Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Flavonoids in Astragali Radix Functions as Regulators of CDK2, VEGFA and MYC in Osteoporosis and Type 1 Diabetes Mellitus

Author(s): Zimeng Liu, Xuemei Zuo, Yisheng Cai, Yuyang Zuo, Keqiang Ma, Shuang Wu, Xiaochao Qu* and Xiangding Chen*

Volume 21, Issue 14, 2024

Published on: 16 October, 2023

Page: [2967 - 2980] Pages: 14

DOI: 10.2174/1570180820666230811150017

Price: $65

Abstract

Background: People with type 1 diabetes mellitus (T1DM) are significantly more likely to have osteoporosis (OP). Astragali Radix is a Chinese herbal medicine containing various active ingredients, and several clinical trials have been reported to use it to treat OP and T1DM, respectively.

Objective: To evaluate the targets and potential mechanisms of Astragali Radix administration on OP and T1DM.

Methods: The targets of Astragali Radix were identified using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. The OP and T1DM datasets were downloaded from the Gene Expression Omnibus (GEO) database. The weighted gene correlation network analysis (WGCNA) method was used to identify the co-expression genes associated with OP and T1DM. In addition, the common gene targets of OP and T1DM were screened using two public databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the R tool. After the validation of key genes, molecular docking was performed to visualize small molecule-protein interactions.

Results: The compound target network mainly contained 17 compounds and 147 corresponding targets. There were 561 GO items and 154 signaling pathways in KEGG, mainly including the AGE-RAGE signaling pathway in diabetic complications and osteoclast differentiation. The results of molecular docking showed that flavonoids were the top compound of Astragali Radix, which had a high affinity with CDK2, VEGFA, and MYC.

Conclusion: Flavonoids in Astragali Radix may regulate multiple signaling pathways through MYC, CDK2, and VEGFA, which may play a therapeutic role in OP and T1DM.

Keywords: Osteoporosis, type 1 diabetes mellitus, Astragali Radix, WGCNA, molecular docking, network pharmacology.

[1]
NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA, 2001, 285(6), 785-795.
[http://dx.doi.org/10.1001/jama.285.6.785] [PMID: 11176917]
[2]
Bessette, L.; Ste-Marie, L.G.; Jean, S.; Davison, K.S.; Beaulieu, M.; Baranci, M.; Bessant, J.; Brown, J.P. The care gap in diagnosis and treatment of women with a fragility fracture. Osteoporos. Int., 2008, 19(1), 79-86.
[http://dx.doi.org/10.1007/s00198-007-0426-9] [PMID: 17641811]
[3]
Gebe, J.A.; Swanson, E.; Kwok, W.W. HLA Class II peptide-binding and autoimmunity. Tissue Antigens, 2002, 59(2), 78-87.
[http://dx.doi.org/10.1034/j.1399-0039.2002.590202.x] [PMID: 12028533]
[4]
Khan, T.S.; Fraser, L.A. Type 1 diabetes and osteoporosis: From molecular pathways to bone phenotype. J. Osteoporos., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/174186] [PMID: 25874154]
[5]
Jin, P.; Zhang, X.; Wu, Y.; Li, L.; Yin, Q.; Zheng, L.; Zhang, H.; Sun, C. Streptozotocin-induced diabetic rat-derived bone marrow mesenchymal stem cells have impaired abilities in proliferation, paracrine, antiapoptosis, and myogenic differentiation. Transplant. Proc., 2010, 42(7), 2745-2752.
[http://dx.doi.org/10.1016/j.transproceed.2010.05.145] [PMID: 20832580]
[6]
Stolzing, A.; Sellers, D.; Llewelyn, O.; Scutt, A. Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs, 2010, 191(6), 453-465.
[http://dx.doi.org/10.1159/000281826] [PMID: 20130391]
[7]
Fulzele, K.; Clemens, T.L. Novel functions for insulin in bone. Bone, 2012, 50(2), 452-456.
[http://dx.doi.org/10.1016/j.bone.2011.06.018] [PMID: 21723973]
[8]
Ziegler, A.G.; Rewers, M.; Simell, O.; Simell, T.; Lempainen, J.; Steck, A.; Winkler, C.; Ilonen, J.; Veijola, R.; Knip, M.; Bonifacio, E.; Eisenbarth, G.S. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA, 2013, 309(23), 2473-2479.
[http://dx.doi.org/10.1001/jama.2013.6285] [PMID: 23780460]
[9]
Anthamatten, A.; Parish, A. Clinical Update on Osteoporosis. J. Midwifery Womens Health, 2019, 64(3), 265-275.
[http://dx.doi.org/10.1111/jmwh.12954] [PMID: 30869832]
[10]
Chen, Z.; Liu, L.; Gao, C.; Chen, W.; Vong, C.T.; Yao, P.; Yang, Y.; Li, X.; Tang, X.; Wang, S.; Wang, Y. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine. J. Ethnopharmacol., 2020, 258, 112895.
[http://dx.doi.org/10.1016/j.jep.2020.112895] [PMID: 32330511]
[11]
Chai, Y.; Pu, X.; Wu, Y.; Tian, X.; Li, Q.; Zeng, F.; Wang, J.; Gao, J.; Gong, H.; Chen, Y. Inhibitory effect of Astragalus Membranaceus on osteoporosis in SAMP6 mice by regulating vitaminD/FGF23/Klotho signaling pathway. Bioengineered, 2021, 12(1), 4464-4474.
[http://dx.doi.org/10.1080/21655979.2021.1946633] [PMID: 34304712]
[12]
Kang, W.; Wei, P.; Ou, L.; Li, M.; Liu, C. The mechanism study of inhibition effect of prepared Radix Rehmanniainon combined with Radix Astragali osteoporosis through PI3K-AKT signaling pathway. Acta Cir. Bras., 2022, 37(11), e371101.
[http://dx.doi.org/10.1590/acb371101] [PMID: 36629528]
[13]
Yang, F.; Yan, G.; Li, Y.; Han, Z.; Zhang, L.; Chen, S.; Feng, C.; Huang, Q.; Ding, F.; Yu, Y.; Bi, C.; Cai, B.; Yang, L. Astragalus Polysaccharide Attenuated Iron Overload-Induced Dysfunction of Mesenchymal Stem Cells via Suppressing Mitochondrial ROS. Cell. Physiol. Biochem., 2016, 39(4), 1369-1379.
[http://dx.doi.org/10.1159/000447841] [PMID: 27607448]
[14]
Bian, Q.; Huang, J.H.; Liang, Q.Q.; Shu, B.; Hou, W.; Xu, H.; Zhao, Y.J.; Lu, S.; Shi, Q.; Wang, Y.J. The osteogenetic effect of astragaloside IV with centrifugating pressure on the OCT-1 cells. Pharmazie, 2011, 66(1), 63-68.
[PMID: 21391437]
[15]
Liu, M.; Xiao, G.G.; Rong, P.; Dong, J.; Zhang, Z.; Zhao, H.; Teng, J.; Zhao, H.; Pan, J.; Li, Y.; Zha, Q.; Zhang, Y.; Ju, D. Semen astragali complanati- and rhizoma cibotii-enhanced bone formation in osteoporosis rats. BMC Complement. Altern. Med., 2013, 13(1), 141.
[http://dx.doi.org/10.1186/1472-6882-13-141] [PMID: 23782721]
[16]
Sell, D.R.; Monnier, V.M. End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J. Clin. Invest., 1990, 85(2), 380-384.
[http://dx.doi.org/10.1172/JCI114449] [PMID: 2298912]
[17]
Yuan, W.; Zhang, Y.; Ge, Y.; Yan, M.; Kuang, R.; Zheng, X. Astragaloside IV inhibits proliferation and promotes apoptosis in rat vascular smooth muscle cells under high glucose concentration in vitro. Planta Med., 2008, 74(10), 1259-1264.
[http://dx.doi.org/10.1055/s-2008-1081290] [PMID: 18622899]
[18]
Zhang, D.; Li, J.; Zhang, Y.; Gao, F.; Dai, R. Astragaloside IV inhibits Angiotensin II-stimulated proliferation of rat vascular smooth muscle cells via the regulation of CDK2 activity. Life Sci., 2018, 200, 105-109.
[http://dx.doi.org/10.1016/j.lfs.2018.03.036] [PMID: 29567075]
[19]
Sang, Z.; Zhou, L.; Fan, X.; McCrimmon, R.J. Radix astragali (huangqi) as a treatment for defective hypoglycemia counterregulation in diabetes. Am. J. Chin. Med., 2010, 38(6), 1027-1038.
[http://dx.doi.org/10.1142/S0192415X10008445] [PMID: 21061458]
[20]
Phu, H.T.; Thuan, D.T.B.; Nguyen, T.H.D.; Posadino, A.M.; Eid, A.H.; Pintus, G. Herbal Medicine for Slowing Aging and Aging-associated Conditions: Efficacy, Mechanisms and Safety. Curr. Vasc. Pharmacol., 2020, 18(4), 369-393.
[http://dx.doi.org/10.2174/1570161117666190715121939] [PMID: 31418664]
[21]
Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci., 2022, 43(2), 136-150.
[http://dx.doi.org/10.1016/j.tips.2021.11.004] [PMID: 34895945]
[22]
Zhang, H.; Zhang, Y.; Li, Y.; Wang, Y.; Yan, S.; Xu, S.; Deng, Z.; Yang, X.; Xie, H.; Li, J. Bioinformatics and Network Pharmacology Identify the Therapeutic Role and Potential Mechanism of Melatonin in AD and Rosacea. Front. Immunol., 2021, 12, 756550.
[http://dx.doi.org/10.3389/fimmu.2021.756550] [PMID: 34899707]
[23]
Zhou, W.; Wu, J.; Zhang, J.; Liu, X.; Guo, S.; Jia, S.; Zhang, X.; Zhu, Y.; Wang, M. Integrated bioinformatics analysis to decipher molecular mechanism of compound Kushen injection for esophageal cancer by combining WGCNA with network pharmacology. Sci. Rep., 2020, 10(1), 12745.
[http://dx.doi.org/10.1038/s41598-020-69708-2] [PMID: 32728182]
[24]
Xia, Q.D.; Xun, Y.; Lu, J.L.; Lu, Y.C.; Yang, Y.Y.; Zhou, P.; Hu, J.; Li, C.; Wang, S.G. Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID‐19. Cell Prolif., 2020, 53(12), e12949.
[http://dx.doi.org/10.1111/cpr.12949] [PMID: 33140889]
[25]
Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[26]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[27]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[28]
Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci., 2012, 13(6), 6964-6982.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[29]
Chen, M.L.; Shah, V.; Patnaik, R.; Adams, W.; Hussain, A.; Conner, D.; Mehta, M.; Malinowski, H.; Lazor, J.; Huang, S.M.; Hare, D.; Lesko, L.; Sporn, D.; Williams, R. Bioavailability and bioequivalence: An FDA regulatory overview. Pharm. Res., 2001, 18(12), 1645-1650.
[http://dx.doi.org/10.1023/A:1013319408893] [PMID: 11785681]
[30]
Tao, W.; Xu, X.; Wang, X.; Li, B.; Wang, Y.; Li, Y.; Yang, L. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J. Ethnopharmacol., 2013, 145(1), 1-10.
[http://dx.doi.org/10.1016/j.jep.2012.09.051] [PMID: 23142198]
[31]
Ning, K.; Zhao, X.; Poetsch, A.; Chen, W.H.; Yang, J. Computational Molecular Networks and Network Pharmacology. BioMed Res. Int., 2017, 2017, 1.
[http://dx.doi.org/10.1155/2017/7573904] [PMID: 29250548]
[32]
Zhang, M.; Yuan, Y.; Zhou, W.; Qin, Y.; Xu, K.; Men, J.; Lin, M. Network pharmacology analysis of Chaihu Lizhong Tang treating non-alcoholic fatty liver disease. Comput. Biol. Chem., 2020, 86, 107248.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107248] [PMID: 32208163]
[33]
Lindquist, O.; Bengtsson, C.; Hansson, T.; Roos, B. Effect of age and menopause on osteoporosis. Scand. J. Soc. Med. Suppl., 1977, 14, 80-84.
[PMID: 299008]
[34]
Gallagher, J.C. Effect of early menopause on bone mineral density and fractures. Menopause, 2007, 14(3), 567-571.
[http://dx.doi.org/10.1097/gme.0b013e31804c793d] [PMID: 17476146]
[35]
Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9(1), 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[36]
Miao, X.; Luo, Q.; Zhao, H.; Qin, X. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries. Sci. Rep., 2016, 6(1), 39398.
[http://dx.doi.org/10.1038/srep39398] [PMID: 27982099]
[37]
Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 2011, 12(1), 77.
[http://dx.doi.org/10.1186/1471-2105-12-77] [PMID: 21414208]
[38]
Parvez, M.S.A.; Karim, M.A.; Hasan, M.; Jaman, J.; Karim, Z.; Tahsin, T.; Hasan, M.N.; Hosen, M.J. Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach. Int. J. Biol. Macromol., 2020, 163, 1787-1797.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.098] [PMID: 32950529]
[39]
Wei, X.; Wu, X.; Cheng, Z.; Wu, Q.; Cao, C.; Xu, X.; Shang, H. Botanical drugs: A new strategy for structure-based target prediction. Brief. Bioinform., 2022, 23(1), bbab425.
[http://dx.doi.org/10.1093/bib/bbab425] [PMID: 34698349]
[40]
Hall, D.C., Jr; Ji, H.F. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med. Infect. Dis., 2020, 35, 101646.
[http://dx.doi.org/10.1016/j.tmaid.2020.101646] [PMID: 32294562]
[41]
Song, W.; Ni, S.; Fu, Y.; Wang, Y. Uncovering the mechanism of Maxing Ganshi Decoction on asthma from a systematic perspective: A network pharmacology study. Sci. Rep., 2018, 8(1), 17362.
[http://dx.doi.org/10.1038/s41598-018-35791-9] [PMID: 30478434]
[42]
Johnston, C.B.; Dagar, M. Osteoporosis in Older Adults. Med. Clin. North Am., 2020, 104(5), 873-884.
[http://dx.doi.org/10.1016/j.mcna.2020.06.004] [PMID: 32773051]
[43]
Boschitsch, E.P.; Durchschlag, E.; Dimai, H.P. Age-related prevalence of osteoporosis and fragility fractures: Real-world data from an Austrian Menopause and Osteoporosis Clinic. Climacteric, 2017, 20(2), 157-163.
[http://dx.doi.org/10.1080/13697137.2017.1282452] [PMID: 28286986]
[44]
Misra, S.; Shukla, A.K. Teplizumab: Type 1 diabetes mellitus preventable? Eur. J. Clin. Pharmacol., 2023, 79(5), 609-616.
[http://dx.doi.org/10.1007/s00228-023-03474-8] [PMID: 37004543]
[45]
Shoback, D.; Rosen, C.J.; Black, D.M.; Cheung, A.M.; Murad, M.H.; Eastell, R. Pharmacological Management of Osteoporosis in Postmenopausal Women: An Endocrine Society Guideline Update. J. Clin. Endocrinol. Metab., 2020, 105(3), 587-594.
[http://dx.doi.org/10.1210/clinem/dgaa048] [PMID: 32068863]
[46]
Cazarolli, L.; Zanatta, L.; Alberton, E.; Bonorino Figueiredo, M.S.; Folador, P.; Damazio, R.; Pizzolatti, M.; Barreto Silva, F.R. Flavonoids: Prospective drug candidates. Mini Rev. Med. Chem., 2008, 8(13), 1429-1440.
[http://dx.doi.org/10.2174/138955708786369564] [PMID: 18991758]
[47]
Landis-Piwowar, K.; Dou, Q. Polyphenols: Biological activities, molecular targets, and the effect of methylation. Curr. Mol. Pharmacol., 2008, 1(3), 233-243.
[http://dx.doi.org/10.2174/1874467210801030233] [PMID: 20021436]
[48]
Rahimi, R.; Ghiasi, S.; Azimi, H.; Fakhari, S.; Abdollahi, M. A review of the herbal phosphodiesterase inhibitors; Future perspective of new drugs. Cytokine, 2010, 49(2), 123-129.
[http://dx.doi.org/10.1016/j.cyto.2009.11.005] [PMID: 20005737]
[49]
Harper, J.W.; Adams, P.D. Cyclin-Dependent Kinases. Chem. Rev., 2001, 101(8), 2511-2526.
[http://dx.doi.org/10.1021/cr0001030] [PMID: 11749386]
[50]
Lim, S.; Kaldis, P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development, 2013, 140(15), 3079-3093.
[http://dx.doi.org/10.1242/dev.091744] [PMID: 23861057]
[51]
Pezzotti, G.; Adachi, T.; Boschetto, F.; Zhu, W.; Zanocco, M.; Marin, E.; Bal, B.S.; McEntire, B.J. Off-Stoichiometric Reactions at the Cell–Substrate Biomolecular Interface of Biomaterials: In Situ and Ex Situ Monitoring of Cell Proliferation, Differentiation, and Bone Tissue Formation. Int. J. Mol. Sci., 2019, 20(17), 4080.
[http://dx.doi.org/10.3390/ijms20174080] [PMID: 31438530]
[52]
Mills, C. M1 and M2 Macrophages: Oracles of Health and Disease. Crit. Rev. Immunol., 2012, 32(6), 463-488.
[http://dx.doi.org/10.1615/CritRevImmunol.v32.i6.10] [PMID: 23428224]
[53]
Fei, Q.; Guo, C.; Xu, X.; Gao, J.; Zhang, J.; Chen, T.; Cui, D. Osteogenic growth peptide enhances the proliferation of bone marrow mesenchymal stem cells from osteoprotegerin-deficient mice by CDK2/cyclin A. Acta Biochim. Biophys. Sin. (Shanghai), 2010, 42(11), 801-806.
[http://dx.doi.org/10.1093/abbs/gmq086] [PMID: 20926513]
[54]
Gong, Z.; Da, W.; Tian, Y.; Zhao, R.; Qiu, S.; Wu, Q.; Wen, K.; Shen, L.; Zhou, R.; Tao, L.; Zhu, Y. Exogenous melatonin prevents type 1 diabetes mellitus–induced bone loss, probably by inhibiting senescence. Osteoporos. Int., 2022, 33(2), 453-466.
[http://dx.doi.org/10.1007/s00198-021-06061-8] [PMID: 34519833]
[55]
Cole, M.D. The myc oncogene: Its role in transformation and differentiation. Annu. Rev. Genet., 1986, 20(1), 361-384.
[http://dx.doi.org/10.1146/annurev.ge.20.120186.002045] [PMID: 3028245]
[56]
Dang, C.V. MYC on the path to cancer. Cell, 2012, 149(1), 22-35.
[http://dx.doi.org/10.1016/j.cell.2012.03.003] [PMID: 22464321]
[57]
Prendergast, G.C. Mechanisms of apoptosis by c-Myc. Oncogene, 1999, 18(19), 2967-2987.
[http://dx.doi.org/10.1038/sj.onc.1202727] [PMID: 10378693]
[58]
Bae, S.; Lee, M.J.; Mun, S.H.; Giannopoulou, E.G.; Yong-Gonzalez, V.; Cross, J.R.; Murata, K.; Giguère, V.; van der Meulen, M.; Park-Min, K.H. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα. J. Clin. Invest., 2017, 127(7), 2555-2568.
[http://dx.doi.org/10.1172/JCI89935] [PMID: 28530645]
[59]
Granlund, L.; Hedin, A.; Wahlhütter, M.; Seiron, P.; Korsgren, O.; Skog, O.; Lundberg, M. Histological and transcriptional characterization of the pancreatic acinar tissue in type 1 diabetes. BMJ Open Diabetes Res. Care, 2021, 9(1), e002076.
[http://dx.doi.org/10.1136/bmjdrc-2020-002076] [PMID: 34031141]
[60]
Ferrara, N.; Henzel, W.J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun., 1989, 161(2), 851-858.
[http://dx.doi.org/10.1016/0006-291X(89)92678-8] [PMID: 2735925]
[61]
Senger, D.R.; Galli, S.J.; Dvorak, A.M.; Perruzzi, C.A.; Harvey, V.S.; Dvorak, H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 1983, 219(4587), 983-985.
[http://dx.doi.org/10.1126/science.6823562] [PMID: 6823562]
[62]
Plouët, J.; Schilling, J.; Gospodarowicz, D. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J., 1989, 8(12), 3801-3806.
[http://dx.doi.org/10.1002/j.1460-2075.1989.tb08557.x] [PMID: 2684646]
[63]
Kim, K.J.; Li, B.; Winer, J.; Armanini, M.; Gillett, N.; Phillips, H.S.; Ferrara, N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature, 1993, 362(6423), 841-844.
[http://dx.doi.org/10.1038/362841a0] [PMID: 7683111]
[64]
Ishizuka, T.; Hinata, T.; Watanabe, Y. Superoxide induced by a high-glucose concentration attenuates production of angiogenic growth factors in hypoxic mouse mesenchymal stem cells. J. Endocrinol., 2011, 208(2), 147-159.
[http://dx.doi.org/10.1677/JOE-10-0305] [PMID: 21068072]
[65]
Peng, J.; Hui, K.; Hao, C.; Peng, Z.; Gao, Q.X.; Jin, Q.; Lei, G.; Min, J.; Qi, Z.; Bo, C.; Dong, Q.N.; Bing, Z.H.; Jia, X.Y.; Fu, D.L. Low bone turnover and reduced angiogenesis in streptozotocin-induced osteoporotic mice. Connect. Tissue Res., 2016, 57(4), 277-289.
[http://dx.doi.org/10.3109/03008207.2016.1171858] [PMID: 27028715]
[66]
Wan, C.; Gilbert, S.R.; Wang, Y.; Cao, X.M.; Shen, X.; Ramaswamy, G.; Jacobsen, K.A.; Alaql, Z.S.; Gerstenfeld, L.C.; Einhorn, T.A.; Eberhardt, A.W.; Deng, L.; Guldberg, R.E.; Clemens, T.L. Role of hypoxia inducible factor-1 alpha pathway in bone regeneration. J. Musculoskelet. Neuronal Interact., 2008, 8(4), 323-324.
[PMID: 19147958]
[67]
Wang, Y.; Wan, C.; Deng, L.; Liu, X.; Cao, X.; Gilbert, S.R.; Bouxsein, M.L.; Faugere, M.C.; Guldberg, R.E.; Gerstenfeld, L.C.; Haase, V.H.; Johnson, R.S.; Schipani, E.; Clemens, T.L. The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Invest., 2007, 117(6), 1616-1626.
[http://dx.doi.org/10.1172/JCI31581] [PMID: 17549257]
[68]
Liu, Y.; Berendsen, A.D.; Jia, S.; Lotinun, S.; Baron, R.; Ferrara, N.; Olsen, B.R. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J. Clin. Invest., 2012, 122(9), 3101-3113.
[http://dx.doi.org/10.1172/JCI61209] [PMID: 22886301]
[69]
Montagnani, A.; Gonnelli, S. Antidiabetic therapy effects on bone metabolism and fracture risk. Diabetes Obes. Metab., 2013, 15(9), 784-791.
[http://dx.doi.org/10.1111/dom.12077] [PMID: 23368527]
[70]
Barneze Costa, S.M.; da Silva Feltran, G.; Namba, V.; Silva, T.M.; Shetty Hallur, R.L.; Saraiva, P.P.; Zambuzzi, W.F.; Nogueira, C.R. Infraphysiological 17β-estradiol (E2) concentration compromises osteoblast differentiation through Src stimulation of cell proliferation and ECM remodeling stimulus. Mol. Cell. Endocrinol., 2020, 518, 111027.
[http://dx.doi.org/10.1016/j.mce.2020.111027] [PMID: 32911016]
[71]
Huang, X.; Li, S.; Lu, W.; Xiong, L. Metformin activates Wnt/β-catenin for the treatment of diabetic osteoporosis. BMC Endocr. Disord., 2022, 22(1), 189.
[http://dx.doi.org/10.1186/s12902-022-01103-6] [PMID: 35869471]
[72]
Yu, T.; You, X.; Zhou, H.; He, W.; Li, Z.; Li, B.; Xia, J.; Zhu, H.; Zhao, Y.; Yu, G.; Xiong, Y.; Yang, Y. MiR-16-5p regulates postmenopausal osteoporosis by directly targeting VEGFA. Aging (Albany NY), 2020, 12(10), 9500-9514.
[http://dx.doi.org/10.18632/aging.103223] [PMID: 32427128]
[73]
Niknam, Z.; Samadi, M.; Ghalibafsabbaghi, A. Chodari, IGF-I combined with exercise improve diabetes-induced vascular dysfunction in heart of male Wistar rats. J. Cardiovasc. Thorac. Res., 2021, 14(1), 34-41.
[http://dx.doi.org/10.34172/jcvtr.2021.54] [PMID: 35620752]
[74]
Lai, P.K.K.; Chan, J.Y.W.; Kwok, H.F.; Cheng, L.; Yu, H.; Lau, C.P.; Leung, P.C.; Fung, K.P.; Lau, C.B.S. Induction of Angiogenesis in Zebrafish Embryos and Proliferation of Endothelial Cells by an Active Fraction Isolated from the Root of Astragalus membranaceus using Bioassay-guided Fractionation. J. Tradit. Complement. Med., 2014, 4(4), 239-245.
[http://dx.doi.org/10.4103/2225-4110.139109] [PMID: 25379465]
[75]
Tse, H.Y.G.; Hui, M.N.Y.; Li, L.; Lee, S.M.Y.; Leung, A.Y.H.; Cheng, S.H. Angiogenic efficacy of simplified 2-herb formula (NF3) in zebrafish embryos in vivo and rat aortic ring in vitro. J. Ethnopharmacol., 2012, 139(2), 447-453.
[http://dx.doi.org/10.1016/j.jep.2011.11.031] [PMID: 22138660]
[76]
Sheikpranbabu, S.; Haribalaganesh, R.; Lee, K.; Gurunathan, S. Pigment epithelium-derived factor inhibits advanced glycation end products-induced retinal vascular permeability. Biochimie, 2010, 92(8), 1040-1051.
[http://dx.doi.org/10.1016/j.biochi.2010.05.004] [PMID: 20470857]
[77]
Cao, Y.; Xu, L.; Yang, X.; Dong, Y.; Luo, H.; Xing, F.; Ge, Q. The potential role of cycloastragenol in promoting diabetic wound repair in vitro. BioMed Res. Int., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/7023950] [PMID: 31930133]
[78]
Behl, T.; Kotwani, A. Chinese herbal drugs for the treatment of diabetic retinopathy. J. Pharm. Pharmacol., 2017, 69(3), 223-235.
[http://dx.doi.org/10.1111/jphp.12683] [PMID: 28124440]
[79]
Kim, D.Y.; Kang, M.K.; Lee, E.J.; Kim, Y.H.; Oh, H.; Kang, Y.H. Eucalyptol Inhibits Advanced Glycation End Products-Induced Disruption of Podocyte Slit Junctions by Suppressing Rage-Erk-C-Myc Signaling Pathway. Mol. Nutr. Food Res., 2018, 62(19), 1800302.
[http://dx.doi.org/10.1002/mnfr.201800302] [PMID: 29987888]
[80]
Zheng, J.; Wu, M.; Wang, H.; Li, S.; Wang, X.; Li, Y.; Wang, D.; Li, S. Network Pharmacology to Unveil the Biological Basis of Health-Strengthening Herbal Medicine in Cancer Treatment. Cancers (Basel), 2018, 10(11), 461.
[http://dx.doi.org/10.3390/cancers10110461] [PMID: 30469422]
[81]
Casagrande, F.; Darbon, J.M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: Regulation of cyclin-dependent kinases CDK2 and CDK111 Abbreviations: CDK, cyclin-dependent kinase; CKI, CDK inhibitor; PI 3-kinase, phosphatidylinositol 3-kinase; PKC, protein kinase C; DTT, dithiothreitol; RIPA, radioimmunoprecipitation assay buffer. Biochem. Pharmacol., 2001, 61(10), 1205-1215.
[http://dx.doi.org/10.1016/S0006-2952(01)00583-4] [PMID: 11322924]
[82]
Raina, R.; Afroze, N.; Kedhari Sundaram, M.; Haque, S.; Bajbouj, K.; Hamad, M.; Hussain, A. Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(5), 2206-2220.
[PMID: 33755959]

© 2024 Bentham Science Publishers | Privacy Policy