Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

Advances in Cerebral Palsy Treatment

Author(s): Anjuman Nahar, Shruti Jain and Sudip Paul*

Volume 18, Issue 6, 2024

Published on: 06 October, 2023

Article ID: e220823220194 Pages: 14

DOI: 10.2174/1872212118666230822124440

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Cerebral palsy is a complex neurodevelopmental disorder with various etiological factors and treatment options. This narrative patent review aimed to summarize the causes of cerebral palsy, identify areas needing additional research in treatment approaches, and highlight areas requiring further investigation. In order to provide a thorough overview of management techniques to lessen the effects of the illness and its consequences, this review has drawn data from a number of studies.

Introduction: Prematurity increases the risk of brain damage during the developing stage and accounts for a sizable fraction of cerebral palsy cases. In a sizable portion of cases, maternal diabetes and hypertension are listed as the main causes. Damage to the brain tissue results from hypoxic- ischemic injuries sustained during pregnancy that upset the equilibrium of oxidants and antioxidants. To alter the oxidative stress pathway and ease related issues, pharmacological treatments, such as therapeutic hypothermia, free radical inhibition therapy, and mitochondrial therapy, have been proposed. Therapeutic strategies, such as physiotherapy, occupational therapy, speech therapy, and surgical interventions, have added quality to the lives of the children. Some of the most recent developments in this area include the development of biomarkers for muscle activity detection, machine learning to predict the types of cerebral palsy and abnormal movements, disease prediction with eye images, wireless inertia measuring unit for spasticity detection, computerbased video analysis of typical and atypical infants, identification of intellectual disabilities with algorithms, and deep learning methods for predicting cerebral palsy.

Methods: This narrative patent review is based on a careful analysis of numerous researches conducted on cerebral palsy, which have served as the basis for statistical distribution. It reviews the causes of cerebral palsy, available treatments, and ongoing research with the goal of providing physicians and researchers in the field with useful information. The objectives, study questions, inclusion criteria, and search approach have all been outlined in a thorough protocol. To find pertinent research published up to September 2021, a literature search was carried out using electronic databases, including Google Scholar, PubMed, Cochrane Library, Scopus, and Web of Science. A combination of pertinent keywords, such as "cerebral palsy," "management," "technology," "wearable technology," "prematurity," and "artificial intelligence," has been used in the search approach.

Results: Recent advances in the field include the discovery of biomarkers for the detection of muscle activity, machine learning algorithms to predict the types of cerebral palsy and abnormal movements, disease prediction using eye images, wireless inertia measuring units for the detection of spasticity, computer-based video analysis for the detection of atypical infants, and algorithms to identify intellectual disabilities. Additionally, employing technologies, like virtual reality systems, electrical stimulators, activity trackers, machine learning, and deep learning approaches, has shown promise in evaluating, diagnosing, and predicting treatment outcomes linked to gait, upper limb, and lower limb function.

Conclusion: Future research should examine the clinical application of nanomedicine, stem cell therapy, and cutting-edge therapeutic strategies to prevent hypoxic-ischemic damage in the developing brain. Additionally, research is required to effectively assist children with severe speech difficulties using alternate communication modalities and cutting-edge computational tools. The outcomes for people with cerebral palsy can be improved by combining interdisciplinary efforts with cutting-edge technological interventions.

Keywords: Cerebral palsy, prematurity, HIE, rehabilitation technology, periventeicular, functional electucal stimulator.

Graphical Abstract
[1]
M. Sadowska, B. Sarecka-Hujar, and I. Kopyta, "Cerebral palsy: Current opinions on definition, epidemiology, risk factors, classification and treatment options", Neuropsychiatr. Dis. Treat., vol. 16, pp. 1505-1518, 2020.
[http://dx.doi.org/10.2147/NDT.S235165] [PMID: 32606703]
[2]
S. Paul, A. Nahar, M. Bhagawati, and A.J. Kunwar, "A review on recent advances of cerebral palsy", Oxid. Med. Cell. Longev., vol. 2022, pp. 1-20, 2022.
[http://dx.doi.org/10.1155/2022/2622310] [PMID: 35941906]
[3]
J.N. Cobley, M.L. Fiorello, and D.M. Bailey, "13 reasons why the brain is susceptible to oxidative stress", Redox Biol., vol. 15, pp. 490-503, 2018.
[http://dx.doi.org/10.1016/j.redox.2018.01.008] [PMID: 29413961]
[4]
H. Boskabadi, "Frequency of maternal risk factors and neonatal complications of premature rupture of membranes", Majallah-i Danishgah-i Ulum-i Pizishki-i Babul, vol. 18, no. 10, pp. 32-39, 2016.
[5]
I. Panfoli, G. Candiano, M. Malova, L. De Angelis, V. Cardiello, G. Buonocore, and L.A. Ramenghi, "Oxidative stress as a primary risk factor for brain damage in preterm newborns", Front Pediatr., vol. 6, p. 369, 2018.
[http://dx.doi.org/10.3389/fped.2018.00369] [PMID: 30555809]
[6]
J.L. Hallman-Cooper, and F.R. Cabrero, "Cerebral Palsy", In: StatPearls., StatPearls Publishing: Treasure Island, FL, 2022.
[7]
K. Vitrikas, H. Dalton, and D. Breish, "Cerebral palsy: An overview", Am. Fam. Physician, vol. 101, no. 4, pp. 213-220, 2020.
[PMID: 32053326]
[8]
Velde C., "Morgan, I. Novak, E. Tantsis, and N. Badawi, “Early diagnosis and classification of cerebral palsy: A historical perspective and barriers to an early diagnosis”", J. Clin. Med., vol. 8, no. 10, p. 1599, 2019.
[http://dx.doi.org/10.3390/jcm8101599] [PMID: 31623303]
[9]
D. Graham, S.P. Paget, and N. Wimalasundera, "Current thinking in the health care management of children with cerebral palsy", Med. J. Aust., vol. 210, no. 3, pp. 129-135, 2019.
[http://dx.doi.org/10.5694/mja2.12106] [PMID: 30739332]
[10]
S.J. Hollung, I.J. Bakken, T. Vik, S. Lydersen, R. Wiik, K.M. Aaberg, and G.L. Andersen, "Comorbidities in cerebral palsy: A patient registry study", Dev. Med. Child Neurol., vol. 62, no. 1, pp. 97-103, 2020.
[http://dx.doi.org/10.1111/dmcn.14307] [PMID: 31273772]
[11]
J.C. Galloway, "Innovative approaches to promote mobility in children with cerebral palsy in the community", In: Cerebral Palsy., Springer, 2020, pp. 2473-2481.
[12]
A. Chandy, "A review on IoT based medical imaging technology for healthcare applications", J. Innova. Imag. Proces., vol. 1, no. 1, pp. 51-60, 2019.
[http://dx.doi.org/10.36548/jiip.2019.1.006]
[13]
F. Reyes, C. Niedzwecki, and D. Gaebler-Spira, "Technological advancements in cerebral palsy rehabilitation", Phys. Med. Rehabil. Clin. N. Am., vol. 31, no. 1, pp. 117-129, 2020.
[http://dx.doi.org/10.1016/j.pmr.2019.09.002] [PMID: 31760985]
[14]
D. Formica, and E. Schena, Smart sensors for healthcare and medical applications., MDPI, 2021, p. 543.
[15]
D. Groos, L. Adde, S. Aubert, L. Boswell, R.A. de Regnier, T. Fjørtoft, D. Gaebler-Spira, A. Haukeland, M. Loennecken, M. Msall, U.I. Möinichen, A. Pascal, C. Peyton, H. Ramampiaro, M.D. Schreiber, I.E. Silberg, N.T. Songstad, N. Thomas, C. Van den Broeck, G.K. Øberg, E.A.F. Ihlen, and R. Støen, "development and validation of a deep learning method to predict cerebral palsy from spontaneous move-ments in infants at high risk", JAMA Netw. Open, vol. 5, no. 7, pp. e2221325-e2221325, 2022.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.21325] [PMID: 35816301]
[16]
I. Novak, C. Morgan, M. Fahey, M. Finch-Edmondson, C. Galea, A. Hines, K. Langdon, M.M. Namara, M.C.B. Paton, H. Popat, B. Shore, A. Khamis, E. Stanton, O.P. Finemore, A. Tricks, A. te Velde, L. Dark, N. Morton, and N. Badawi, "State of the evidence traffic lights 2019: Systematic review of interventions for preventing and treating children with cerebral palsy", Curr. Neurol. Neurosci. Rep., vol. 20, no. 2, p. 3, 2020.
[http://dx.doi.org/10.1007/s11910-020-1022-z] [PMID: 32086598]
[17]
V.R.B. Hoge, and V.V. Gawai, "Cerebral palsy in paediatrics - a conceptual study", World J. Pharm. Res., vol. 11, no. 7, pp. 242-251, 2022.
[18]
M.A. Hossain, "Molecular mediators of hypoxic–ischemic injury and implications for epilepsy in the developing brain", Epilepsy Behav., vol. 7, no. 2, pp. 204-213, 2005.
[http://dx.doi.org/10.1016/j.yebeh.2005.05.015] [PMID: 16054439]
[19]
X. Qin, J. Cheng, Y. Zhong, O.K. Mahgoub, F. Akter, Y. Fan, M. Aldughaim, Q. Xie, L. Qin, L. Gu, Z. Jian, X. Xiong, and R. Liu, "Mechanism and treatment related to oxidative stress in neonatal hypoxic-ischemic encephalopathy", Front. Mol. Neurosci., vol. 12, p. 88, 2019.
[http://dx.doi.org/10.3389/fnmol.2019.00088] [PMID: 31031592]
[20]
Q. Hou, and L. Li, "Efficacy of rehabilitation therapy and pharmacotherapy on children with cerebral palsy: A meta-analysis", Comput. Math. Methods Med., vol. 2022, p. 6465060, 2022.
[http://dx.doi.org/10.1155/2022/6465060]
[21]
E.M. Chin, H.E. Gwynn, S. Robinson, and A.H. Hoon Jr, "Principles of medical and surgical treatment of cerebral palsy", Neurol. Clin., vol. 38, no. 2, pp. 397-416, 2020.
[http://dx.doi.org/10.1016/j.ncl.2020.01.009] [PMID: 32279717]
[22]
P. Pavone, C. Gulizia, A. Le Pira, F. Greco, P. Parisi, G. Di Cara, R. Falsaperla, R. Lubrano, C. Minardi, A. Spalice, and M. Ruggieri, "Cerebral palsy and epilepsy in children: Clinical perspectives on a common comorbidity", Children , vol. 8, no. 1, p. 16, 2020.
[http://dx.doi.org/10.3390/children8010016] [PMID: 33396243]
[23]
S. Vande Velde, K. Van Renterghem, M. Van Winkel, R. De Bruyne, and S. Van Biervliet, "Constipation and fecal incontinence in children with cerebral palsy. Overview of literature and flowchart for a stepwise approach", Acta Gastroenterol. Belg., vol. 81, no. 3, pp. 415-418, 2018.
[PMID: 30350531]
[24]
R. Marpole, A.M. Blackmore, N. Gibson, M.S. Cooper, K. Langdon, and A.C. Wilson, "Evaluation and management of respiratory illness in children with cerebral palsy", Front Pediatr., vol. 8, p. 333, 2020.
[http://dx.doi.org/10.3389/fped.2020.00333] [PMID: 32671000]
[25]
J.M. Livingston, "Subacute metformin treatment reduces inflammation and improves functional outcome following neonatal hypoxia ischemia", Brain Behav Immun Health, vol. 7, p. 100119, 2020.
[http://dx.doi.org/10.1016/j.bbih.2020.100119]
[26]
P. Greco, G. Nencini, I. Piva, M. Scioscia, C.A. Volta, S. Spadaro, M. Neri, G. Bonaccorsi, F. Greco, I. Cocco, F. Sorrentino, F. D’Antonio, and L. Nappi, "Pathophysiology of hypoxic–ischemic encephalopathy: A review of the past and a view on the future", Acta Neurol. Belg., vol. 120, no. 2, pp. 277-288, 2020.
[http://dx.doi.org/10.1007/s13760-020-01308-3] [PMID: 32112349]
[27]
P. Jung, E. Ha, M. Zhang, C. Fall, M. Hwang, E. Taylor, S. Stetkevich, A. Bhanot, C.G. Wilson, J.D. Figueroa, A. Obenaus, S. Bragg, B. Tone, S. Eliamani, B. Holshouser, A.B. Blood, and T. Liu, "Neuroprotective role of nitric oxide inhalation and nitrite in a Neonatal Rat Model of Hypoxic-Ischemic Injury", PLoS One, vol. 17, no. 5, p. e0268282, 2022.
[http://dx.doi.org/10.1371/journal.pone.0268282] [PMID: 35544542]
[28]
I. Serrenho, M. Rosado, A. Dinis, C.M. Cardoso, M. Grãos, B. Manadas, and G. Baltazar, "Stem cell therapy for neonatal hypoxic-ischemic encephalopathy: A systematic review of preclinical studies", Int. J. Mol. Sci., vol. 22, no. 6, p. 3142, 2021.
[http://dx.doi.org/10.3390/ijms22063142] [PMID: 33808671]
[29]
F.M.H. Ahmad, and C.S. Sankhla, "Hyperbaric oxygen therapy in neurological diseases", Neurol. India, vol. 67, no. 3, pp. 655-656, 2019.
[PMID: 31347526]
[30]
J. Fan, R. Milosevic, and S. Wang, "Selective peripheral neurotomy (SPN) as a treatment strategy for spasticity", BSA, vol. 6, no. 1, pp. 30-41, 2020.
[http://dx.doi.org/10.26599/BSA.2020.9050003]
[31]
I.A. Sarikaya, A. Seker, O.A. Erdal, M.A. Talmac, and M. Inan, "Surgical correction of hallux valgus deformity in children with cere-bral palsy", Acta Orthop. Traumatol. Turc., vol. 52, no. 3, pp. 174-178, 2018.
[http://dx.doi.org/10.1016/j.aott.2018.01.008] [PMID: 29478778]
[32]
S.A. Rethlefsen, A.M. Hanson, T.A.L. Wren, and R.M. Kay, "Calcaneal sliding osteotomy versus calcaneal lengthening osteotomy for valgus foot deformity correction in children with cerebral palsy", J. Pediatr. Orthop., vol. 41, no. 6, pp. e433-e438, 2021.
[http://dx.doi.org/10.1097/BPO.0000000000001790] [PMID: 33734201]
[33]
A. Ramírez-Barragán, M. Galán-Olleros, R. Maroto, R.M. Egea-Gámez, and I. Martínez-Caballero, "Long-term outcomes of talo-navicular arthrodesis for the treatment of planovalgus foot in children with cerebral palsy", J. Pediatr. Orthop., vol. 42, no. 4, pp. e377-e383, 2022.
[http://dx.doi.org/10.1097/BPO.0000000000002081] [PMID: 35132016]
[34]
I.A. Sarikaya, S. Ertan Birsel, A. Şeker , O.A Erdal , B. Görgün , and M. İnan , "The split transfer of tibialis anterior tendon to peroneus tertius tendon for equinovarus foot in children with cerebral palsy", Acta Orthop. Traumatol. Turc., vol. 54, no. 3, pp. 262-268, 2020.
[http://dx.doi.org/10.5152/j.aott.2020.03.571] [PMID: 32544062]
[35]
K.H. Sung, S.S. Kwon, C.Y. Chung, K.M. Lee, G.H. Cho, and M.S. Park, "Long-term outcomes over 10 years after femoral dero-tation osteotomy in ambulatory children with cerebral palsy", Gait Posture, vol. 64, pp. 119-125, 2018.
[http://dx.doi.org/10.1016/j.gaitpost.2018.06.003] [PMID: 29902714]
[36]
J.M. Wick, J. Feng, E. Raney, and M. Aiona, "Single-event multilevel surgery to correct movement disorders in children with cerebral palsy", AORN J., vol. 108, no. 5, pp. 516-531, 2018.
[http://dx.doi.org/10.1002/aorn.12402] [PMID: 30376177]
[37]
S. Bekkers, I.M.J. Pruijn, K. Van Hulst, C.P. Delsing, C.E. Erasmus, A.R.T. Scheffer, and F.J.A. Van Den Hoogen, "Submandibular duct ligation after botulinum neurotoxin A treatment of drooling in children with cerebral palsy", Dev. Med. Child Neurol., vol. 62, no. 7, pp. 861-867, 2020.
[http://dx.doi.org/10.1111/dmcn.14510] [PMID: 32149393]
[38]
D.R. Patel, M. Neelakantan, K. Pandher, and J. Merrick, "Cerebral palsy in children: a clinical overview", Transl. Pediatr., vol. 9, no. S1, suppl. Suppl. 1,, pp. S125-S135,, 2020.
[http://dx.doi.org/10.21037/tp.2020.01.01] [PMID: 32206590]
[39]
J. Upadhyay, N. Tiwari, and M.N. Ansari, "Cerebral palsy: Aetiology, pathophysiology and therapeutic interventions", Clin. Exp. Pharmacol. Physiol., vol. 47, no. 12, pp. 1891-1901, 2020.
[http://dx.doi.org/10.1111/1440-1681.13379] [PMID: 32662125]
[40]
S.W. Kim, H.R. Jeon, T. Youk, and J. Kim, "The nature of rehabilitation services provided to children with cerebral palsy: A popula-tion-based nationwide study", BMC Health Serv. Res., vol. 19, no. 1, p. 277, 2019.
[http://dx.doi.org/10.1186/s12913-019-4111-4] [PMID: 31046762]
[41]
S.K. Kim, D. Park, B. Yoo, D. Shim, J.O. Choi, T.Y. Choi, and E.S. Park, "Overground robot-assisted gait training for pediatric cere-bral palsy", Sensors, vol. 21, no. 6, p. 2087, 2021.
[http://dx.doi.org/10.3390/s21062087] [PMID: 33809758]
[42]
Y. Tunde Gbonjubola, D. Garba Muhammad, and A. Tobi Elisha, "Physiotherapy management of children with cerebral palsy", Adesh Univ. J. Med. Sci. Res., vol. 3, no. 2, pp. 64-68, 2021.
[http://dx.doi.org/10.25259/AUJMSR_29_2021]
[43]
İ.E. Doğan, N.Ç. Balcı, and A.G. Gündüz, "Physiotherapy and rehabilitation approaches to premature infants in neonatal intensive care units", Am J Phys Med Rehabil, vol. 150, pp. 2-5, 2022.
[44]
N. Anjuman, "To study the effect of play therapy and child friendly constraint induced momement therapy to improve hand function in spastic hemiplegic cerebral palsy children: A comparative study", Int. J. Physiother, vol. 2, no. 6, 2015.
[45]
M.C. Dionisio, and A.L. Terrill, "Constraint-induced movement therapy for infants with or at risk for cerebral palsy: A scoping re-view", Am. J. Occup. Ther., vol. 76, no. 2, p. 7602205120, 2022.
[http://dx.doi.org/10.5014/ajot.2022.047894] [PMID: 35179556]
[46]
I. Novak, and I. Honan, "Effectiveness of paediatric occupational therapy for children with disabilities: A systematic review", Aust. Occup. Ther. J., vol. 66, no. 3, pp. 258-273, 2019.
[http://dx.doi.org/10.1111/1440-1630.12573] [PMID: 30968419]
[47]
S.P. Das, and G.S. Ganesh, "Evidence-based approach to physical therapy in cerebral palsy", Indian J. Orthop., vol. 53, no. 1, pp. 20-34, 2019.
[http://dx.doi.org/10.4103/ortho.IJOrtho_241_17] [PMID: 30905979]
[48]
A. Houtrow, N. Murphy, D.Z. Kuo, S. Apkon, T.J. Brei, L.F. Davidson, B.E. Davis, K.A. Ellerbeck, S.L. Hyman, M.O.C. Leppert, G.H. Noritz, C.J. Stille, and L. Yin, "Prescribing physical, occupational, and speech therapy services for children with disabilities", Pediatrics, vol. 143, no. 4, p. e20190285, 2019.
[http://dx.doi.org/10.1542/peds.2019-0285] [PMID: 30910917]
[49]
C. Goyal, V. Vardhan, and W. Naqvi, "Virtual reality-based intervention for enhancing upper extremity function in children with hemiplegic cerebral palsy: A literature review", Cureus, vol. 14, no. 1, p. e21693, 2022.
[http://dx.doi.org/10.7759/cureus.21693] [PMID: 35237486]
[50]
P. Illavarason, R.J. Arokia, and K.P. Mohan, "Medical diagnosis of cerebral palsy rehabilitation using eye images in machine learning techniques", J. Med. Syst., vol. 43, no. 8, p. 278, 2019.
[http://dx.doi.org/10.1007/s10916-019-1410-6] [PMID: 31289923]
[51]
M.R. Mariblanca, "Mobile applications in children with cerebal palsy", Neurologia, vol. 36, no. 2, pp. 135-148, 2021.
[http://dx.doi.org/10.1016/j.nrl.2017.09.018] [PMID: 29275969]
[52]
A.J. Spittle, J. Olsen, A. Kwong, L.W. Doyle, P.B. Marschik, C. Einspieler, and J.L.Y. Cheong, "The Baby Moves prospective co-hort study protocol: using a smartphone application with the General movements assessment to predict neurodevelopmental outcomes at age 2 years for extremely preterm or extremely low birthweight infants", BMJ Open, vol. 6, no. 10, p. e013446, 2016.
[http://dx.doi.org/10.1136/bmjopen-2016-013446] [PMID: 27697883]
[53]
V. Emeli, K.E. Fry, and A. Howard, Robotic System to Motivate Spontaneous Infant Kicking for Studies in Early Detection of Cerebral Palsy: A Pilot Study. 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), 29 Nov-01 Dec, 2020, New York, NY, USA, 2020.
[http://dx.doi.org/10.1109/BioRob49111.2020.9224409]
[54]
N.A. Parikh, A. Hershey, and M. Altaye, "Early detection of cerebral palsy using sensorimotor tract biomarkers in very preterm infants", Pediatr. Neurol., vol. 98, pp. 53-60, 2019.
[http://dx.doi.org/10.1016/j.pediatrneurol.2019.05.001] [PMID: 31201071]
[55]
D. Sakkos, K.D. Mccay, C. Marcroft, N.D. Embleton, S. Chattopadhyay, and E.S.L. Ho, "Identification of abnormal movements in infants: A deep neural network for body part-based prediction of cerebral palsy", IEEE Access, vol. 9, pp. 94281-94292, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3093469]
[56]
G.M. Rotoni, S.A. Unabia, and J.F. Villaverde, Wireless accelerometer-based motion recognition sensors for limb movement analysis in babies. Proceedings of the 2020 10th International Conference on Biomedical Engineering and Technolog Sep 2020, pp. 311-315.
2020 [http://dx.doi.org/10.1145/3397391.3397399]
[57]
N. Sukhadia, and P. Kamboj, "Detection of spastic cerebral palsy using different techniques in infants", In: ICT Analysis and Applications., Springer, 2021, pp. 57-71.
[http://dx.doi.org/10.1007/978-981-15-8354-4_7]
[58]
R. Mirich, A. Kyvelidou, and B.S. Greiner, "The effects of virtual reality based rehabilitation on upper extremity function in a child with cerebral palsy: A case report", Phys. Occup. Ther. Pediatr., vol. 41, no. 6, pp. 620-636, 2021.
[http://dx.doi.org/10.1080/01942638.2021.1909688] [PMID: 33926350]
[59]
M.M. Rodgers, G. Alon, V.M. Pai, and R.S. Conroy, "Wearable technologies for active living and rehabilitation: Current research challenges and future opportunities", J. Rehabil. Assist. Technol. Eng.,, vol. 6, 2019.
[http://dx.doi.org/10.1177/2055668319839607] [PMID: 31245033 ]
[60]
R. Kolaghassi, M.K. Al-Hares, G. Marcelli, and K. Sirlantzis, "Performance of deep learning models in forecasting gait trajectories of children with neurological disorders", Sensors, vol. 22, no. 8, p. 2969, 2022.
[http://dx.doi.org/10.3390/s22082969] [PMID: 35458954]
[61]
M. Demers, K. Fung, S.K. Subramanian, M. Lemay, and M.T. Robert, "Integration of motor learning principles into virtual reality in-terventions for individuals with cerebral palsy: Systematic review", JMIR Serious Games, vol. 9, no. 2, p. e23822, 2021.
[http://dx.doi.org/10.2196/23822] [PMID: 33825690]
[62]
H. Haberfehlner, M. Goudriaan, L.A. Bonouvrié, E.P. Jansma, J. Harlaar, R.J. Vermeulen, M.M. van der Krogt, and A.I. Buizer, "Instrumented assessment of motor function in dyskinetic cerebral palsy: A systematic review", J. Neuroeng. Rehabil., vol. 17, no. 1, p. 39, 2020.
[http://dx.doi.org/10.1186/s12984-020-00658-6] [PMID: 32138731]
[63]
Y. Cherni, L. Ballaz, J. Lemaire, F. Dal Maso, and M. Begon, "Effect of low dose robotic-gait training on walking capacity in children and adolescents with cerebral palsy", Neurophysiol. Clin., vol. 50, no. 6, pp. 507-519, 2020.
[http://dx.doi.org/10.1016/j.neucli.2020.09.005] [PMID: 33011059]
[64]
B.C. Conner, J. Luque, and Z.F. Lerner, "Adaptive ankle resistance from a wearable robotic device to improve muscle recruitment in cerebral palsy", Ann. Biomed. Eng., vol. 48, no. 4, pp. 1309-1321, 2020.
[http://dx.doi.org/10.1007/s10439-020-02454-8] [PMID: 31950309]
[65]
S. Raouafi, M. Raison, and A. Sofiane, "Modeling the assessment of the upper limb motor function impairment in children with cerebral palsy using sEMG and IMU sensors", bioRxiv, p. 748202, 2019.
[http://dx.doi.org/10.1101/748202]
[66]
Z.F. Lerner, T.A. Harvey, and J.L. Lawson, "A battery-powered ankle exoskeleton improves gait mechanics in a feasibility study of individuals with cerebral palsy", Ann. Biomed. Eng., vol. 47, no. 6, pp. 1345-1356, 2019.
[http://dx.doi.org/10.1007/s10439-019-02237-w] [PMID: 30825030]
[67]
S.M. El-Shamy, "Efficacy of Armeo® robotic therapy versus conventional therapy on upper limb function in children with hemiplegic cerebral palsy", Am. J. Phys. Med. Rehabil., vol. 97, no. 3, pp. 164-169, 2018.
[http://dx.doi.org/10.1097/PHM.0000000000000852] [PMID: 29059068]
[68]
R. Lampe, T. Blumenstein, V. Turova, and A. Alves-Pinto, "Mobile communication jacket for people with severe speech impairment", Disabil. Rehabil. Assist. Technol., vol. 13, no. 3, pp. 280-286, 2018.
[http://dx.doi.org/10.1080/17483107.2017.1319427] [PMID: 28447491]
[69]
V. Pandey, A. Saikia, and S. Paul, "A unique approach of cranial nerve stimulation by internet based therapy", MOJ Biol Med, vol. 3, no. 3, pp. 24-25, 2018.
[70]
M.W. Cunningham Jr, and B. LaMarca, "Risk of cardiovascular disease, end-stage renal disease, and stroke in postpartum women and their fetuses after a hypertensive pregnancy", Am. J. Physiol. Regul. Integr. Comp. Physiol., vol. 315, no. 3, pp. R521-R528, 2018.
[http://dx.doi.org/10.1152/ajpregu.00218.2017] [PMID: 29897824]
[71]
J. Gu, L. Huang, C. Zhang, Y. Wang, R. Zhang, Z. Tu, H. Wang, X. Zhou, Z. Xiao, Z. Liu, X. Hu, Z. Ke, D. Wang, and L. Liu, "Therapeutic evidence of umbilical cord-derived mesenchymal stem cell transplantation for cerebral palsy: A randomized, controlled trial", Stem Cell Res. Ther., vol. 11, no. 1, p. 43, 2020.
[http://dx.doi.org/10.1186/s13287-019-1545-x] [PMID: 32014055]
[72]
L. Pennington, E. Stamp, J. Smith, H. Kelly, N. Parker, K. Stockwell, P. Aluko, M. Othman, K. Brittain, and L. Vale, "Internet deliv-ery of intensive speech and language therapy for children with cerebral palsy: a pilot randomised controlled trial", BMJ Open, vol. 9, no. 1, p. e024233, 2019.
[http://dx.doi.org/10.1136/bmjopen-2018-024233] [PMID: 30705241]
[73]
K.K. Jha, G.B. Karunanithi, A. Sahana, and S. Karthikbabu, "Randomised trial of virtual reality gaming and physiotherapy on balance, gross motor performance and daily functions among children with bilateral spastic cerebral palsy", Somatosens. Mot. Res., vol. 38, no. 2, pp. 117-126, 2021.
[http://dx.doi.org/10.1080/08990220.2021.1876016] [PMID: 33655813]
[74]
M.S. Mahgoub, W.W. Younan, and S.S. Zahran, "Effect of locomotor training with a robotic-gait orthosis (lokomat)", In: Spasticity Modulation of Spastic Hemiplegic Children (A Randomized Controlled Trial)., Fizjoterapia Polska, 2020, pp. 94-101.
[75]
I. Sakamaki, "Development and Testing of an Eye Gaze and Brain Computer Interface with Haptic Feedback for Robot Control for Play by Children with Severe Physical Disabilities", Doctor of Philosophy, 2019.
[76]
Rao. S, and Wilder M., "Machine learning based system for identifying and monitoring neurological disorders.", U.S. Patent 16/162,711., 2019 Apr 18.
[77]
McQueen D., "Patterson D, Chou PH, Cooper DM,. System for evaluating infant movement using gesture recognition. ", U.S. Patent 9,232,912, 2016 Jan 12.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy