Generic placeholder image

Current Aging Science

Editor-in-Chief

ISSN (Print): 1874-6098
ISSN (Online): 1874-6128

Research Article

Pre-operative Neo-adjuvant Chemotherapy Related miRNAs as Key Regulators and Therapeutic Targets in Colorectal Cancer

Author(s): Orcun Yalav, Ozge Sonmezler, Kivilcim Eren Erdogan, Ahmet Rencuzogullari, Figen Doran, Atil Bisgin* and Ibrahim Boga*

Volume 17, Issue 1, 2024

Published on: 31 August, 2023

Page: [49 - 57] Pages: 9

DOI: 10.2174/1874609816666230816152744

Price: $65

Open Access Journals Promotions 2
Abstract

Background: In colorectal cancer, the investigation of cancer pathogenesis and the determination of the relevant gene and gene pathways is particularly important to provide a basis for treatment-oriented studies. miRNAs which affect gene regulation in the molecular pathogenesis of cancer, have an active role in carcinogenesis. In the literature, miRNA expression levels have been associated with metastasis and prognosis in different cancers.

Objective: In our study, expression profiling of miRNAs involved in oncogenic and apoptotic pathways in patients with locally advanced colorectal cancer receiving neoadjuvant therapy was performed.

Methods: miRNAs were isolated from three different FFPE tissue samples taken at different times of the same patient (tumor tissue taken at the time of diagnosis, normal tissue samples, and after neoadjuvant therapy). The expression analysis of 84 miRNAs determined by PCR array (Fluidigm, USA) and mediated meta-analysis was performed comparatively to each study and non-cancerous control group. Evaluations were performed with ΔΔCT calculations.

Results: As a result of the miRNA PCR array study, in addition to differences were observed in miRNA expression between control and study groups. The potential biomarkers which were hsamiR- 215-5p, hsa-miR-9-59, hsa-miR-193a-5p, hsa-miR-206, hsa-miR-1, hsa-miR-96-5p have been detected for possible treatment resistance, prognosis and predispositions to cancers.

Conclusion: In patients with colorectal cancer, miRNA expression in the tumoral regions before and after neoadjuvant therapy has represented a variable pattern. It has been shown that miRNA studies can be used to predict the clinical course and response to treatment with differences in expression levels. It has been concluded that specific miRNAs may be candidate biomarkers for colorectal cancer.

Keywords: microRNA, colorectal cancer, biomarker, expression profiling, neoadjuvant therapy, therapeutic targets.

Graphical Abstract
[1]
Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol 2021; 14(10): 101174.
[http://dx.doi.org/10.1016/j.tranon.2021.101174] [PMID: 34243011]
[2]
Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol 2019; 14(2): 89-103.
[http://dx.doi.org/10.5114/pg.2018.81072] [PMID: 31616522]
[3]
Babaei M, Jansen L, Balavarca Y, et al. Neoadjuvant therapy in rectal cancer patients with clinical stage II to III across european countries: Variations and outcomes. Clin Colorectal Cancer 2018; 17(1): e129-42.
[http://dx.doi.org/10.1016/j.clcc.2017.09.002] [PMID: 29074354]
[4]
Benson AB, Venook AP, Al-Hawary MM, et al. NCCN guidelines insights: Rectal cancer, version 6, 2020. J Natl Compr Canc Netw 2020; 18(7): 806-15.
[http://dx.doi.org/10.6004/jnccn.2020.0032] [PMID: 32634771]
[5]
Thomas J, Ohtsuka M, Pichler M, Ling H. MicroRNAs: Clinical relevance in colorectal cancer. Int J Mol Sci 2015; 16(12): 28063-76.
[http://dx.doi.org/10.3390/ijms161226080] [PMID: 26602923]
[6]
Body A, Prenen H, Lam M, et al. Neoadjuvant therapy for locally advanced rectal cancer: Recent advances and ongoing challenges. Clin Colorectal Cancer 2021; 20(1): 29-41.
[http://dx.doi.org/10.1016/j.clcc.2020.12.005] [PMID: 33531256]
[7]
Wilkinson N. Management of rectal cancer. Surg Clin North Am 2020; 100(3): 615-28.
[http://dx.doi.org/10.1016/j.suc.2020.02.014] [PMID: 32402304]
[8]
Imedio L, Cristóbal I, Rubio J, Santos A, Rojo F, García-Foncillas J. MicroRNAs in rectal cancer: Functional significance and promising therapeutic value. Cancers 2020; 12(8): 2040.
[http://dx.doi.org/10.3390/cancers12082040] [PMID: 32722203]
[9]
Bartel DP. MicroRNAs. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[10]
Gao S, Zhao ZY, Wu R, Zhang Y, Zhang ZY. Prognostic value of microRNAs in colorectal cancer: A meta-analysis. Cancer Manag Res 2018; 10: 907-29.
[http://dx.doi.org/10.2147/CMAR.S157493] [PMID: 29750053]
[11]
Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015; 15(6): 321-33.
[http://dx.doi.org/10.1038/nrc3932] [PMID: 25998712]
[12]
Aslam MI, Taylor K, Pringle JH, Jameson JS. MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg 2009; 96(7): 702-10.
[http://dx.doi.org/10.1002/bjs.6628] [PMID: 19526617]
[13]
Yau TO, Wu CW, Tang CM, et al. microRNA-20a in human faeces as a non-invasive biomarker for colorectal cancer. Oncotarget 2016; 7(2): 1559-68.
[http://dx.doi.org/10.18632/oncotarget.6403] [PMID: 26621842]
[14]
Michael MZ, O’ Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1(12): 882-91.
[PMID: 14573789]
[15]
Zhu J, Xu Y, Liu S, Qiao L, Sun J, Zhao Q. MicroRNAs associated with colon cancer: New potential prognostic markers and targets for therapy. Front Bioeng Biotechnol 2020; 8: 176.
[http://dx.doi.org/10.3389/fbioe.2020.00176] [PMID: 32211396]
[16]
Zhang N, Hu X, Du Y, Du J. The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed Pharmacother 2021; 134: 111099.
[http://dx.doi.org/10.1016/j.biopha.2020.111099] [PMID: 33338745]
[17]
Plotnikova O, Baranova A, Skoblov M. Comprehensive analysis of human microRNA-mRNA interactome. Front Genet 2019; 10: 933.
[http://dx.doi.org/10.3389/fgene.2019.00933] [PMID: 31649721]
[18]
Smith RA, Cokkinides V, von Eschenbach AC, et al. American Cancer Society guidelines for the early detection of cancer. CA Cancer J Clin 2002; 52(1): 8-22.
[http://dx.doi.org/10.3322/canjclin.52.1.8] [PMID: 11814067]
[19]
Pedroza-Torres A, Romero-Córdoba SL, Justo-Garrido M, et al. MicroRNAs in tumor cell metabolism: Roles and therapeutic opportunities. Front Oncol 2019; 9: 1404.
[http://dx.doi.org/10.3389/fonc.2019.01404] [PMID: 31921661]
[20]
Wang H, Ma N, Li W, Wang Z. MicroRNA-96-5p promotes proliferation, invasion and EMT of oral carcinoma cells by directly targeting FOXF2. Biol Open 2020; 9(3): bio049478.
[http://dx.doi.org/10.1242/bio.049478] [PMID: 32014885]
[21]
Iwai N, Yasui K, Tomie A, et al. Oncogenic miR-96-5p inhibits apoptosis by targeting the caspase-9 gene in hepatocellular carcinoma. Int J Oncol 2018; 53(1): 237-45.
[PMID: 29658604]
[22]
Qin W, Feng S, Sun Y, Jiang G. MiR-96-5p promotes breast cancer migration by activating MEK/ERK signaling. J Gene Med 2020; 22(8): e3188.
[http://dx.doi.org/10.1002/jgm.3188] [PMID: 32196830]
[23]
Liu B, Zhang J, Yang D. miR-96-5p promotes the proliferation and migration of ovarian cancer cells by suppressing Caveolae1. J Ovarian Res 2019; 12(1): 57.
[http://dx.doi.org/10.1186/s13048-019-0533-1] [PMID: 31228941]
[24]
Ress AL, Stiegelbauer V, Winter E, et al. MiR-96-5p influences cellular growth and is associated with poor survival in colorectal cancer patients. Mol Carcinog 2015; 54(11): 1442-50.
[http://dx.doi.org/10.1002/mc.22218] [PMID: 25256312]
[25]
Vychytilova-Faltejskova P, Merhautova J, Machackova T, et al. MiR-215-5p is a tumor suppressor in colorectal cancer targeting EGFR ligand epiregulin and its transcriptional inducer HOXB9. Oncogenesis 2017; 6(11): 399.
[http://dx.doi.org/10.1038/s41389-017-0006-6] [PMID: 29199273]
[26]
Machackova T, Vychytilova-Faltejskova P, Souckova K, et al. MiR-215-5p reduces liver metastasis in an experimental model of colorectal cancer through regulation of ECM-receptor interactions and focal adhesion. Cancers 2020; 12(12): 3518.
[http://dx.doi.org/10.3390/cancers12123518] [PMID: 33255928]
[27]
Chen L, Hu W, Li G, Guo Y, Wan Z, Yu J. Inhibition of miR-9-5p suppresses prostate cancer progress by targeting StarD13. Cell Mol Biol Lett 2019; 24(1): 20.
[http://dx.doi.org/10.1186/s11658-019-0145-1] [PMID: 30899277]
[28]
Wang J, Wang B, Ren H, Chen W. miR-9-5p inhibits pancreatic cancer cell proliferation, invasion and glutamine metabolism by targeting GOT1. Biochem Biophys Res Commun 2019; 509(1): 241-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.114] [PMID: 30591220]
[29]
Li G, Wu F, Yang H, Deng X, Yuan Y. MiR-9-5p promotes cell growth and metastasis in non-small cell lung cancer through the repression of TGFBR2. Biomed Pharmacother 2017; 96: 1170-8.
[http://dx.doi.org/10.1016/j.biopha.2017.11.105] [PMID: 29239816]
[30]
Zhang P, Ji D-B, Han H-B, Shi Y-F, Du C-Z, Gu J. Downregulation of miR-193a-5p correlates with lymph node metastasis and poor prognosis in colorectal cancer. World J Gastroenterol 2014; 20(34): 12241-8.
[http://dx.doi.org/10.3748/wjg.v20.i34.12241] [PMID: 25232258]
[31]
Yang Z, Chen JS, Wen JK, et al. Silencing of miR-193a-5p increases the chemosensitivity of prostate cancer cells to docetaxel. J Exp Clin Cancer Res 2017; 36(1): 178.
[http://dx.doi.org/10.1186/s13046-017-0649-3] [PMID: 29216925]
[32]
Pu Y, Zhao F, Cai W, Meng X, Li Y, Cai S. MiR-193a-3p and miR-193a-5p suppress the metastasis of human osteosarcoma cells by down-regulating Rab27B and SRR, respectively. Clin Exp Metastasis 2016; 33(4): 359-72.
[http://dx.doi.org/10.1007/s10585-016-9783-0] [PMID: 26913720]
[33]
Li P, Xiao Z, Luo J, Zhang Y, Lin L. MiR-139-5p, miR-940 and miR-193a-5p inhibit the growth of hepatocellular carcinoma by targeting SPOCK1. J Cell Mol Med 2019; 23(4): 2475-88.
[http://dx.doi.org/10.1111/jcmm.14121] [PMID: 30710422]
[34]
Taniguchi K, Sakai M, Sugito N, et al. PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors. Oncotarget 2016; 7(14): 18940-52.
[http://dx.doi.org/10.18632/oncotarget.8005] [PMID: 26980745]
[35]
Han C, Shen JK, Hornicek FJ, Kan Q, Duan Z. Regulation of microRNA-1 (miR-1) expression in human cancer. Biochim Biophys Acta Gene Regul Mech 2017; 1860(2): 227-32.
[http://dx.doi.org/10.1016/j.bbagrm.2016.12.004] [PMID: 27923712]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy