Review Article

A Comprehensive Review on Therapeutic Potential of a Natural Anthraquinone Derivative Emodin in Brain-related Disorders

Author(s): Ahsas Goyal, Yogesh Murti*, Bharat Bhushan, Wasim Chisti and Ashutosh Solanki

Volume 24, Issue 12, 2023

Published on: 31 August, 2023

Page: [945 - 958] Pages: 14

DOI: 10.2174/1389450124666230818092506

Price: $65

Abstract

Brain-related disorders are one of the world’s most important and complex health problems today. These brain-related disorders are responsible for a massive number of morbidities and death all around the world. However, researchers have devoted a large amount of time to investigating these diseases and found positive results; nevertheless, there are currently quite a few medications available to treat them. Emodin (EM), a polyphenol compound, has many health benefits. It is a biologically active monomer derived from rhubarb root that exhibits anti-inflammation, anti-oxidation, anticancer, and neuroprotective properties. A series of preclinical trials have shown EM to have protective benefits against many brain-related diseases. This review has evaluated the potential of EM as a pharmacological agent for the treatment and management of various brain-related disorders based on the findings of multiple pre-clinical studies and taking into account the compound’s therapeutic properties.

Keywords: EM, Alzheimer’s disease, parkinson’s disease, stress, epilepsy, depression, cerebral ischemia, glioblastoma, intra-cerebral haemorrhage, traumatic brain injury.

Graphical Abstract
[1]
Li R, Liu W, Ou L, et al. Emodin alleviates hydrogen peroxide-induced inflammation and oxidative stress via mitochondrial dysfunction by inhibiting the PI3K/mTOR/GSK3 β pathway in neuroblastoma SH-SY5Y Cells. BioMed Res Int 2020; 2020: 1-12.
[http://dx.doi.org/10.1155/2020/1562915] [PMID: 32832542]
[2]
Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis Model Mech 2017; 10(5): 499-502.
[http://dx.doi.org/10.1242/dmm.030205] [PMID: 28468935]
[3]
Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 2016; 13(4): 3391-6.
[http://dx.doi.org/10.3892/mmr.2016.4948] [PMID: 26935478]
[4]
Shuangsuo D, Zhengguo Z, Yunru C, et al. Inhibition of the replication of hepatitis B virus in vitro by emodin. Med Sci Monit 2006; 12(9): BR302-6.
[PMID: 16940925]
[5]
Chang CH, Lin CC, Yang JJ, Namba T, Hattori M. Anti-inflammatory effects of emodin from ventilago leiocarpa. Am J Chin Med 1996; 24(2): 139-42.
[http://dx.doi.org/10.1142/S0192415X96000189] [PMID: 8874670]
[6]
Park SY, Jin ML, Ko MJ, Park G, Choi YW. Anti-neuroinflammatory effect of emodin in LPS-stimulated microglia: Involvement of AMPK/Nrf2 activation. Neurochem Res 2016; 41(11): 2981-92.
[http://dx.doi.org/10.1007/s11064-016-2018-6] [PMID: 27538959]
[7]
Liao KK, Wu MJ, Chen PY, et al. Curcuminoids promote neurite outgrowth in PC12 cells through MAPK/ERK- and PKC-dependent pathways. J Agric Food Chem 2012; 60(1): 433-43.
[http://dx.doi.org/10.1021/jf203290r] [PMID: 22145830]
[8]
Zeng P, Shi Y, Wang XM, et al. Emodin rescued hyperhomocysteinemia-induced dementia and alzheimer’s disease-like features in rats. Int J Neuropsychopharmacol 2019; 22(1): 57-70.
[http://dx.doi.org/10.1093/ijnp/pyy090] [PMID: 30407508]
[9]
Li X, Chu S, Liu Y, Chen N. Neuroprotective effects of anthraquinones from rhubarb in central nervous system diseases. Evidbased comp alter med 2019; 3790728.
[10]
Li M, Fu Q, Li Y, Li S, Xue J, Ma S. Emodin opposes chronic unpredictable mild stress induced depressive-like behavior in mice by upregulating the levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor. Fitoterapia 2014; 98(98): 1-10.
[http://dx.doi.org/10.1016/j.fitote.2014.06.007] [PMID: 24932776]
[11]
Liu Y, Yang S, Cai E, et al. Functions of lactate in the brain of rat with intracerebral hemorrhage evaluated with MRI/MRS and in vitro approaches. CNS Neurosci Ther 2020; 26(10): 1031-44.
[http://dx.doi.org/10.1111/cns.13399] [PMID: 32488963]
[12]
Su YT, Chang HL, Shyue SK, Hsu SL. Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochem Pharmacol 2005; 70(2): 229-41.
[http://dx.doi.org/10.1016/j.bcp.2005.04.026] [PMID: 15941563]
[13]
Iwanowycz S, Wang J, Hodge J, Wang Y, Yu F, Fan D. Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages. Mol Cancer Ther 2016; 15(8): 1931-42.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0987] [PMID: 27196773]
[14]
Lee KH, Lee MS, Cha EY, et al. Inhibitory effect of emodin on fatty acid synthase, colon cancer proliferation and apoptosis. Mol Med Rep 2017; 15(4): 2163-73.
[http://dx.doi.org/10.3892/mmr.2017.6254] [PMID: 28260110]
[15]
Shrimali D, Shanmugam MK, Kumar AP, et al. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett 2013; 341(2): 139-49.
[http://dx.doi.org/10.1016/j.canlet.2013.08.023] [PMID: 23962559]
[16]
Ahn SM, Kim HN, Kim YR, et al. Emodin from Polygonum multiflorum ameliorates oxidative toxicity in HT22 cells and deficits in photothrombotic ischemia. J Ethnopharmacol 2016; 188: 13-20.
[http://dx.doi.org/10.1016/j.jep.2016.04.058] [PMID: 27151150]
[17]
Stompor-Gorący M. The health benefits of emodin, a natural anthraquinone derived from rhubarb—a summary update. Int J Mol Sci 2021; 22(17): 9522.
[http://dx.doi.org/10.3390/ijms22179522] [PMID: 34502424]
[18]
National Library of Medicine. National Center for Biotechnology Information - PubChem Compound Summary for CID 3220. 2004.https://pubchem.ncbi.nlm.nih.gov/compound/Emodin
[19]
Wang QX, Wu CQ, Liao YM. Study on the toxicity and its mechanisms of rhubarb and its major constituents. J Toxicol 2007; 21: 310-02.
[20]
Li CL, Ma J, Zheng L, Li HJ, Li P. Determination of emodin in L-02 cells and cell culture media with liquid chromatography–mass spectrometry: Application to a cellular toxicokinetic study. J Pharm Biomed Anal 2012; 71: 71-8.
[http://dx.doi.org/10.1016/j.jpba.2012.07.031] [PMID: 22944356]
[21]
Liu X, Liu Y, Qu Y. Metabolomic profiling of emodin induced cytotoxicity in human liver cells and mechanistic study. Toxicol 2015; 4: 948-55.
[22]
Cui Y, Liu B, Xie J, et al. The effect of emodin on cytotoxicity, apoptosis and antioxidant capacity in the hepatic cells of grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol 2014; 38(1): 74-9.
[http://dx.doi.org/10.1016/j.fsi.2014.02.018] [PMID: 24631735]
[23]
Dong X, Fu J, Yin X, et al. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother Res 2016; 30(8): 1207-18.
[http://dx.doi.org/10.1002/ptr.5631] [PMID: 27188216]
[24]
Vath P, Wamer WG, Falvey DE. Photochemistry and phototoxicity of aloe emodin. Photochem Photobiol 2002; 75(4): 346-52.
[http://dx.doi.org/10.1562/0031-8655(2002)0750346PAPOAE2.0.CO2] [PMID: 12003123]
[25]
Wang JB, Ma YG, Zhang P, et al. Effect of processing on the chemical contents and hepatic and renal toxicity of rhubarb studied by canonical correlation analysis. Yao Xue Xue Bao 2009; 44(8): 885-90.
[PMID: 20055157]
[26]
Quan Y, Gong L, He J, et al. Aloe emodin induces hepatotoxicity by activating NF-κB inflammatory pathway and P53 apoptosis pathway in zebrafish. Toxicol Lett 2019; 306: 66-79.
[http://dx.doi.org/10.1016/j.toxlet.2019.02.007] [PMID: 30771440]
[27]
Nesslany F, Simar-Meintières S, Ficheux H, Marzin D. Aloe-emodin-induced DNA fragmentation in the mouse in vivo comet assay. Mutat Res Genet Toxicol Environ Mutagen 2009; 678(1): 13-9.
[http://dx.doi.org/10.1016/j.mrgentox.2009.06.004] [PMID: 19559101]
[28]
Zhu S, Jin J, Wang Y, et al. The endoplasmic reticulum stress response is involved in apoptosis induced by aloe-emodin in HK-2 cells. Food Chem Toxicol 2012; 50(3-4): 1149-58.
[http://dx.doi.org/10.1016/j.fct.2011.12.018]
[29]
Dong X, Zeng Y, Liu Y, et al. Aloe-emodin: A review of its pharmacology, toxicity, and pharmacokinetics. Phytother Res 2020; 34(2): 270-81.
[http://dx.doi.org/10.1002/ptr.6532] [PMID: 31680350]
[30]
Dietz RM, Dingman AL, Herson PS. Cerebral ischemia in the developing brain. J Cereb Blood Flow Metab 2022; 42(10): 1777-96.
[http://dx.doi.org/10.1177/0271678X221111600] [PMID: 35765984]
[31]
Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med 2021; 49(2): 15.
[http://dx.doi.org/10.3892/ijmm.2021.5070] [PMID: 34878154]
[32]
Maruhashi T, Higashi Y. An overview of pharmacotherapy for cerebral vasospasm and delayed cerebral ischemia after subarachnoid hemorrhage. Expert Opin Pharmacother 2021; 22(12): 1601-14.
[http://dx.doi.org/10.1080/14656566.2021.1912013] [PMID: 33823726]
[33]
Guo H, Shen X, Xu Y, Yuan J, Zhao D, Hu W. Emodin prevents hypoxic-ischemic neuronal injury: Involvement of the activin A pathway. Neural Regen Res 2013; 8(15): 1360-7.
[PMID: 25206430]
[34]
Xian M, Cai J, Zheng K, et al. Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke via the PI3K/AKT/mTOR and NF-κB pathway. Food Funct 2021; 12(17): 8056-67.
[http://dx.doi.org/10.1039/D1FO01144H] [PMID: 34286782]
[35]
Guan Q, Liang S, Wang Z, Yang Y, Wang S. 1H NMR-based metabonomic analysis of the effect of optimized rhubarb aglycone on the plasma and urine metabolic fingerprints of focal cerebral ischemia–reperfusion rats. J Ethnopharmacol 2014; 154(1): 65-75.
[http://dx.doi.org/10.1016/j.jep.2014.03.002] [PMID: 24685586]
[36]
Cao M, Fang Y, Jia W, Wang Y, Sun J, Tao D. Emodin relieves hypoxia-triggered injury via elevation of microRNA-25 in PC-12 cells. Artif Cells Nanomed Biotechnol 2019; 47(1): 2678-87.
[http://dx.doi.org/10.1080/21691401.2019.1633339] [PMID: 31257935]
[37]
Li Y, Xu Q, Shan C, Shi Y, Wang Y, Zheng G. Combined use of emodin and ginsenoside rb1 exerts synergistic neuroprotection in cerebral ischemia/reperfusion rats. Front Pharmacol 2018; 9: 943.
[http://dx.doi.org/10.3389/fphar.2018.00943] [PMID: 30233364]
[38]
Park SY, Choi YW, Park G. Nrf2-mediated neuroprotection against oxygen-glucose deprivation/reperfusion injury by emodin via AMPK-dependent inhibition of GSK-3β. J Pharm Pharmacol 2018; 70(4): 525-35.
[http://dx.doi.org/10.1111/jphp.12885] [PMID: 29424025]
[39]
Leung SW, Lai JH, Wu JCC, et al. Neuroprotective effects of emodin against ischemia/reperfusion injury through activating erk-1/2 signaling pathway. Int J Mol Sci 2020; 21(8): 2899.
[http://dx.doi.org/10.3390/ijms21082899] [PMID: 32326191]
[40]
Wang C, Zhang D, Ma H, Liu J. Neuroprotective effects of emodin-8-O-β-d-glucoside in vivo and in vitro. Eur J Pharmacol 2007; 577(1-3): 58-63.
[http://dx.doi.org/10.1016/j.ejphar.2007.08.033] [PMID: 17897641]
[41]
Le Rhun E, Preusser M, Roth P, et al. Molecular targeted therapy of glioblastoma. Cancer Treat Rev 2019; 80: 101896.
[http://dx.doi.org/10.1016/j.ctrv.2019.101896] [PMID: 31541850]
[42]
Nieland L, Morsett LM, Broekman MLD, Breakefield XO, Abels ER. Extracellular vesicle-mediated bilateral communication between glioblastoma and astrocytes. Trends Neurosci 2021; 44(3): 215-26.
[http://dx.doi.org/10.1016/j.tins.2020.10.014] [PMID: 33234347]
[43]
Davis M. Glioblastoma: Overview of disease and treatment. Clin J Oncol Nurs 2016; 20(5) (Suppl.): S2-8.
[http://dx.doi.org/10.1188/16.CJON.S1.2-8] [PMID: 27668386]
[44]
Zhou J, Li G, Han G, et al. Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway. Invest New Drugs 2020; 38(1): 50-9.
[http://dx.doi.org/10.1007/s10637-019-00764-w] [PMID: 30924024]
[45]
Mijatovic S, Maksimovic-Ivanic D, Radovic J, et al. Anti-glioma action of aloe emodin: The role of ERK inhibition. Cell Mol Life Sci 2005; 62(5): 589-98.
[http://dx.doi.org/10.1007/s00018-005-4425-8] [PMID: 15747063]
[46]
Ismail S, Haris K, Abdul Ghani ARI, Abdullah JM, Johan MF, Mohamed Yusoff AA. Enhanced induction of cell cycle arrest and apoptosis via the mitochondrial membrane potential disruption in human U87 malignant glioma cells by aloe emodin. J Asian Nat Prod Res 2013; 15(9): 1003-12.
[http://dx.doi.org/10.1080/10286020.2013.818982] [PMID: 23869465]
[47]
Kuo TC, Yang JS, Lin MW, et al. Emodin has cytotoxic and protective effects in rat C6 glioma cells: Roles of Mdr1a and nuclear factor kappaB in cell survival. J Pharmacol Exp Ther 2009; 330(3): 736-44.
[http://dx.doi.org/10.1124/jpet.109.153007] [PMID: 19549930]
[48]
Acevedo-Duncan M, Russell C, Patel S, Patel R. Aloe–emodin modulates PKC isozymes, inhibits proliferation, and induces apoptosis in U-373MG glioma cells. Int Immunopharmacol 2004; 4(14): 1775-84.
[http://dx.doi.org/10.1016/j.intimp.2004.07.012] [PMID: 15531293]
[49]
Arcella A, Oliva MA, Staffieri S, et al. Effects of aloe emodin on U87MG glioblastoma cell growth: in vitro and in vivo study. Environ Toxicol 2018; 33(11): 1160-7.
[http://dx.doi.org/10.1002/tox.22622] [PMID: 30218594]
[50]
Kim MS, Park MJ, Kim SJ, et al. Emodin suppresses hyaluronic acid-induced MMP-9 secretion and invasion of glioma cells. Int J Oncol 2005; 27(3): 839-46.
[PMID: 16077936]
[51]
Kim J, Lee JS, Jung J, Lim I, Lee JY, Park MJ. Emodin suppresses maintenance of stemness by augmenting proteosomal degradation of epidermal growth factor receptor/epidermal growth factor receptor variant III in glioma stem cells. Stem Cells Dev 2015; 24(3): 284-95.
[http://dx.doi.org/10.1089/scd.2014.0210] [PMID: 25229646]
[52]
Haris K, Ismail S, Idris Z, Abdullah JM, Yusoff AA. Expression profile of genes modulated by Aloe emodin in human U87 glioblastoma cells. APJCP 2014; 15(11): 4499-505.
[PMID: 24969876]
[53]
Kumar Singh N, Bhushan B. Preclinical Evidence-based Neuroprotective Potential of Silibinin. Curr Drug Res Rev 2023; 15.
[PMID: 36974407]
[54]
Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25–35 model of Alzheimer’s disease: Potential for screening of new therapeutic agents. Pharmacol Ther 2023; 245: 108398.
[http://dx.doi.org/10.1016/j.pharmthera.2023.108398] [PMID: 37001735]
[55]
Sarasamma S, Audira G, Juniardi S, et al. Zinc chloride exposure inhibits brain acetylcholine levels, produces neurotoxic signatures, and diminishes memory and motor activities in adult zebrafish. Int J Mol Sci 2018; 19(10): 3195.
[http://dx.doi.org/10.3390/ijms19103195] [PMID: 30332818]
[56]
Sun Y, Liu J. Blockade of emodin on amyloid-β 25-35-induced neurotoxicity in AβPP/PS1 mice and PC12 cells through activation of the class III phosphatidylinositol 3-kinase/Beclin-1/B-cell lymphoma 2 pathway. Planta Med 2015; 81(2): 108-15.
[http://dx.doi.org/10.1055/s-0034-1383410] [PMID: 25590369]
[57]
Li Z, Bi H, Jiang H, et al. Neuroprotective effect of emodin against Alzheimer’s disease via Nrf2 signaling in U251 cells and APP/PS1 mice. Mol Med Rep 2020; 23(2): 108.
[http://dx.doi.org/10.3892/mmr.2020.11747] [PMID: 33300068]
[58]
Wang L, Liu S, Xu J, et al. Emodin inhibits aggregation of amyloid-β peptide 1-42 and improves cognitive deficits in Alzheimer's disease transgenic mice. J neurochem 2021; 157(6): 1992-2007.
[59]
Liu T, Jin H, Sun QR, Xu JH, Hu HT. Neuroprotective effects of emodin in rat cortical neurons against β-amyloid-induced neurotoxicity. Brain Res 2010; 1347: 149-60.
[http://dx.doi.org/10.1016/j.brainres.2010.05.079] [PMID: 20573598]
[60]
Du C, Shi L, Wang M, et al. Emodin attenuates Alzheimer’s disease by activating the protein kinase C signaling pathway. Cell Mol Biol 2019; 65(5): 32-7.
[http://dx.doi.org/10.14715/cmb/2019.65.5.5] [PMID: 31304903]
[61]
Tao L, Xie J, Wang Y, et al. Protective effects of aloe-emodin on scopolamine-induced memory impairment in mice and H2O2-induced cytotoxicity in PC12 cells. Bioorg Med Chem Lett 2014; 24(23): 5385-9.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.049] [PMID: 25453793]
[62]
Ziai WC, Carhuapoma JR. Intracerebral hemorrhage. Continuum 2018; 24(6): 1603-22.
[http://dx.doi.org/10.1212/CON.0000000000000672] [PMID: 30516598]
[63]
Hostettler IC, Seiffge DJ, Werring DJ. Intracerebral hemorrhage: An update on diagnosis and treatment. Expert Rev Neurother 2019; 19(7): 679-94.
[http://dx.doi.org/10.1080/14737175.2019.1623671] [PMID: 31188036]
[64]
Garg R, Biller J. Recent advances in spontaneous intracerebral hemorrhage. F1000 Res 2019; 8: 302.
[http://dx.doi.org/10.12688/f1000research.16357.1] [PMID: 30906532]
[65]
Zhou X, Wang L, Wang M, et al. Emodin-induced microglial apoptosis is associated with TRB3 induction. Immunopharmacol Immunotoxicol 2011; 33(4): 594-602.
[http://dx.doi.org/10.3109/08923973.2010.549135] [PMID: 21275776]
[66]
Zeng P, Wang X M, Su H F, et al. Protective effects of Da-cheng-qi decoction in rats with intracerebral hemorrhage. Phytomed mint j phytoth phytopharm 2021; 90: 153630.
[67]
Finnerup NB, Kuner R, Jensen TS. Neuropathic Pain: From mechanisms to treatment. Physiol Rev 2021; 101(1): 259-301.
[http://dx.doi.org/10.1152/physrev.00045.2019] [PMID: 32584191]
[68]
Chang MC. Efficacy of pulsed radiofrequency stimulation in patients with peripheral neuropathic pain: A narrative review. Pain Physic 2018; 1(21;1): E225-34.
[http://dx.doi.org/10.36076/ppj.2018.3.E225] [PMID: 29871378]
[69]
Gao Y, Liu H, Deng L, et al. Effect of emodin on neuropathic pain transmission mediated by P2X2/3 receptor of primary sensory neurons. Brain Res Bull 2011; 84(6): 406-13.
[http://dx.doi.org/10.1016/j.brainresbull.2011.01.017] [PMID: 21303687]
[70]
Chen P, Lin D, Wang C, et al. Proteomic analysis of emodin treatment in neuropathic pain reveals dysfunction of the calcium signaling pathway. J Pain Res 2021; 14: 613-22.
[http://dx.doi.org/10.2147/JPR.S290681] [PMID: 33707969]
[71]
Li L, Sheng X, Zhao S, et al. Nanoparticle-encapsulated emodin decreases diabetic neuropathic pain probably via a mechanism involving P2X3 receptor in the dorsal root ganglia. Purinergic Signal 2017; 13(4): 559-68.
[http://dx.doi.org/10.1007/s11302-017-9583-2] [PMID: 28840511]
[72]
Nasser M, Bejjani F, Raad M, et al. Traumatic brain injury and blood-brain barrier cross-talk. CNS Neurol Disord Drug Targets 2016; 15(9): 1030-44.
[http://dx.doi.org/10.2174/1871527315666160815093525] [PMID: 27528468]
[73]
Ma Y, Xia X, Cheng J, et al. Emodin inhibits inducible nitric oxide synthase in a rat model of craniocerebral explosive injury. Neurochem Res 2014; 39(9): 1809-16.
[http://dx.doi.org/10.1007/s11064-014-1395-y] [PMID: 25064046]
[74]
Gu JW, Hasuo H, Takeya M, Akasu T. Effects of emodin on synaptic transmission in rat hippocampal CA1 pyramidal neurons in vitro. Neuropharmacology 2005; 49(1): 103-11.
[http://dx.doi.org/10.1016/j.neuropharm.2005.02.003] [PMID: 15992585]
[75]
Huang Y, Li X, Pan C, et al. The intervention mechanism of emodin on TLR3 pathway in the process of central nervous system injury caused by herpes virus infection. Neurol Res 2021; 43(4): 307-13.
[http://dx.doi.org/10.1080/01616412.2020.1853989] [PMID: 33274693]
[76]
Zeng P, Wang XM, Ye CY, et al. Mechanistic insights into the anti-depressant effect of emodin: An integrated systems pharmacology study and experimental validation. Aging 2021; 13(11): 15078-99.
[http://dx.doi.org/10.18632/aging.203072] [PMID: 34051074]
[77]
Zhang T, Yang C, Chu J, et al. Emodin prevented depression in chronic unpredicted mild stress-exposed rats by targeting miR-139-5p/5-lipoxygenase. Front Cell Dev Biol 2021; 9: 696619.
[http://dx.doi.org/10.3389/fcell.2021.696619] [PMID: 34381778]
[78]
Fan L, Zhang H, Li X, Yang G, Ru J, Liu T. RETRACTED: Emodin protects hyperglycemia-induced injury in PC-12 cells by up-regulation of miR-9. Mol Cell Endocrinol 2018; 474: 194-200.
[http://dx.doi.org/10.1016/j.mce.2018.03.009] [PMID: 29577942]
[79]
Liu H, Wang Q, Shi G, et al. Emodin ameliorates renal damage and podocyte injury in a rat model of diabetic nephropathy via regulating AMPK/mTOR-mediated autophagy signaling pathway. Diabetes Metab Syndr Obes 2021; 14: 1253-66.
[http://dx.doi.org/10.2147/DMSO.S299375] [PMID: 33776462]
[80]
Lai C, Chen Q, Ding Y, Liu H, Tang Z. Emodin protected against synaptic impairment and oxidative stress induced by fluoride in SH-SY5Y cells by modulating ERK1 /2/Nrf2/ HO -1 pathway. Environ Toxicol 2020; 35(9): 922-9.
[http://dx.doi.org/10.1002/tox.22928] [PMID: 32293791]
[81]
Liu W, Fan Z, Gao F, et al. Emodin inhibits zinc-induced neurotoxicity in neuroblastoma SH-SY5Y cells. Biosci Rep 2019; 39(5): BSR20182378.
[http://dx.doi.org/10.1042/BSR20182378] [PMID: 31023967]
[82]
Mizuno M, Kawamura H, Takei N, Nawa H. The anthraquinone derivative Emodin ameliorates neurobehavioral deficits of a rodent model for schizophrenia. Jneurtransm 2008; 115(3): 521-30.
[83]
Mizuno M, Kawamura H, Ishizuka Y, Sotoyama H, Nawa H. The anthraquinone derivative emodin attenuates methamphetamine-induced hyperlocomotion and startle response in rats. Pharmacol Biochem Behav 2010; 97(2): 392-8.
[http://dx.doi.org/10.1016/j.pbb.2010.09.009] [PMID: 20863847]
[84]
Li D, Zhang N, Cao Y, et al. Emodin ameliorates lipopolysaccharide-induced mastitis in mice by inhibiting activation of NF-κB and MAPKs signal pathways. Eur J Pharmacol 2013; 705(1-3): 79-85.
[http://dx.doi.org/10.1016/j.ejphar.2013.02.021] [PMID: 23499696]
[85]
Xiong W, Wu RP, Tan MX, et al. Emodin inhibits the expression of receptor and calcitonin-gene-related peptide release in trigeminal ganglia of trigeminal neuralgia rats. Int J Clin Exp Pathol 2017; 10(11): 11317-25.
[PMID: 31966486]
[86]
Lu MC, Hsieh MT, Wu CR, et al. Ameliorating effect of emodin, a constitute of Polygonatum multiflorum, on cycloheximide-induced impairment of memory consolidation in rats. J Ethnopharmacol 2007; 112(3): 552-6.
[http://dx.doi.org/10.1016/j.jep.2007.05.004] [PMID: 17572029]
[87]
Lo Y C, Shih Y T, Tseng Y T, Hsu H T. Neuroprotective effects of San-Huang-Xie-Xin-Tang in the MPP (+)/MPTP Models of Parkinson's disease in vitro and in vivo. Evid Based Compl Alternat Med 2012; 501032.
[88]
Long J, Gao H, Sun L, Liu J, Zhao-Wilson X. Grape extract protects mitochondria from oxidative damage and improves locomotor dysfunction and extends lifespan in a Drosophila Parkinson’s disease model. Rejuvenation Res 2009; 12(5): 321-31.
[http://dx.doi.org/10.1089/rej.2009.0877] [PMID: 19929256]
[89]
Yang T, Kong B, Kuang Y, et al. Emodin plays an interventional role in epileptic rats via multidrug resistance gene 1 (MDR1). Int J Clin Exp Pathol 2015; 8(3): 3418-25.
[PMID: 26045880]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy