I. A review on the role of food-derived bioactive molecules and the microbiota–gut–brain axis in satiety regulation. Nutrients 2021; 13(2): 632.
[http://dx.doi.org/10.3390/nu13020632] [PMID: 33669189]
[135]
Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020; 12(8): 735.
[http://dx.doi.org/10.3390/pharmaceutics12080735] [PMID: 32764269]
[136]
Mengesha Y, Tebeje A, Tilahun B. A review on factors influencing the fermentation process of teff (Eragrostis teff) and other cereal-based ethiopian injera. Int J Food Sci 2022; 2022: 4419955.
[137]
Mugwanda K, Hamese S, Van Zyl WF, et al. Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Biosci Rep 2023; 43(1): BSR20211299.
[http://dx.doi.org/10.1042/BSR20211299] [PMID: 36597861]
[138]
Suwal S, Roblet C, Doyen A, et al. Electrodialytic separation of peptides from snow crab by-product hydrolysate: Effect of cell configuration on peptide selectivity and local electric field. Separ Purif Tech 2014; 127: 29-38.
[http://dx.doi.org/10.1016/j.seppur.2014.02.018]
[139]
Baig MH, Ahmad K, Rabbani G, Choi I. Use of peptides for the management of alzheimer’s disease: Diagnosis and inhibition. Front Aging Neurosci 2018; 10(FEB): 21.
[http://dx.doi.org/10.3389/fnagi.2018.00021] [PMID: 29467644]
[140]
Amigo L, Hernández-Ledesma B. Current evidence on the bioavailability of food bioactive peptides. Molecules 2020; 25(19): 4479.
[http://dx.doi.org/10.3390/molecules25194479] [PMID: 33003506]
[141]
Gascon S, Jann J, Langlois-Blais C, Plourde M, Lavoie C, Faucheux N. Peptides derived from growth factors to treat Alzheimer’s Disease. Int J Mol Sci 2021; 22(11): 6071.
[http://dx.doi.org/10.3390/ijms22116071] [PMID: 34199883]
[142]
Cam A, de Mejia EG. Role of dietary proteins and peptides in cardiovascular disease. Mol Nutr Food Res 2012; 56(1): 53-66.
[http://dx.doi.org/10.1002/mnfr.201100535] [PMID: 22121103]
[143]
Akiyama H, Sakata K, Yoshioka Y, et al. Profile analysis and immunoglobulin E reactivity of wheat protein hydrolysates. Int Arch Allergy Immunol 2006; 140(1): 36-42.
[http://dx.doi.org/10.1159/000092000] [PMID: 16534217]
[144]
Takahashi H, Tsuchiya T, Takahashi M, et al. Viability of murine norovirus in salads and dressings and its inactivation using heat-denatured lysozyme. Int J Food Microbiol 2016; 233: 29-33.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.06.006] [PMID: 27299671]
[145]
Kaspar AA, Reichert JM. Future directions for peptide therapeutics development. Drug Discov Today 2013; 18(17-18): 807-17.
[http://dx.doi.org/10.1016/j.drudis.2013.05.011] [PMID: 23726889]
[146]
Esposito Z, Belli L, Toniolo S, Sancesario G, Bianconi C, Martorana A. Amyloid β glutamate, excitotoxicity in Alzheimer’s disease: are we on the right track? CNS Neurosci Ther 2013; 19(8): 549-55.
[http://dx.doi.org/10.1111/cns.12095] [PMID: 23593992]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy