Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

The Role of Aldose Reductase in Polyol Pathway: An Emerging Pharmacological Target in Diabetic Complications and Associated Morbidities

Author(s): Jeetendra Kumar Gupta*

Volume 25, Issue 9, 2024

Published on: 13 September, 2023

Page: [1073 - 1081] Pages: 9

DOI: 10.2174/1389201025666230830125147

Price: $65

Abstract

The expression of aldose reductase leads to a variety of biological and pathological effects. It is a multifunctional enzyme which has a tendency to reduce aldehydes to the corresponding sugaralcohol. In diabetic conditions, the aldose reductase enzyme converts glucose into sorbitol using nicotinamide adenine dinucleotide phosphate as a cofactor. It is a key enzyme in polyol pathway which is a surrogate course of glucose metabolism. The polyol pathway has a significant impact on the aetiology of complications in individuals with end-stage diabetes. The exorbitant level of sorbitol leads to the accumulation of intracellular reactive oxygen species in diabetic heart, neurons, kidneys, eyes and other vasculatures, leading to many complications and pathogenesis. Recently, the pathophysiological role of aldose reductase has been explored with multifarious perspectives. Research on aldose reductase suggest that besides implying in diabetic complications, the enzyme also turns down the lipid-derived aldehydes as well as their glutathione conjugates. Although aldose reductase has certain lucrative role in detoxification of toxic lipid aldehydes, its overexpression leads to intracellular accumulation of sorbitol which is involved in secondary diabetic complications, such as neuropathy, cataractogenesis, nephropathy, retinopathy and cardiovascular pathogenesis. Osmotic upset and oxidative stress are produced by aldose reductase via the polyol pathway. The inhibition of aldose reductase alters the activation of transcription factors like NF-ƙB. Moreover, in many preclinical studies, aldose reductase inhibitors have been observed to reduce inflammation-related impediments, such as asthma, sepsis and colon cancer, in diabetic subjects. Targeting aldose reductase can bestow a novel cognizance for this primordial enzyme as an ingenious strategy to prevent diabetic complications and associated morbidities. In this review article, the significance of aldose reductase is briefly discussed along with their prospective applications in other afflictions.

Keywords: Diabetes, neuropathy, nephropathy, retinopathy, sorbitol, aldose reductase, polyol pathway.

Next »
Graphical Abstract
[1]
Hers, H.G. Le mécanisme de la transformation de glucose en fructose par les vésicules séminales. Biochim. Biophys. Acta, 1956, 22(1), 202-203.
[http://dx.doi.org/10.1016/0006-3002(56)90247-5] [PMID: 13373872]
[2]
Ramana, K.V. Aldose reductase: New insights for an old enzyme. Biomol. Concepts, 2011, 2(1-2), 103-114.
[http://dx.doi.org/10.1515/bmc.2011.002] [PMID: 21547010]
[3]
Van Heyningen, R. Formation of polyols by the lens of the rat with `Sugar' cataract. Nature, 1956, 184(4681), 194-195.
[4]
Chalk, C.; Benstead, T.J.; Moore, F. Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Libr., 2007, 2010(1), CD004572.
[http://dx.doi.org/10.1002/14651858.CD004572.pub2] [PMID: 17943821]
[5]
Kinoshita, J.H.; Dvornik, D.; Kramil, M.; Gabbay, K.H. The effect of an aldose reductase inhibitor on the galactose-exposed rabbit lens. Biochim. Biophys. Acta, Gen. Subj., 1968, 158(3), 472-475.
[http://dx.doi.org/10.1016/0304-4165(68)90305-X] [PMID: 5660111]
[6]
Kinoshita, J.H.; Fukushi, S.; Kador, P.; Merola, L.O. Aldose reductase in diabetic complications of the eye. Metabolism, 1979, 28(4)(Suppl. 1), 462-469.
[http://dx.doi.org/10.1016/0026-0495(79)90057-X] [PMID: 45423]
[7]
Brownlee, M.; Cerami, A. The biochemistry of the complications of diabetes mellitus. Annu. Rev. Biochem., 1981, 50(1), 385-432.
[http://dx.doi.org/10.1146/annurev.bi.50.070181.002125] [PMID: 6168237]
[8]
Stribling, D.; Armstrong, F.M.; Harrison, H.E. Aldose reductase in the etiology of diabetic complications: 2. Nephropathy. J. Diabet. Complications, 1989, 3(2), 70-76.
[http://dx.doi.org/10.1016/0891-6632(89)90015-9] [PMID: 2526143]
[9]
Srivastava, S.K.; Ramana, K.V.; Bhatnagar, A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr. Rev., 2005, 26(3), 380-392.
[http://dx.doi.org/10.1210/er.2004-0028] [PMID: 15814847]
[10]
Schemmel, K.E.; Padiyara, R.S.; D’Souza, J.J. Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: A review. J. Diabetes Complications, 2010, 24(5), 354-360.
[http://dx.doi.org/10.1016/j.jdiacomp.2009.07.005] [PMID: 19748287]
[11]
Yamaoka, T.; Nishimura, C.; Yamashita, K.; Itakura, M.; Yamada, T.; Fujimoto, J.; Kokai, Y. Acute onset of diabetic pathological changes in transgenic mice with human aldose reductase cDNA. Diabetologia, 1995, 38(3), 255-261.
[http://dx.doi.org/10.1007/BF00400627] [PMID: 7758869]
[12]
Shah, V.O.; Scavini, M.; Nikolic, J.; Sun, Y.; Vai, S.; Griffith, J.K.; Dorin, R.I.; Stidley, C.; Yacoub, M.; Vander Jagt, D.L.; Eaton, R.P.; Zager, P.G. Z-2 microsatellite allele is linked to increased expression of the aldose reductase gene in diabetic nephropathy. J. Clin. Endocrinol. Metab., 1998, 83(8), 2886-2891.
[http://dx.doi.org/10.1210/jc.83.8.2886] [PMID: 9709964]
[13]
Hodgkinson, A.D.; Søndergaard, K.L.; Yang, B.; Cross, D.F.; Millward, B.A.; Demaine, A.G. Aldose reductase expression is induced by hyperglycemia in diabetic nephropathy. Kidney Int., 2001, 60(1), 211-218.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00788.x] [PMID: 11422753]
[14]
Ramana, K.V.; Chandra, D.; Wills, N.K.; Bhatnagar, A.; Srivastava, S.K. Oxidative stress-induced up-regulation of the chloride channel and Na+/Ca2+ exchanger during cataractogenesis in diabetic rats. J. Diabetes Complications, 2004, 18(3), 177-182.
[http://dx.doi.org/10.1016/S1056-8727(03)00003-5] [PMID: 15145331]
[15]
Bhatnagar, A.; Ansari, N.H.; Zacarias, A.; Srivastava, S.K. Digital image analysis of cultured rat lens during oxidative stress-induced cataractogenesis. Exp. Eye Res., 1993, 57(4), 385-391.
[http://dx.doi.org/10.1006/exer.1993.1139] [PMID: 8282024]
[16]
Srivastava, S.K.; Hair, G.A.; Das, B. Activated and unactivated forms of human erythrocyte aldose reductase. Proc. Natl. Acad. Sci. USA, 1985, 82(21), 7222-7226.
[http://dx.doi.org/10.1073/pnas.82.21.7222] [PMID: 3933003]
[17]
Borhani, D.W.; Harter, T.M.; Petrash, J.M. The crystal structure of the aldose reductase.NADPH binary complex. J. Biol. Chem., 1992, 267(34), 24841-24847.
[http://dx.doi.org/10.1016/S0021-9258(18)35840-X] [PMID: 1447221]
[18]
Del-Corso, A.; Balestri, F.; Di Bugno, E.; Moschini, R.; Cappiello, M.; Sartini, S.; La-Motta, C.; Da-Settimo, F.; Mura, U. A new approach to control the enigmatic activity of aldose reductase. PLoS One, 2013, 8(9), e74076.
[http://dx.doi.org/10.1371/journal.pone.0074076] [PMID: 24019949]
[19]
bander Jagt, D.L.; Kolb, N.S.; bander Jagt, T.J.; Chino, J.; Martinez, F.J.; Hunsaker, L.A.; Royer, R.E. Substrate specificity of human aldose reductase: Identification of 4-hydroxynonenal as an endogenous substrate. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1995, 1249(2), 117-126.
[http://dx.doi.org/10.1016/0167-4838(95)00021-L]
[20]
Dixit, B.L.; Balendiran, G.K.; Watowich, S.J.; Srivastava, S.; Ramana, K.V.; Petrash, J.M.; Bhatnagar, A.; Srivastava, S.K. Kinetic and structural characterization of the glutathione-binding site of aldose reductase. J. Biol. Chem., 2000, 275(28), 21587-21595.
[http://dx.doi.org/10.1074/jbc.M909235199] [PMID: 10764810]
[21]
Ramana, K.V.; Chandra, D.; Srivastava, S.; Bhatnagar, A.; Aggarwal, B.B.; Srivastava, S.K. Aldose reductase mediates mitogenic signaling in vascular smooth muscle cells. J. Biol. Chem., 2002, 277(35), 32063-32070.
[http://dx.doi.org/10.1074/jbc.M202126200] [PMID: 12063254]
[22]
Tammali, R.; Ramana, K.V.; Singhal, S.S.; Awasthi, S.; Srivastava, S.K. Aldose reductase regulates growth factor-induced cyclooxygenase-2 expression and prostaglandin E2 production in human colon cancer cells. Cancer Res., 2006, 66(19), 9705-9713.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2105] [PMID: 17018629]
[23]
Ramasamy, R.; Goldberg, I.J. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ. Res., 2010, 106(9), 1449-1458.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.213447] [PMID: 20466987]
[24]
Yadav, U.C.S.; Srivastava, S.K.; Ramana, K.V. Understanding the role of aldose reductase in ocular inflammation. Curr. Mol. Med., 2010, 10(6), 540-549.
[PMID: 20642441]
[25]
Cheng, H.M.; González, R.G. The effect of high glucose and oxidative stress on lens metabolism, aldose reductase, and senile cataractogenesis. Metabolism, 1986, 35(4)(Suppl. 1), 10-14.
[http://dx.doi.org/10.1016/0026-0495(86)90180-0] [PMID: 3083198]
[26]
Trueblood, N.; Ramasamy, R. Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Am. J. Physiol., 1998, 275(1), H75-H83.
[PMID: 9688898]
[27]
Ido, Y.; Chang, K.; Woolsey, T.A.; Williamson, J.R. NADH: Sensor of blood flow need in brain, muscle, and other tissues. FASEB J., 2001, 15(8), 1419-1421.
[http://dx.doi.org/10.1096/fj.00-0652fje] [PMID: 11387243]
[28]
Williamson, J.R.; Chang, K.; Frangos, M.; Hasan, K.S.; Ido, Y.; Kawamura, T.; Nyengaard, J.R.; Den Enden, M.; Kilo, C.; Tilton, R.G. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes, 1993, 42(6), 801-813.
[http://dx.doi.org/10.2337/diab.42.6.801] [PMID: 8495803]
[29]
Jannapureddy, S.; Sharma, M.; Yepuri, G.; Schmidt, A.M.; Ramasamy, R. Aldose reductase: An emerging target for development of interventions for diabetic cardiovascular complications. Front. Endocrinol. (Lausanne), 2021, 12, 636267.
[http://dx.doi.org/10.3389/fendo.2021.636267] [PMID: 33776930]
[30]
Tanimoto, T.; Maekawa, K.; Okada, S.; Yabe-Nishimura, C. Clinical analysis of aldose reductase for differential diagnosis of the pathogenesis of diabetic complication. Anal. Chim. Acta, 1998, 365(1-3), 285-292.
[http://dx.doi.org/10.1016/S0003-2670(97)00649-1]
[31]
Markus, H.B.; Raducha, M.; Harris, H. Tissue distribution of mammalian aldose reductase and related enzymes. Biochem. Med., 1983, 29(1), 31-45.
[http://dx.doi.org/10.1016/0006-2944(83)90051-0] [PMID: 6404249]
[32]
Hashimoto, Y.; Yamagishi, S.I.; Mizukami, H.; Yabe-Nishimura, C.; Lim, S.W.; Kwon, H.M.; Yagihashi, S. Polyol pathway and diabetic nephropathy revisited: Early tubular cell changes and glomerulopathy in diabetic mice overexpressing human aldose reductase. J. Diabetes Investig., 2011, 2(2), 111-122.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00071.x] [PMID: 24843470]
[33]
MacGregor, L.C.; Rosecan, L.R.; Laties, A.M.; Matschinsky, F.M. Altered retinal metabolism in diabetes. I. Microanalysis of lipid, glucose, sorbitol, and myo-inositol in the choroid and in the individual layers of the rabbit retina. J. Biol. Chem., 1986, 261(9), 4046-4051.
[http://dx.doi.org/10.1016/S0021-9258(17)35619-3] [PMID: 3949802]
[34]
Frank, R.N. The aldose reductase controversy. Diabetes, 1994, 43(2), 169-172.
[http://dx.doi.org/10.2337/diab.43.2.169] [PMID: 8288039]
[35]
Ramana, K.V.; Dixit, B.L.; Srivastava, S.; Bhatnagar, A.; Balendiran, G.K.; Watowich, S.J.; Petrash, J.M.; Srivastava, S.K. Characterization of the glutathione binding site of aldose reductase. Chem. Biol. Interact., 2001, 130-132(1-3), 537-548.
[http://dx.doi.org/10.1016/S0009-2797(00)00297-0] [PMID: 11306073]
[36]
Ramana, K.V.; Dixit, B.L.; Srivastava, S.; Balendiran, G.K.; Srivastava, S.K.; Bhatnagar, A. Selective recognition of glutathiolated aldehydes by aldose reductase. Biochemistry, 2000, 39(40), 12172-12180.
[http://dx.doi.org/10.1021/bi000796e] [PMID: 11015195]
[37]
Pandey, S.; Srivastava, S.K.; Ramana, K.V. A potential therapeutic role for aldose reductase inhibitors in the treatment of endotoxin-related inflammatory diseases. Expert Opin. Investig. Drugs, 2012, 21(3), 329-339.
[http://dx.doi.org/10.1517/13543784.2012.656198] [PMID: 22283786]
[38]
Chang, K.C.; Ponder, J.; LaBarbera, D.V.; Petrash, J.M. Aldose reductase inhibition prevents endotoxin-induced inflammatory responses in retinal microglia. Invest. Ophthalmol. Vis. Sci., 2014, 55(5), 2853-2861.
[http://dx.doi.org/10.1167/iovs.13-13487] [PMID: 24677107]
[39]
Sato, S.; Lin, L.R.; Reddy, V.N.; Kador, P.F. Aldose reductase in human retinal pigment epithelial cells. Exp. Eye Res., 1993, 57(2), 235-241.
[http://dx.doi.org/10.1006/exer.1993.1119] [PMID: 8405190]
[40]
Ramana, K.V.; Reddy, A.B.M.; Tammali, R.; Srivastava, S.K. Aldose reductase mediates endotoxin-induced production of nitric oxide and cytotoxicity in murine macrophages. Free Radic. Biol. Med., 2007, 42(8), 1290-1302.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.033] [PMID: 17382209]
[41]
Tang, W.H.; Stitham, J.; Jin, Y.; Liu, R.; Lee, S.H.; Du, J.; Atteya, G.; Gleim, S.; Spollett, G.; Martin, K.; Hwa, J. Aldose reductase-mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets. Circulation, 2014, 129(15), 1598-1609.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005224] [PMID: 24474649]
[42]
Miwa, K.; Nakamura, J.; Hamada, Y.; Naruse, K.; Nakashima, E.; Kato, K.; Kasuya, Y.; Yasuda, Y.; Kamiya, H.; Hotta, N. The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes. Diabetes Res. Clin. Pract., 2003, 60(1), 1-9.
[http://dx.doi.org/10.1016/S0168-8227(02)00248-6] [PMID: 12639759]
[43]
Murata, M.; Ohta, N.; Sakurai, S.; Alam, S.; Tsai, J.Y.; Kador, P.F.; Sato, S. The role of aldose reductase in sugar cataract formation: Aldose reductase plays a key role in lens epithelial cell death (apoptosis). Chem. Biol. Interact., 2001, 130-132(1-3), 617-625.
[http://dx.doi.org/10.1016/S0009-2797(00)00289-1] [PMID: 11306080]
[44]
Srivastava, S.; Ramana, K.V.; Tammali, R.; Srivastava, S.K.; Bhatnagar, A. Contribution of aldose reductase to diabetic hyperproliferation of vascular smooth muscle cells. Diabetes, 2006, 55(4), 901-910.
[http://dx.doi.org/10.2337/diabetes.55.04.06.db05-0932] [PMID: 16567509]
[45]
Tesfamariam, B.; Palacino, J.J.; Weisbrod, R.M.; Cohen, R.A. Aldose reductase inhibition restores endothelial cell function in diabetic rabbit aorta. J. Cardiovasc. Pharmacol., 1993, 21(2), 205-211.
[http://dx.doi.org/10.1097/00005344-199302000-00004] [PMID: 7679153]
[46]
Ramana, K.V.; Bhatnagar, A.; Srivastava, S.K. Aldose reductase regulates TNF-α-induced cell signaling and apoptosis in vascular endothelial cells. FEBS Lett., 2004, 570(1-3), 189-194.
[http://dx.doi.org/10.1016/j.febslet.2004.06.046] [PMID: 15251463]
[47]
Ramana, K.V.; Friedrich, B.; Tammali, R.; West, M.B.; Bhatnagar, A.; Srivastava, S.K. Requirement of aldose reductase for the hyperglycemic activation of protein kinase C and formation of diacylglycerol in vascular smooth muscle cells. Diabetes, 2005, 54(3), 818-829.
[http://dx.doi.org/10.2337/diabetes.54.3.818] [PMID: 15734861]
[48]
Ramana, K.V.; Friedrich, B.; Srivastava, S.; Bhatnagar, A.; Srivastava, S.K. Activation of nuclear factor-kappaB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase. Diabetes, 2004, 53(11), 2910-2920.
[http://dx.doi.org/10.2337/diabetes.53.11.2910] [PMID: 15504972]
[49]
Tammali, R.; Saxena, A.; Srivastava, S.K.; Ramana, K.V. Aldose reductase regulates vascular smooth muscle cell proliferation by modulating G1/S phase transition of cell cycle. Endocrinology, 2010, 151(5), 2140-2150.
[http://dx.doi.org/10.1210/en.2010-0160] [PMID: 20308528]
[50]
Ramana, K.V.; Tammali, R.; Srivastava, S.K. Inhibition of aldose reductase prevents growth factor-induced G1-S phase transition through the AKT/phosphoinositide 3-kinase/E2F-1 pathway in human colon cancer cells. Mol. Cancer Ther., 2010, 9(4), 813-824.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0795] [PMID: 20354121]
[51]
Reddy, A.B.M.; Ramana, K.V.; Srivastava, S.; Bhatnagar, A.; Srivastava, S.K. Aldose reductase regulates high glucose-induced ectodomain shedding of tumor necrosis factor (TNF)-α via protein kinase C-δ and TNF-α converting enzyme in vascular smooth muscle cells. Endocrinology, 2009, 150(1), 63-74.
[http://dx.doi.org/10.1210/en.2008-0677] [PMID: 18772236]
[52]
Ramana, K.V.; Tammali, R.; Reddy, A.B.M.; Bhatnagar, A.; Srivastava, S.K. Aldose reductase-regulated tumor necrosis factor-alpha production is essential for high glucose-induced vascular smooth muscle cell growth. Endocrinology, 2007, 148(9), 4371-4384.
[http://dx.doi.org/10.1210/en.2007-0512] [PMID: 17584970]
[53]
Wu, M.Y.; Yiang, G.T.; Lai, T.T.; Li, C.J. The oxidative stress and mitochondrial dysfunction during the pathogenesis of diabetic retinopathy. Oxid. Med. Cell. Longev., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/3420187] [PMID: 30254714]
[54]
Shukla, K.; Sonowal, H.; Saxena, A.; Ramana, K.V.; Srivastava, S.K. Aldose reductase inhibitor, fidarestat regulates mitochondrial biogenesis via Nrf2/HO-1/AMPK pathway in colon cancer cells. Cancer Lett., 2017, 411, 57-63.
[http://dx.doi.org/10.1016/j.canlet.2017.09.031] [PMID: 28986187]
[55]
Szaflik, J.P.; Majsterek, I.; Kowalski, M.; Rusin, P.; Sobczuk, A.; Borucka, A.I.; Szaflik, J.; Blasiak, J. Association between sorbitol dehydrogenase gene polymorphisms and type 2 diabetic retinopathy. Exp. Eye Res., 2008, 86(4), 647-652.
[http://dx.doi.org/10.1016/j.exer.2008.01.009] [PMID: 18289528]
[56]
Ellis, E.A.; Guberski, D.L.; Hutson, B.; Grant, M.B. Time course of NADH oxidase, inducible nitric oxide synthase and peroxynitrite in diabetic retinopathy in the BBZ/WOR rat. Nitric Oxide, 2002, 6(3), 295-304.
[http://dx.doi.org/10.1006/niox.2001.0419] [PMID: 12009847]
[57]
Perkins, T.N.; Donnell, M.L.; Oury, T.D. The axis of the receptor for advanced glycation endproducts in asthma and allergic airway disease. Allergy, 2021, 76(5), 1350-1366.
[http://dx.doi.org/10.1111/all.14600] [PMID: 32976640]
[58]
Dharmage, S.C.; Perret, J.L.; Custovic, A. Epidemiology of Asthma in Children and Adults. Front Pediatr., 2019, 7, 246.
[http://dx.doi.org/10.3389/fped.2019.00246] [PMID: 31275909]
[59]
Murphy, D.M.; O’Byrne, P.M. Recent advances in the pathophysiology of asthma. Chest, 2010, 137(6), 1417-1426.
[http://dx.doi.org/10.1378/chest.09-1895] [PMID: 20525652]
[60]
Yadav, U.C.S.; Naura, A.S.; Aguilera-Aguirre, L.; Boldogh, I.; Boulares, H.A.; Calhoun, W.J.; Ramana, K.V.; Srivastava, S.K. Aldose reductase inhibition prevents allergic airway remodeling through PI3K/AKT/GSK3β pathway in mice. PLoS One, 2013, 8(2), e57442.
[http://dx.doi.org/10.1371/journal.pone.0057442] [PMID: 23460857]
[61]
Yadav, U.C.S.; Naura, A.S.; Aguilera-Aguirre, L.; Ramana, K.V.; Boldogh, I.; Sur, S.; Boulares, H.A.; Srivastava, S.K. Aldose reductase inhibition suppresses the expression of Th2 cytokines and airway inflammation in ovalbumin-induced asthma in mice. J. Immunol., 2009, 183(7), 4723-4732.
[http://dx.doi.org/10.4049/jimmunol.0901177] [PMID: 19752229]
[62]
Wu, J.; Jin, Z.; Yan, L.J. Redox imbalance and mitochondrial abnormalities in the diabetic lung. Redox Biol., 2017, 11, 51-59.
[http://dx.doi.org/10.1016/j.redox.2016.11.003] [PMID: 27888691]
[63]
Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol., 2018, 17(1), 83.
[http://dx.doi.org/10.1186/s12933-018-0728-6] [PMID: 29884191]
[64]
Son, N.H.; Ananthakrishnan, R.; Yu, S.; Khan, R.S.; Jiang, H.; Ji, R.; Akashi, H.; Li, Q.; O’Shea, K.; Homma, S.; Goldberg, I.J.; Ramasamy, R. Cardiomyocyte aldose reductase causes heart failure and impairs recovery from ischemia. PLoS One, 2012, 7(9), e46549.
[http://dx.doi.org/10.1371/journal.pone.0046549] [PMID: 23029549]
[65]
Lim, W.F.; Forouhan, M.; Roberts, T.C.; Dabney, J.; Ellerington, R.; Speciale, A.A.; Manzano, R.; Lieto, M.; Sangha, G.; Banerjee, S.; Conceição, M.; Cravo, L.; Biscans, A.; Roux, L.; Pourshafie, N.; Grunseich, C.; Duguez, S.; Khvorova, A.; Pennuto, M.; Cortes, C.J.; La Spada, A.R.; Fischbeck, K.H.; Wood, M.J.A.; Rinaldi, C. Gene therapy with AR isoform 2 rescues spinal and bulbar muscular atrophy phenotype by modulating AR transcriptional activity. Sci. Adv., 2021, 7(34), eabi6896.
[http://dx.doi.org/10.1126/sciadv.abi6896] [PMID: 34417184]
[66]
Balestri, F.; Moschini, R.; Mura, U.; Cappiello, M.; Del Corso, A. In search of differential inhibitors of aldose reductase. Biomolecules, 2022, 12(4), 485.
[http://dx.doi.org/10.3390/biom12040485] [PMID: 35454074]
[67]
Julius, A.; Renuka, R.R.; Hopper, W.; Babu Raghu, P.; Rajendran, S.; Srinivasan, S.; Dharmalingam, K.; Alanazi, A.M.; Arokiyaraj, S.; Prasath, S. Inhibition of aldose reductase by novel phytocompounds: A heuristic approach to treating diabetic retinopathy. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/9624118] [PMID: 35356240]
[68]
Grewal, A.S.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S. Natural compounds as source of aldose reductase (AR) inhibitors for the treatment of diabetic complications: A mini review. Curr. Drug Metab., 2020, 21(14), 1091-1116.
[http://dx.doi.org/10.2174/1389200221666201016124125] [PMID: 33069193]
[69]
Ansari, P.; Choudhury, S.T.; Seidel, V.; Rahman, A.B.; Aziz, M.A.; Richi, A.E.; Rahman, A.; Jafrin, U.H.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Therapeutic potential of quercetin in the management of type-2 diabetes mellitus. Life (Basel), 2022, 12(8), 1146.
[http://dx.doi.org/10.3390/life12081146] [PMID: 36013325]
[70]
Abhary, S.; Burdon, K.P.; Laurie, K.J.; Thorpe, S.; Landers, J.; Goold, L.; Lake, S.; Petrovsky, N.; Craig, J.E. Aldose reductase gene polymorphisms and diabetic retinopathy susceptibility. Diabetes Care, 2010, 33(8), 1834-1836.
[http://dx.doi.org/10.2337/dc09-1893] [PMID: 20424224]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy