Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Drug Repositioning Using Computer-aided Drug Design (CADD)

Author(s): Sona Rawat, Kanmani Subramaniam, Selva Kumar Subramanian, Saravanan Subbarayan, Subramanian Dhanabalan, Sashik Kumar Madurai Chidambaram, Balasubramaniam Stalin, Arpita Roy, Nagaraj Nagaprasad, Mahalingam Aruna, Jule Leta Tesfaye, Bayissa Badassa and Ramaswamy Krishnaraj*

Volume 25, Issue 3, 2024

Published on: 18 September, 2023

Page: [301 - 312] Pages: 12

DOI: 10.2174/1389201024666230821103601

Price: $65

Open Access Journals Promotions 2
Abstract

Drug repositioning is a method of using authorized drugs for other unusually complex diseases. Compared to new drug development, this method is fast, low in cost, and effective. Through the use of outstanding bioinformatics tools, such as computer-aided drug design (CADD), computer strategies play a vital role in the re-transformation of drugs. The use of CADD's special strategy for target-based drug reuse is the most promising method, and its realization rate is high. In this review article, we have particularly focused on understanding the various technologies of CADD and the use of computer-aided drug design for target-based drug reuse, taking COVID-19 and cancer as examples. Finally, it is concluded that CADD technology is accelerating the development of repurposed drugs due to its many advantages, and there are many facts to prove that the new ligand-targeting strategy is a beneficial method and that it will gain momentum with the development of technology.

Keywords: Drug repositioning, computer-aided drug designing, CADD techniques, target-based drug repurposing, COVID-19, cancer.

Graphical Abstract
[1]
Rester, U. From virtuality to reality-virtual screening in lead discovery and lead optimization: A medicinal chemistry perspective. Curr. Opin. Drug Discov. Devel., 2008, 11(4), 559-568.
[PMID: 18600572]
[2]
Andrews, K.T.; Fisher, G.; Skinner-Adams, T.S. Drug repurposing and human parasitic protozoan diseases. Int. J. Parasitol. Drugs Drug Resist., 2014, 4(2), 95-111.
[http://dx.doi.org/10.1016/j.ijpddr.2014.02.002] [PMID: 25057459]
[3]
Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: A promising tool to accelerate the drug discovery process. Drug Discov. Today, 2019, 24(10), 2076-2085.
[http://dx.doi.org/10.1016/j.drudis.2019.06.014] [PMID: 31238113]
[4]
Sabe, V.T.; Ntombela, T.; Jhamba, L.A.; Maguire, G.E.M.; Govender, T.; Naicker, T.; Kruger, H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem., 2021, 224, 113705.
[http://dx.doi.org/10.1016/j.ejmech.2021.113705] [PMID: 34303871]
[5]
Koes, D.R.; Camacho, C.J. ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res., 2012, 40(W1), W409-W414.
[http://dx.doi.org/10.1093/nar/gks378] [PMID: 22553363]
[6]
Berman, H.; Henrick, K.; Nakamura, H.; Markley, J.L. The worldwide Protein Data Bank (wwPDB): Ensuring a single, uniform archive of PDB data. Nucleic Acids Res., 2007, 35(Database), D301-D303.
[http://dx.doi.org/10.1093/nar/gkl971] [PMID: 17142228]
[7]
Schneider, G.; Geppert, T.; Hartenfeller, M.; Reisen, F.; Klenner, A.; Reutlinger, M.; Hähnke, V.; Hiss, J.A.; Zettl, H.; Keppner, S.; Spänkuch, B.; Schneider, P. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors. Future Med. Chem., 2011, 3(4), 415-424.
[http://dx.doi.org/10.4155/fmc.11.8] [PMID: 21452978]
[8]
Johnson, D.K.; Karanicolas, J. Computational screening and design for compounds that disrupt protein-protein interactions. Curr. Top. Med. Chem., 2017, 17(23), 2703-2714.
[http://dx.doi.org/10.2174/1568026617666170508153904] [PMID: 28482793]
[9]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[10]
Dudley, J.T.; Deshpande, T.; Butte, A.J. Exploiting drug-disease relationships for computational drug repositioning. Brief. Bioinform., 2011, 12(4), 303-311.
[http://dx.doi.org/10.1093/bib/bbr013] [PMID: 21690101]
[11]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[12]
Reichle, A. Evolution-adjusted Tumor Pathophysiology; Springer, 2013.
[http://dx.doi.org/10.1007/978-94-007-6866-6]
[13]
Pieper, U.; Webb, B.M.; Barkan, D.T.; Schneidman-Duhovny, D.; Schlessinger, A.; Braberg, H.; Yang, Z.; Meng, E.C.; Pettersen, E.F.; Huang, C.C.; Datta, R.S.; Sampathkumar, P.; Madhusudhan, M.S.; Sjölander, K.; Ferrin, T.E.; Burley, S.K.; Sali, A. ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res., 2011, 39(Database), D465-D474.
[http://dx.doi.org/10.1093/nar/gkq1091] [PMID: 21097780]
[14]
Sarvagalla, S.; Syed, S.B.; Coumar, M.S. An overview of computational methods, tools, servers, and databases for drug repurposing; Silico Drug Des, 2019, pp. 743-780.
[http://dx.doi.org/10.1016/B978-0-12-816125-8.00025-0]
[15]
Kazandjian, D.; Suzman, D.L.; Blumenthal, G.; Mushti, S.; He, K.; Libeg, M.; Keegan, P.; Pazdur, R. FDA approval summary: Nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist, 2016, 21(5), 634-642.
[http://dx.doi.org/10.1634/theoncologist.2015-0507] [PMID: 26984449]
[16]
Wang, Z.; Lachmann, A.; Keenan, A.B.; Ma’ayan, A. L1000FWD: Fireworks visualization of drug-induced transcriptomic signatures. Bioinformatics, 2018, 34(12), 2150-2152.
[http://dx.doi.org/10.1093/bioinformatics/bty060] [PMID: 29420694]
[17]
Hood, L.E.; Omenn, G.S.; Moritz, R.L.; Aebersold, R.; Yamamoto, K.R.; Amos, M.; Hunter-Cevera, J.; Locascio, L. New and improved proteomics technologies for understanding complex biological systems: Addressing a grand challenge in the life sciences. Proteomics, 2012, 12(18), 2773-2783.
[http://dx.doi.org/10.1002/pmic.201270086] [PMID: 22807061]
[18]
Talele, T.; Khedkar, S.; Rigby, A. Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Curr. Top. Med. Chem., 2010, 10(1), 127-141.
[http://dx.doi.org/10.2174/156802610790232251] [PMID: 19929824]
[19]
Jin, G.; Wong, S.T.C. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today, 2014, 19(5), 637-644.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[20]
Himmelstein, D.S.; Lizee, A.; Hessler, C.; Brueggeman, L.; Chen, S.L.; Hadley, D.; Green, A.; Khankhanian, P.; Baranzini, S.E. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife, 2017, 6, e26726.
[http://dx.doi.org/10.7554/eLife.26726] [PMID: 28936969]
[21]
Spengler, D. Aurora-C-T191D is a hyperactive Aurora-C mutant. Cell Cycle, 2007, 6(14), 1803-1804.
[http://dx.doi.org/10.4161/cc.6.14.4479] [PMID: 17637569]
[22]
Basak, S.C. Chemobioinformatics: The advancing frontier of computer-aided drug design in the post-genomic era. Curr. Computeraided Drug Des., 2012, 8(1), 1-2.
[http://dx.doi.org/10.2174/18756697MTEz9MjEaz] [PMID: 22320162]
[23]
Li, Y.H.; Yu, C.Y.; Li, X.X.; Zhang, P.; Tang, J.; Yang, Q.; Fu, T.; Zhang, X.; Cui, X.; Tu, G.; Zhang, Y.; Li, S.; Yang, F.; Sun, Q.; Qin, C.; Zeng, X.; Chen, Z.; Chen, Y.Z.; Zhu, F. Therapeutic target database update 2018: Enriched resource for facilitating bench-toclinic research of targeted therapeutics. Nucleic Acids Res., 2018, 46(D1), D1121-D1127.
[http://dx.doi.org/10.1093/nar/gkx1076] [PMID: 29140520]
[24]
Ke, Y.Y.; Peng, T.T.; Yeh, T.K.; Huang, W.Z.; Chang, S.E.; Wu, S.H.; Hung, H.C.; Hsu, T.A.; Lee, S.J.; Song, J.S.; Lin, W.H.; Chiang, T.J.; Lin, J.H.; Sytwu, H.K.; Chen, C.T. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed. J., 2020, 43(4), 355-362.
[http://dx.doi.org/10.1016/j.bj.2020.05.001] [PMID: 32426387]
[25]
Cai, R.; Zhang, Y.; Simmering, J.E.; Schultz, J.L.; Li, Y.; Fernandez-Carasa, I.; Consiglio, A.; Raya, A.; Polgreen, P.M.; Narayanan, N.S.; Yuan, Y.; Chen, Z.; Su, W.; Han, Y.; Zhao, C.; Gao, L.; Ji, X.; Welsh, M.J.; Liu, L. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J. Clin. Invest., 2019, 129(10), 4539-4549.
[http://dx.doi.org/10.1172/JCI129987] [PMID: 31524631]
[26]
Wang, Y.; Chen, S.; Deng, N.; Wang, Y. Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS One, 2013, 8(11), e78518.
[http://dx.doi.org/10.1371/journal.pone.0078518] [PMID: 24244318]
[27]
Jorgensen, W.L. Pulled from a protein’s embrace. Nature, 2010, 466(7302), 42-43.
[http://dx.doi.org/10.1038/466042a] [PMID: 20596009]
[28]
Mullard, A. 2017 FDA drug approvals. Nat. Rev. Drug Discov., 2018, 17(2), 81-85.
[http://dx.doi.org/10.1038/nrd.2018.4] [PMID: 29348678]
[29]
Quartuccio, S.M.; Schindler, K. Functions of Aurora kinase C in meiosis and cancer. Front. Cell Dev. Biol., 2015, 3, 50.
[http://dx.doi.org/10.3389/fcell.2015.00050] [PMID: 26347867]
[30]
Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 2007, 35(Database), D198-D201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[31]
Zhang, D.; Wu, K.; Zhang, X.; Deng, S.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[32]
Schenone, M.; Dančík, V.; Wagner, B.K.; Clemons, P.A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol., 2013, 9(4), 232-240.
[http://dx.doi.org/10.1038/nchembio.1199] [PMID: 23508189]
[33]
Kumar, R.; Harilal, S.; Gupta, S.V.; Jose, J.; Thomas Parambi, D.G.; Uddin, M.S.; Shah, M.A.; Mathew, B. Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work. Eur. J. Med. Chem., 2019, 182, 111602.
[http://dx.doi.org/10.1016/j.ejmech.2019.111602] [PMID: 31421629]
[34]
Koes, D.R.; Dömling, A.; Camacho, C.J. AnchorQuery: Rapid online virtual screening for small-molecule protein-protein interaction inhibitors. Protein Sci., 2018, 27(1), 229-232.
[http://dx.doi.org/10.1002/pro.3303] [PMID: 28921842]
[35]
Zhao, S.; Nishimura, T.; Chen, Y.; Azeloglu, E.U.; Gottesman, O.; Giannarelli, C. Systems pharmacology of adverse event mitigation by drug combinations. Sci. Transl. Med., 2013, 5(206), 206ra140.
[http://dx.doi.org/10.1126/scitranslmed.3006548]
[36]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[37]
Firoz, A.D.; Rahman, M.M. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci. Rep., 2021, 11(1), 4049.
[http://dx.doi.org/10.1038/s41598-021-83626-x]
[38]
Khan, J.; Khan, S.; Attaullah, S.; Ali, I.; Khan, S.N. Aurora kinase-C-T191D is constitutively active mutant. BMC Cell Biol., 2012, 13, 1-9.
[39]
Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35(Web Server), W407-W410.
[http://dx.doi.org/10.1093/nar/gkm290] [PMID: 17517781]
[40]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[41]
Berman, H.; Westbrook, M.; Feng, Z.; Gilliland, G. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-42.
[42]
Guilhot-Gaudeffroy, A.; Froidevaux, C.; Azé, J.; Bernauer, J. Protein-RNA complexes and efficient automatic docking: expanding RosettaDock possibilities. PLoS One, 2014, 9(9), e108928.
[http://dx.doi.org/10.1371/journal.pone.0108928] [PMID: 25268579]
[43]
Iwakiri, J.; Hamada, M.; Asai, K.; Kameda, T. Improved accuracy in RNA–Protein rigid body docking by incorporating force field for molecular dynamics simulation into the scoring function. J. Chem. Theory Comput., 2016, 12(9), 4688-4697.
[http://dx.doi.org/10.1021/acs.jctc.6b00254] [PMID: 27494732]
[44]
Rose, P.W.; Beran, B.; Bi, C.; Bluhm, W.F.; Dimitropoulos, D.; Goodsell, D.S.; Prlic, A.; Quesada, M.; Quinn, G.B.; Westbrook, J.D.; Young, J.; Yukich, B.; Zardecki, C.; Berman, H.M.; Bourne, P.E. The RCSB Protein Data Bank: Redesigned web site and web services. Nucleic Acids Res., 2011, 39(Database), D392-D401.
[http://dx.doi.org/10.1093/nar/gkq1021] [PMID: 21036868]
[45]
Parisi, D.; Adasme, M.F.; Sveshnikova, A.; Bolz, S.N.; Moreau, Y.; Schroeder, M. Drug repositioning or target repositioning: A structural perspective of drug-target-indication relationship for available repurposed drugs. Comput. Struct. Biotechnol. J., 2020, 18, 1043-1055.
[http://dx.doi.org/10.1016/j.csbj.2020.04.004] [PMID: 32419905]
[46]
Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; Asiedu, J.; Narayan, R.; Mader, C.C.; Subramanian, A.; Golub, T.R. The drug repurposing hub: A next-generation drug library and information re-source. Nat. Med., 2017, 23(4), 405-408.
[http://dx.doi.org/10.1038/nm.4306] [PMID: 28388612]
[47]
Markley, J.L.; Ulrich, E.L.; Berman, H.M.; Henrick, K.; Nakamura, H.; Akutsu, H. BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): New policies affecting biomolecular NMR depositions. J. Biomol. NMR, 2008, 40(3), 153-155.
[http://dx.doi.org/10.1007/s10858-008-9221-y] [PMID: 18288446]
[48]
Pérot, S.; Sperandio, O.; Miteva, M.A.; Camproux, A.C.; Villoutreix, B.O. Druggable pockets and binding site centric chemical space: A paradigm shift in drug discovery. Drug Discov. Today, 2010, 15(15-16), 656-667.
[http://dx.doi.org/10.1016/j.drudis.2010.05.015] [PMID: 20685398]
[49]
Falchi, F.; Caporuscio, F.; Recanatini, M. Structure-based design of small-molecule protein–protein interaction modulators: The story so far. Future Med. Chem., 2014, 6(3), 343-357.
[http://dx.doi.org/10.4155/fmc.13.204] [PMID: 24575969]
[50]
Awasthi, M.; Singh, S.; Tiwari, S.; Pandey, V.P.; Dwivedi, U.N. Computational approaches for therapeutic application of natural products in Alzheimer’s disease; Comput Model Drugs Against Alzheimer’s Dis, 2018, pp. 483-511.
[51]
Takian, A.; Raoofi, A.; Kazempour-Ardebili, S. COVID-19 battle during the toughest sanctions against Iran. Lancet, 2020, 395(10229), 1035-1036.
[http://dx.doi.org/10.1016/S0140-6736(20)30668-1] [PMID: 32199073]
[52]
Yoo, M.; Shin, J.; Kim, J.; Ryall, K.A.; Lee, K.; Lee, S.; Jeon, M.; Kang, J.; Tan, A.C. DSigDB: Drug signatures database for gene set analysis. Bioinformatics, 2015, 31(18), 3069-3071.
[http://dx.doi.org/10.1093/bioinformatics/btv313] [PMID: 25990557]
[53]
Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M.; Sankaranarayanan, M. A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery. Eur. J. Med. Chem., 2020, 195, 112275.
[http://dx.doi.org/10.1016/j.ejmech.2020.112275] [PMID: 32283298]
[54]
Janson, G.; Zhang, C.; Prado, M.G.; Paiardini, A. PyMod 2.0: Improvements in protein sequence-structure analysis and homology modeling within PyMOL. Bioinformatics, 2017, 33(3), 444-446.
[http://dx.doi.org/10.1093/bioinformatics/btw638] [PMID: 28158668]
[55]
Khan, J.; Ezan, F.; Crémet, J.Y.; Fautrel, A.; Gilot, D.; Lambert, M.; Benaud, C.; Troadec, M.B.; Prigent, C. Overexpression of active Aurora-C kinase results in cell transformation and tumour formation. PLoS One, 2011, 6(10), e26512.
[http://dx.doi.org/10.1371/journal.pone.0026512] [PMID: 22046298]
[56]
Lindsay, M.A. Target discovery. Nat. Rev. Drug Discov., 2003, 2(10), 831-838.
[http://dx.doi.org/10.1038/nrd1202] [PMID: 14526386]
[57]
Ursu, O.; Holmes, J.; Knockel, J.; Bologa, C.G.; Yang, J.J.; Mathias, S.L. DrugCentral: Online drug compendium. Nucleic Acids Res., 2017, 45(D1), D932-D939.
[PMID: 27789690]
[58]
Sunseri, J.; Koes, D.R. Pharmit: Interactive exploration of chemical space. Nucleic Acids Res., 2016, 44(W1), W442-W448.
[http://dx.doi.org/10.1093/nar/gkw287] [PMID: 27095195]
[59]
Simossis, V.A.; Heringa, J. PRALINE: A multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Res., 2005, 33(Web Server), W289-W294.
[http://dx.doi.org/10.1093/nar/gki390] [PMID: 15980472]
[60]
Guney, E.; Menche, J.; Vidal, M.; Barábasi, A.L. Network-based in silico drug efficacy screening. Nat. Commun., 2016, 7(1), 10331.
[http://dx.doi.org/10.1038/ncomms10331] [PMID: 26831545]
[61]
Tang, Y.; Zhu, W.; Chen, K.; Jiang, H. New technologies in computer-aided drug design: Toward target identification and new chemical entity discovery. Drug Discov. Today. Technol., 2006, 3(3), 307-313.
[http://dx.doi.org/10.1016/j.ddtec.2006.09.004] [PMID: 24980533]
[62]
Chen, V.B.; Arendall, W.B., III; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(1), 12-21.
[http://dx.doi.org/10.1107/S0907444909042073] [PMID: 20057044]
[63]
Bartuzi, D.; Kaczor, A.; Targowska-Duda, K.; Matosiuk, D. Recent advances and applications of molecular docking to G protein-coupled receptors. Molecules, 2017, 22(2), 340.
[http://dx.doi.org/10.3390/molecules22020340] [PMID: 28241450]
[64]
Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins, 2009, 77(Suppl. 9), 114-122.
[http://dx.doi.org/10.1002/prot.22570] [PMID: 19768677]
[65]
Peng, C.; Chen, J.; Hu, P.; Wang, H. Molecular Adsorption Kinetics: Nonlinear entropy–enthalpy loss quantified by constrained AIMD and insights into the adsorption-site determination on metal oxides. J. Phys. Chem. C, 2021, 125(20), 10974-10982.
[http://dx.doi.org/10.1021/acs.jpcc.1c02537]
[66]
Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40(D1), D1100-D1107.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[67]
Takahashi, T.; Zhou, S.Y.; Nakamura, K.; Tanino, R.; Furuichi, A.; Kido, M.; Kawasaki, Y.; Noguchi, K.; Seto, H.; Kurachi, M.; Suzuki, M. A follow-up MRI study of the fusiform gyrus and middle and inferior temporal gyri in schizophrenia spectrum. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(8), 1957-1964.
[http://dx.doi.org/10.1016/j.pnpbp.2011.07.009] [PMID: 21820482]
[68]
Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci., 2018, 27(1), 135-145.
[http://dx.doi.org/10.1002/pro.3290] [PMID: 28884485]
[69]
Kalyaanamoorthy, S.; Chen, Y.P.P. Structure-based drug design to augment hit discovery. Drug Discov. Today, 2011, 16(17-18), 831-839.
[http://dx.doi.org/10.1016/j.drudis.2011.07.006] [PMID: 21810482]
[70]
Lavecchia, A.; Giovanni, C. Virtual screening strategies in drug discovery: A critical review. Curr. Med. Chem., 2013, 20(23), 2839-2860.
[http://dx.doi.org/10.2174/09298673113209990001] [PMID: 23651302]
[71]
Andreeva, A.; Howorth, D.; Chandonia, J-M.; Brenner, S.E.; Hubbard, T.J.P.; Chothia, C.; Murzin, A.G. Data growth and its impact on the SCOP database: New developments. Nucleic Acids Res., 2008, 36(Database issue), D419-D425.
[PMID: 18000004]
[72]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[73]
Shekhar, C. In silico pharmacology: Computer-aided methods could transform drug development. Chem. Biol., 2008, 15(5), 413-4.
[http://dx.doi.org/10.1016/j.chembiol.2008.05.001]
[74]
Paez Espinosa, E.V.; Murad, J.P.; Khasawneh, F.T. Aspirin: Pharmacology and clinical applications. Thrombosis, 2012, 2012, 173124.
[http://dx.doi.org/10.1155/2012/173124]
[75]
Vyas, V.K.; Ukawala, R.D.; Chintha, C.; Ghate, M. Homology modeling a fast tool for drug discovery: Current perspectives. Indian J. Pharm. Sci., 2012, 74(1), 1-17.
[http://dx.doi.org/10.4103/0250-474X.102537] [PMID: 23204616]
[76]
Guo, Z.; Li, B.; Cheng, L.T.; Zhou, S.; McCammon, J.A.; Che, J. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach. J. Chem. Theory Comput., 2015, 11(2), 753-765.
[http://dx.doi.org/10.1021/ct500867u] [PMID: 25941465]
[77]
Kanehisa, M.; Goto, S.; Furumichi, M.; Tanabe, M.; Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res., 2010, 38(Suppl. 1), D355-D360.
[http://dx.doi.org/10.1093/nar/gkp896] [PMID: 19880382]
[78]
Hu, B.; Lill, M.A. PharmDock: A pharmacophore-based docking program. J. Cheminform., 2014, 6(1), 14.
[http://dx.doi.org/10.1186/1758-2946-6-14] [PMID: 24739488]
[79]
Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; Lahr, D.L.; Hirschman, J.E.; Liu, Z.; Donahue, M.; Julian, B.; Khan, M.; Wadden, D.; Smith, I.C.; Lam, D.; Liberzon, A.; Toder, C.; Bagul, M.; Orzechowski, M.; Enache, O.M.; Piccioni, F.; Johnson, S.A.; Lyons, N.J.; Berger, A.H.; Shamji, A.F.; Brooks, A.N.; Vrcic, A.; Flynn, C.; Rosains, J.; Takeda, D.Y.; Hu, R.; Davison, D.; Lamb, J.; Ardlie, K.; Hogstrom, L.; Greenside, P.; Gray, N.S.; Clemons, P.A.; Silver, S.; Wu, X.; Zhao, W.N.; Read-Button, W.; Wu, X.; Haggarty, S.J.; Ronco, L.V.; Boehm, J.S.; Schreiber, S.L.; Doench, J.G.; Bittker, J.A.; Root, D.E.; Wong, B.; Golub, T.R. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell, 2017, 171(6), 1437-1452.e17.
[http://dx.doi.org/10.1016/j.cell.2017.10.049] [PMID: 29195078]
[80]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2014, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[81]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[82]
Sawyer, J.S.; Anderson, B.D.; Beight, D.W.; Campbell, R.M.; Jones, M.L.; Herron, D.K.; Lampe, J.W.; McCowan, J.R.; McMillen, W.T.; Mort, N.; Parsons, S.; Smith, E.C.R.; Vieth, M.; Weir, L.C.; Yan, L.; Zhang, F.; Yingling, J.M. Synthesis and activity of new aryl- and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. J. Med. Chem., 2003, 46(19), 3953-3956.
[http://dx.doi.org/10.1021/jm0205705] [PMID: 12954047]
[83]
Siramshetty, V.B.; Nickel, J.; Omieczynski, C.; Gohlke, B.O.; Drwal, M.N.; Preissner, R. WITHDRAWN—a resource for withdrawn and discontinued drugs. Nucleic Acids Res., 2016, 44(D1), D1080-D1086.
[http://dx.doi.org/10.1093/nar/gkv1192] [PMID: 26553801]
[84]
Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzo, R.C. DOCK 6: Impact of new features and current docking performance. J. Comput. Chem., 2015, 36(15), 1132-1156.
[http://dx.doi.org/10.1002/jcc.23905] [PMID: 25914306]
[85]
Bhattacharya, D.; Nowotny, J.; Cao, R.; Cheng, J. 3Drefine: An interactive web server for efficient protein structure refinement. Nucleic Acids Res., 2016, 44(W1), W406-W409.
[http://dx.doi.org/10.1093/nar/gkw336] [PMID: 27131371]
[86]
Corona virus SARS-CoV-2 disease COVID-19: infection, prevention and clinical advances of the prospective chemical drug therapeutics. Chem. Biol. Lett., 2020, 7, 63-72.
[87]
Hamada, A.; Nauertz, A. In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J. Food Prot., 2016, 79(6), 1001-12.
[http://dx.doi.org/10.4315/0362-028X.JFP-15-593]
[88]
Verma, J.; Khedkar, V.; Coutinho, E. 3D-QSAR in drug design-a review. Curr. Top. Med. Chem., 2010, 10(1), 95-115.
[http://dx.doi.org/10.2174/156802610790232260] [PMID: 19929826]
[89]
UniProt. The universal protein knowledgebase. Nucleic Acids Res., 2018, 46(5), 2699.
[http://dx.doi.org/10.1093/nar/gky092] [PMID: 29425356]
[90]
Tsou, J.H.; Chang, K.C.; Chang-Liao, P.Y.; Yang, S.T.; Lee, C.T.; Chen, Y.P.; Lee, Y.C.; Lin, B.W.; Lee, J.C.; Shen, M.R.; Chuang, C.K.; Chang, W.C.; Wang, J.M.; Hung, L.Y. Aberrantly expressed AURKC enhances the transformation and tumourigenicity of epithelial cells. J. Pathol., 2011, 225(2), 243-254.
[http://dx.doi.org/10.1002/path.2934] [PMID: 21710690]
[91]
Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformat., 2016, 54(1), 6.1-37.
[http://dx.doi.org/10.1002/cpbi.3] [PMID: 27322406]
[92]
Vasaikar, S.; Bhatia, P.; Bhatia, P.; Chu Yaiw, K. Complementary approaches to existing target based drug discovery for identifying novel drug targets. Biomedicines, 2016, 4(4), 27.
[http://dx.doi.org/10.3390/biomedicines4040027] [PMID: 28536394]
[93]
Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T.G.; Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res., 2014, 42(W1), W252-W258.
[http://dx.doi.org/10.1093/nar/gku340] [PMID: 24782522]
[94]
Abdolmaleki, A.; Ghasemi, F.; Ghasemi, J.B. Computer-aided drug design to explore cyclodextrin therapeutics and biomedical applications. Chem. Biol. Drug Des., 2017, 89(2), 257-268.
[http://dx.doi.org/10.1111/cbdd.12825] [PMID: 28205401]
[95]
Gutmanas, A.; Alhroub, Y.; Battle, G.M.; Berrisford, J.M.; Bochet, E.; Conroy, M.J.; Dana, J.M.; Fernandez Montecelo, M.A.; van Ginkel, G.; Gore, S.P.; Haslam, P.; Hatherley, R.; Hendrickx, P.M.S.; Hirshberg, M.; Lagerstedt, I.; Mir, S.; Mukhopadhyay, A.; Oldfield, T.J.; Patwardhan, A.; Rinaldi, L.; Sahni, G.; Sanz-García, E.; Sen, S.; Slowley, R.A.; Velankar, S.; Wainwright, M.E.; Kleywegt, G.J. PDBe: Protein data bank in Europe. Nucleic Acids Res., 2014, 42(D1), D285-D291.
[http://dx.doi.org/10.1093/nar/gkt1180] [PMID: 24288376]
[96]
Barradas-Bautista, D.; Rosell, M.; Pallara, C.; Fernández-Recio, J. Structural prediction of protein--protein interactions by docking: Application to biomedical problems. Adv. Protein Chem. Struct. Biol., 2018, 110, 203-249.
[http://dx.doi.org/10.1016/bs.apcsb.2017.06.003] [PMID: 29412997]
[97]
Choi, S.; Choi, K.Y. Screening-based approaches to identify small molecules that inhibit protein–protein interactions. Expert Opin. Drug Discov., 2017, 12(3), 293-303.
[http://dx.doi.org/10.1080/17460441.2017.1280456] [PMID: 28067063]
[98]
Kinjo, A.R.; Suzuki, H.; Yamashita, R.; Ikegawa, Y.; Kudou, T.; Igarashi, R.; Kengaku, Y.; Cho, H.; Standley, D.M.; Nakagawa, A.; Nakamura, H. Protein Data Bank Japan (PDBj): Maintaining a structural data archive and resource description framework format. Nucleic Acids Res., 2012, 40(D1), D453-D460.
[http://dx.doi.org/10.1093/nar/gkr811] [PMID: 21976737]
[99]
Chu, C.M.; Cheng, V.C.C.; Hung, I.F.N.; Wong, M.M.L.; Chan, K.H.; Chan, K.S.; Kao, R.Y.; Poon, L.L.; Wong, C.L.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax, 2004, 59(3), 252-256.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[100]
Pruitt, K.D.; Tatusova, T.; Maglott, D.R. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res., 2007, 35(Database), D61-D65.
[http://dx.doi.org/10.1093/nar/gkl842] [PMID: 17130148]
[101]
Swamidass, S.J. Mining small-molecule screens to repurpose drugs. Brief. Bioinform., 2011, 12(4), 327-335.
[http://dx.doi.org/10.1093/bib/bbr028] [PMID: 21715466]
[102]
Ooms, F. Molecular modeling and computer aided drug design. Examples of their applications in medicinal chemistry. Curr. Med. Chem., 2000, 7(2), 141-158.
[http://dx.doi.org/10.2174/0929867003375317] [PMID: 10637360]
[103]
Kimura, M.; Matsuda, Y.; Yoshioka, T.; Okano, Y. Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J. Biol. Chem., 1999, 274(11), 7334-7340.
[http://dx.doi.org/10.1074/jbc.274.11.7334] [PMID: 10066797]
[104]
Pirhadi, S.; Shiri, F.; Ghasemi, J.B. Methods and applications of structure based pharmacophores in drug discovery. Curr. Top. Med. Chem., 2013, 13(9), 1036-1047.
[http://dx.doi.org/10.2174/1568026611313090006] [PMID: 23651482]
[105]
Gopalakrishnan, K.; Sowmiya, G.; Sheik, S.S.; Sekar, K. Ramachandran plot on the web (2.0). Protein Pept. Lett., 2007, 14(7), 669-671.
[http://dx.doi.org/10.2174/092986607781483912] [PMID: 17897092]
[106]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[107]
Zhu, M.; Gao, L.; Li, X.; Liu, Z.; Xu, C.; Yan, Y.; Walker, E.; Jiang, W.; Su, B.; Chen, X.; Lin, H. The analysis of the drug–targets based on the topological properties in the human protein–protein interaction network. J. Drug Target., 2009, 17(7), 524-532.
[http://dx.doi.org/10.1080/10611860903046610] [PMID: 19530902]
[108]
Shim, J.S.; Liu, J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci., 2014, 10(7), 654-663.
[http://dx.doi.org/10.7150/ijbs.9224] [PMID: 25013375]
[109]
Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[110]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[111]
Di Tommaso, P.; Moretti, S.; Xenarios, I.; Orobitg, M.; Montanyola, A.; Chang, J.M.; Taly, J.F.; Notredame, C. T-Coffee: A web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res., 2011, 39(Suppl. 1), W13-W17.
[http://dx.doi.org/10.1093/nar/gkr245] [PMID: 21558174]
[112]
Foroutan, M.; Fatemi, S.M.; Esmaeilian, F. A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. Eur. Phys. J. E, 2017, 40(2), 19.
[http://dx.doi.org/10.1140/epje/i2017-11507-7] [PMID: 28229319]
[113]
Ma, H.; Zhao, H. Drug target inference through pathway analysis of genomics data. Adv. Drug Deliv. Rev., 2013, 65(7), 966-972.
[http://dx.doi.org/10.1016/j.addr.2012.12.004] [PMID: 23369829]
[114]
Kim, H.S. Drug repositioning: Exploring new indications for existing drug-disease relationships. Endocrinol. Metab., 2022, 37(1), 62-64.
[http://dx.doi.org/10.3803/EnM.2022.1403] [PMID: 35255602]
[115]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[116]
Younes, N.; Al-Sadeq, D.W. AL-Jighefee, H.; Younes, S.; Al-Jamal, O.; Daas, H.I.; Yassine, H.M.; Nasrallah, G.K. Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2. Viruses, 2020, 12(6), 582.
[http://dx.doi.org/10.3390/v12060582] [PMID: 32466458]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy