Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Design, Synthesis, QSAR Studies, and Molecular Modeling of Some Novel Bis Methyl 2-[3-(benzo[d]thiazol-2-yl)-2-terephthaloyl-bis-4-oxo-thiazolidin- 5-ylidene]acetates and Screening of their Antioxidant and Enzyme Inhibition Properties

Author(s): Muhammad Naseem, Hummera Rafique*, Muhammad Tayyab, Aamer Saeed and Amara Mumtaz

Volume 21, Issue 7, 2024

Published on: 02 October, 2023

Page: [917 - 927] Pages: 11

DOI: 10.2174/1570179421666230905094559

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Benzothiazolamine-based bisthiourea precursors were prepared in good yields. These bisthiourea derivatives were cyclized into symmetrical Bis Methyl 2-[3-(benzothiazol- 2-yl)-2-terephthaloyl-bis-4-oxo-thiazolidin-5-ylidene]acetates, by their condensation with (DMAD) dimethyl but-2-meditate in the presence of dry methanol.

Materials and Methods: All these compounds were evaluated for their biological applications. Antioxidant activities were performed by adopting a DPPH radical assay, and an in vitro enzyme inhibition assay was performed to investigate their enzyme inhibitory potential against butyrylcholinesterase (BChE) and acetylcholinesterase (AChE).

Results: Molecular modeling and QSAR studies were performed to monitor the binding propensity of imidathiazolidinone derivatives with enzymes and DNA. Also, electronic and steric descriptors were calculated to determine the effect of structure on the activity of imidathiazolidinone derivatives.

Conclusion: The characterization of all the synthesized compounds was done by their physical data, FT-IR, NMR and elemental analysis.

Keywords: Bis-benzothiazolyl thioureas, thiazolidinones, antioxidant activities, enzyme inhibition, DNA interaction, molecular docking, QSAR studies.

Graphical Abstract
[1]
Rafique, H.; Tahira, F.; Afshan, S.Z. Synthesis, molecular docking, and in vitro investigation of 1,1′-diaryl-3,3′-(p-phenylenedicarbonyl) dithioureas as urease inhibitors. Lett. Org. Chem., 2020, 17(4), 254-259.
[2]
Saeed, A.; Khan, M.S.; Rafique, H.; Shahid, M.; Iqbal, J. Design, synthesis, molecular docking studies and in vitro screening of ethyl 4-(3-benzoylthioureido) benzoates as urease inhibitors. Bioorg. Chem., 2014, 52, 1-7.
[http://dx.doi.org/10.1016/j.bioorg.2013.10.001] [PMID: 24269986]
[3]
Liaras, K.; Fesatidou, M.; Geronikaki, A. Thiazoles and thiazolidinones as COX/LOX inhibitors. Molecules, 2018, 23(3), 685.
[http://dx.doi.org/10.3390/molecules23030685] [PMID: 29562646]
[4]
Küçükgüzel, Ş.G.; Oruç, E.E.; Rollas, S.; Şahin, F.; Özbek, A. Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. Eur. J. Med. Chem., 2002, 37(3), 197-206.
[http://dx.doi.org/10.1016/S0223-5234(01)01326-5] [PMID: 11900864]
[5]
Gududuru, V.; Hurh, E.; Dalton, J.T.; Miller, D.D. Synthesis and antiproliferative activity of 2-aryl-4-oxo-thiazolidin-3-yl-amides for prostate cancer. Bioorg. Med. Chem. Lett., 2004, 14(21), 5289-5293.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.029] [PMID: 15454213]
[6]
Arey, B.J.; Yanofsky, S.D.; Claudia Pérez, M.; Holmes, C.P.; Wrobel, J.; Gopalsamy, A.; Stevis, P.E.; López, F.J.; Winneker, R.C. Differing pharmacological activities of thiazolidinone analogs at the FSH receptor. Biochem. Biophys. Res. Commun., 2008, 368(3), 723-728.
[http://dx.doi.org/10.1016/j.bbrc.2008.01.119] [PMID: 18252197]
[7]
Saeed, A.; Shaheen, U.; Hameed, A.; Kazmi, F. Synthesis and antimicrobial activity of some novel 2-(substituted fluorobenzoylimino)-3-(substituted fluorophenyl)-4-methyl-1,3-thiazolines. J. Fluor. Chem., 2010, 131(3), 333-339.
[http://dx.doi.org/10.1016/j.jfluchem.2009.11.005]
[8]
Rawal, R.K.; Prabhakar, Y.S.; Katti, S.B.; De Clercq, E. 2-(Aryl)-3-furan-2-ylmethyl-thiazolidin-4-ones as selective HIV-RT inhibitors. Bioorg. Med. Chem., 2005, 13(24), 6771-6776.
[http://dx.doi.org/10.1016/j.bmc.2005.07.063] [PMID: 16198576]
[9]
Kato, Y.; Kita, Y.; Nishio, M.; Hirasawa, Y.; Ito, K.; Yamanaka, T.; Motoyama, Y.; Seki, J. In vitro antiplatelet profile of FR171113, a novel non-peptide thrombin receptor antagonist. Eur. J. Pharmacol., 1999, 384(2-3), 197-202.
[http://dx.doi.org/10.1016/S0014-2999(99)00658-5] [PMID: 10611442]
[10]
Voss, M.E.; Carter, P.H.; Tebben, A.J.; Scherle, P.A.; Brown, G.D.; Thompson, L.A.; Xu, M.; Lo, Y.C.; Yang, G.; Liu, R.Q.; Strzemienski, P.; Everlof, J.G.; Trzaskos, J.M.; Decicco, C.P. Both 5-arylidene-2-thioxodihydropyrimidine-4,6(1H,5H)-diones and 3-thioxo-2,3-dihydro-1H-imidazo[1,5-a]indol-1-ones are light-Dependent tumor necrosis factor-α antagonists. Bioorg. Med. Chem. Lett., 2003, 13(3), 533-538.
[http://dx.doi.org/10.1016/S0960-894X(02)00941-1] [PMID: 12565966]
[11]
de Aquino, T.M.; Liesen, A.P.; da Silva, R.E.A.; Lima, V.T.; Carvalho, C.S.; de Faria, A.R.; de Araújo, J.M.; de Lima, J.G.; Alves, A.J.; de Melob, E.J.T.; Góes, A.J.S. Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolid-ineacetic acids. Bioorg. Med. Chem., 2008, 16, 446-456.
[http://dx.doi.org/10.1016/j.bmc.2007.09.025] [PMID: 17905587]
[12]
Liesen, A.P.; de Aquino, T.M.; Carvalho, C.S.; Lima, V.T.; de Araújo, J.M.; de Lima, J.G.; de Faria, A.R.; de Melo, E.J.T.; Alves, A.J.; Alves, E.W.; Alves, A.Q.; Góes, A.J.S. Synthesis and evaluation of anti-Toxoplasma gondii and antimicrobial activities of thiosemicarbazides, 4-thiazolidinones and 1,3,4-thiadiazoles. Eur. J. Med. Chem., 2010, 45(9), 3685-3691.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.017] [PMID: 20541294]
[13]
Kline, T.; Felise, H.B.; Barry, K.C.; Jackson, S.R.; Nguyen, H.V.; Miller, S.I. Substituted 2-imino-5-arylidenethiazolidin-4-one inhibitors of bacterial type III secretion. J. Med. Chem., 2008, 51(22), 7065-7074.
[http://dx.doi.org/10.1021/jm8004515] [PMID: 18947223]
[14]
Karalı, N.; Gürsoy, A.; Kandemirli, F.; Shvets, N.; Kaynak, F.B.; Özbey, S.; Kovalishyn, V.; Dimoglo, A. Synthesis and structure-antituberculosis activity relationship of 1H-indole-2,3-dione derivatives. Bioorg. Med. Chem., 2007, 15(17), 5888-5904.
[http://dx.doi.org/10.1016/j.bmc.2007.05.063] [PMID: 17561405]
[15]
Mamaghani, M.; Loghmanifar, A.; Taati, M.R. An efficient one-pot synthesis of new 2-imino-1,3-thiazolidin-4-ones under ultrasonic conditions. Ultrason. Sonochem., 2011, 18(1), 45-48.
[http://dx.doi.org/10.1016/j.ultsonch.2010.05.009] [PMID: 20579925]
[16]
Rafique, H.; Saeed, A.; Mumtaz, A. Facile Synthesis and antibacterial investigation of new ethyl 4-[2-benzamido-4-methylthiazol-3(2H)-yl)] benzoates. Acta. Poloniea Pharm-Drug Res., 2017, 74(4), 1119-1124.
[17]
Saeed, A.; Rafique, H. Efficient Synthesis of New N-[3-(benzo[d]thiazol-2-yl)-4-methylthiazol-2(3H)-ylidene] benzamides. Turk. J. Chem., 2013, 37, 909-916.
[http://dx.doi.org/10.3906/kim-1212-26]
[18]
Crystal structure of the ecoli clamp loader bound to primer-template DNA. 2009. Available from: https://www.rcsb.org/structure/3GLF
[19]
E. COLI glucarate dehydratase native enzYME. 2000. Available from: https://www.rcsb.org/structure/1ec7
[20]
Kryger, G.; Silman, I.; Sussman, J.L. Three-dimensional structure of a complex of E2020 with acetylcholinesterase from Torpedo californica. J. Physiol. Paris, 1998, 92(3-4), 191-194.
[http://dx.doi.org/10.1016/S0928-4257(98)80008-9] [PMID: 9789806]
[21]
Xue, C.X.; Cui, S.Y.; Liu, M.C.; Hu, Z.D.; Fan, B.T. 3D QSAR studies on antimalarial alkoxylated and hydroxylated chalcones by CoMFA and CoMSIA. Eur. J. Med. Chem., 2004, 39(9), 745-753.
[http://dx.doi.org/10.1016/j.ejmech.2004.05.009] [PMID: 15337287]
[22]
Xu, Y.C.; Leung, S.W.S.; Yeung, D.K.Y.; Hu, L.H.; Chen, G.H.; Che, C.M.; Man, R.Y.K. Structure-activity relationships of flavonoids for vascular relaxation in porcine coronary artery. Phytochemistry, 2007, 68(8), 1179-1188.
[http://dx.doi.org/10.1016/j.phytochem.2007.02.013] [PMID: 17395220]
[23]
Gacche, R.; Khsirsagar, M.; Kamble, S.; Bandgar, B.; Dhole, N.; Shisode, K.; Chaudhari, A. Antioxidant and anti-inflammatory related activities of selected synthetic chalcones: structure-activity relationship studies using computational tools. Chem. Pharm. Bull. (Tokyo), 2008, 56(7), 897-901.
[http://dx.doi.org/10.1248/cpb.56.897] [PMID: 18591798]
[24]
Honório, K.M.; Da Silva, A.B.F. An AM1 study on the electron-donating and electron-accepting character of biomolecules. Int. J. Quantum Chem., 2003, 95(2), 126-132.
[http://dx.doi.org/10.1002/qua.10661]
[25]
Zafar, M.N.; Perveen, P.; Nazar, M.F.; Mughal, E.U.; Rafique, H. Synthesis, characterization, DNA-Binding, enzyme inhibition and antioxidant studies of new N-methylated derivatives of pyridinium amine. J. Mol. Struct., 2017, 1137, 84-96.
[26]
Perveen, F.; Arshad, N.; Qureshi, Q. Electrochemical, spectroscopic and theoretical monitoring of anthracyclines’ interactions with DNA and ascorbic acid by adopting two routes: Cancer cell line studies. PLoS ONE, 2018, 13(10), e0205764.
[http://dx.doi.org/10.1371/journal.pone.0205764]
[27]
Walsh, R.; Rockwood, K.; Martin, E.; Darvesh, S. Synergistic inhibition of butyrylcholinesterase by galantamine and citalopram. Biochim. Biophys. Acta, Gen. Subj., 2011, 1810(12), 1230-1235.
[http://dx.doi.org/10.1016/j.bbagen.2011.08.010] [PMID: 21872646]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy