Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Interleukin-17: A Putative Novel Pharmacological Target for Pathological Pain

Author(s): Shao-Jie Gao, Lin Liu, Dan-Yang Li, Dai-Qiang Liu, Long-Qing Zhang, Jia-Yi Wu, Fan-He Song, Ya-Qun Zhou* and Wei Mei*

Volume 22, Issue 2, 2024

Published on: 15 August, 2023

Page: [204 - 216] Pages: 13

DOI: 10.2174/1570159X21666230811142713

Price: $65

Open Access Journals Promotions 2
Abstract

Pathological pain imposes a huge burden on the economy and the lives of patients. At present, drugs used for the treatment of pathological pain have only modest efficacy and are also plagued by adverse effects and risk for misuse and abuse. Therefore, understanding the mechanisms of pathological pain is essential for the development of novel analgesics. Several lines of evidence indicate that interleukin-17 (IL-17) is upregulated in rodent models of pathological pain in the periphery and central nervous system. Besides, the administration of IL-17 antibody alleviated pathological pain. Moreover, IL-17 administration led to mechanical allodynia which was alleviated by the IL-17 antibody. In this review, we summarized and discussed the therapeutic potential of targeting IL-17 for pathological pain. The upregulation of IL-17 promoted the development of pathological pain by promoting neuroinflammation, enhancing the excitability of dorsal root ganglion neurons, and promoting the communication of glial cells and neurons in the spinal cord. In general, the existing research shows that IL-17 is an attractive therapeutic target for pathologic pain, but the underlying mechanisms still need to be investigated.

Keywords: Interleukin-17, bone cancer pain, neuropathic pain, inflammatory pain, peripheral mechanisms, central mechanisms.

Graphical Abstract
[1]
Goldberg, D.S.; McGee, S.J. Pain as a global public health priority. BMC Public Health, 2011, 11(1), 770.
[http://dx.doi.org/10.1186/1471-2458-11-770] [PMID: 21978149]
[2]
Zhou, Y.Q.; Liu, D.Q.; Chen, S.P.; Sun, J.; Zhou, X.R.; Luo, F.; Tian, Y.K.; Ye, D.W. Cellular and molecular mechanisms of calcium/calmodulin-dependent protein kinase ii in chronic pain. J. Pharmacol. Exp. Ther., 2017, 363(2), 176-183.
[http://dx.doi.org/10.1124/jpet.117.243048] [PMID: 28855373]
[3]
Ge, M.M.; Zhou, Y.Q.; Tian, X.B.; Manyande, A.; Tian, Y.K.; Ye, D.W.; Yang, H. Src-family protein tyrosine kinases: A promising target for treating chronic pain. Biomed. Pharmacother., 2020, 125, 110017.
[http://dx.doi.org/10.1016/j.biopha.2020.110017] [PMID: 32106384]
[4]
Liu, D.Q.; Zhou, Y.Q.; Gao, F. Targeting cytokines for morphine tolerance: A narrative review. Curr. Neuropharmacol., 2019, 17(4), 366-376.
[http://dx.doi.org/10.2174/1570159X15666171128144441] [PMID: 29189168]
[5]
Fossiez, F.; Djossou, O.; Chomarat, P.; Flores-Romo, L.; Ait-Yahia, S.; Maat, C.; Pin, J.J.; Garrone, P.; Garcia, E.; Saeland, S.; Blanchard, D.; Gaillard, C.; Das Mahapatra, B.; Rouvier, E.; Golstein, P.; Banchereau, J.; Lebecque, S. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med., 1996, 183(6), 2593-2603.
[http://dx.doi.org/10.1084/jem.183.6.2593] [PMID: 8676080]
[6]
Yao, Z.; Painter, S.L.; Fanslow, W.C.; Ulrich, D.; Macduff, B.M.; Spriggs, M.K.; Armitage, R.J. Human IL-17: A novel cytokine derived from T cells. J. Immunol., 1995, 155(12), 5483-5486.
[http://dx.doi.org/10.4049/jimmunol.155.12.5483] [PMID: 7499828]
[7]
Ruiz de Morales, J.M.G.; Puig, L.; Daudén, E.; Cañete, J.D.; Pablos, J.L.; Martín, A.O.; Juanatey, C.G.; Adán, A.; Montalbán, X.; Borruel, N.; Ortí, G.; Holgado-Martín, E.; García-Vidal, C.; Vizcaya-Morales, C.; Martín-Vázquez, V.; González-Gay, M.Á. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmun. Rev., 2020, 19(1), 102429.
[http://dx.doi.org/10.1016/j.autrev.2019.102429] [PMID: 31734402]
[8]
Harrington, L.E.; Hatton, R.D.; Mangan, P.R.; Turner, H.; Murphy, T.L.; Murphy, K.M.; Weaver, C.T. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol., 2005, 6(11), 1123-1132.
[http://dx.doi.org/10.1038/ni1254] [PMID: 16200070]
[9]
Milpied, P.; Massot, B.; Renand, A.; Diem, S.; Herbelin, A.; Leite-de-Moraes, M.; Rubio, M.T.; Hermine, O. IL-17–producing invariant NKT cells in lymphoid organs are recent thymic emigrants identified by neuropilin-1 expression. Blood, 2011, 118(11), 2993-3002.
[http://dx.doi.org/10.1182/blood-2011-01-329268] [PMID: 21653940]
[10]
Moran, E.M.; Heydrich, R.; Ng, C.T.; Saber, T.P.; McCormick, J.; Sieper, J.; Appel, H.; Fearon, U.; Veale, D.J. IL-17A expression is localised to both mononuclear and polymorphonuclear synovial cell infiltrates. PLoS One, 2011, 6(8), e24048.
[http://dx.doi.org/10.1371/journal.pone.0024048] [PMID: 21887369]
[11]
Mangan, P.R.; Harrington, L.E.; O’Quinn, D.B.; Helms, W.S.; Bullard, D.C.; Elson, C.O.; Hatton, R.D.; Wahl, S.M.; Schoeb, T.R.; Weaver, C.T. Transforming growth factor-β induces development of the TH17 lineage. Nature, 2006, 441(7090), 231-234.
[http://dx.doi.org/10.1038/nature04754] [PMID: 16648837]
[12]
Chung, Y.; Chang, S.H.; Martinez, G.J.; Yang, X.O.; Nurieva, R.; Kang, H.S.; Ma, L.; Watowich, S.S.; Jetten, A.M.; Tian, Q.; Dong, C. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity, 2009, 30(4), 576-587.
[http://dx.doi.org/10.1016/j.immuni.2009.02.007] [PMID: 19362022]
[13]
Awasthi, A.; Carrier, Y.; Peron, J.P.S.; Bettelli, E.; Kamanaka, M.; Flavell, R.A.; Kuchroo, V.K.; Oukka, M.; Weiner, H.L. A dominant function for interleukin 27 in generating interleukin 10–producing anti-inflammatory T cells. Nat. Immunol., 2007, 8(12), 1380-1389.
[http://dx.doi.org/10.1038/ni1541] [PMID: 17994022]
[14]
Toy, D.; Kugler, D.; Wolfson, M.; Bos, T.V.; Gurgel, J.; Derry, J.; Tocker, J.; Peschon, J. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol., 2006, 177(1), 36-39.
[http://dx.doi.org/10.4049/jimmunol.177.1.36] [PMID: 16785495]
[15]
Ely, L.K.; Fischer, S.; Garcia, K.C. Structural basis of receptor sharing by interleukin 17 cytokines. Nat. Immunol., 2009, 10(12), 1245-1251.
[http://dx.doi.org/10.1038/ni.1813] [PMID: 19838198]
[16]
Rong, Z.; Wang, A.; Li, Z.; Ren, Y.; Cheng, L.; Li, Y.; Wang, Y.; Ren, F.; Zhang, X.; Hu, J.; Chang, Z. IL-17RD (Sef or IL-17RLM) interacts with IL-17 receptor and mediates IL-17 signaling. Cell Res., 2009, 19(2), 208-215.
[http://dx.doi.org/10.1038/cr.2008.320] [PMID: 19079364]
[17]
Song, X.; Zhu, S.; Shi, P.; Liu, Y.; Shi, Y.; Levin, S.D.; Qian, Y. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat. Immunol., 2011, 12(12), 1151-1158.
[http://dx.doi.org/10.1038/ni.2155] [PMID: 21993849]
[18]
Ramirez-Carrozzi, V.; Sambandam, A.; Luis, E.; Lin, Z.; Jeet, S.; Lesch, J.; Hackney, J.; Kim, J.; Zhou, M.; Lai, J.; Modrusan, Z.; Sai, T.; Lee, W.; Xu, M.; Caplazi, P.; Diehl, L.; de Voss, J.; Balazs, M.; Gonzalez, L., Jr; Singh, H.; Ouyang, W.; Pappu, R. IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat. Immunol., 2011, 12(12), 1159-1166.
[http://dx.doi.org/10.1038/ni.2156] [PMID: 21993848]
[19]
Amatya, N.; Garg, A.V.; Gaffen, S.L. Il-17 signaling: The yin and the yang. Trends Immunol., 2017, 38(5), 310-322.
[http://dx.doi.org/10.1016/j.it.2017.01.006] [PMID: 28254169]
[20]
Veldhoen, M. Interleukin 17 is a chief orchestrator of immunity. Nat. Immunol., 2017, 18(6), 612-621.
[http://dx.doi.org/10.1038/ni.3742] [PMID: 28518156]
[21]
Onishi, R.M.; Gaffen, S.L. Interleukin-17 and its target genes: Mechanisms of interleukin-17 function in disease. Immunology, 2010, 129(3), 311-321.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03240.x] [PMID: 20409152]
[22]
Chen, C.; Chen, F.; Yao, C.; Shu, S.; Feng, J.; Hu, X.; Hai, Q.; Yao, S.; Chen, X. Intrathecal injection of human umbilical cord-derived mesenchymal stem cells ameliorates neuropathic pain in rats. Neurochem. Res., 2016, 41(12), 3250-3260.
[http://dx.doi.org/10.1007/s11064-016-2051-5] [PMID: 27655256]
[23]
Giardini, A.C.; Evangelista, B.G.; Sant’Anna, M.B.; Martins, B.B.; Lancellotti, C.L.P.; Ciena, A.P.; Chacur, M.; Pagano, R.L.; Ribeiro, O.G.; Zambelli, V.O.; Picolo, G. Crotalphine attenuates pain and neuroinflammation induced by experimental autoimmune encephalomyelitis in mice. Toxins, 2021, 13(11), 827.
[http://dx.doi.org/10.3390/toxins13110827] [PMID: 34822611]
[24]
Yao, C.; Weng, Z.; Zhang, J.; Feng, T.; Lin, Y.; Yao, S. Interleukin-17a acts to maintain neuropathic pain through activation of camkii/creb signaling in spinal neurons. Mol. Neurobiol., 2016, 53(6), 3914-3926.
[http://dx.doi.org/10.1007/s12035-015-9322-z] [PMID: 26166359]
[25]
Richter, F.; Natura, G.; Ebbinghaus, M.; von Banchet, G.S.; Hensellek, S.; König, C.; Bräuer, R.; Schaible, H.G. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum., 2012, 64(12), 4125-4134.
[http://dx.doi.org/10.1002/art.37695] [PMID: 23192794]
[26]
Ni, H.; Xu, M.; Xie, K.; Fei, Y.; Deng, H.; He, Q.; Wang, T.; Liu, S.; Zhu, J.; Xu, L.; Yao, M. Liquiritin alleviates pain through inhibiting cxcl1/cxcr2 signaling pathway in bone cancer pain rat. Front. Pharmacol., 2020, 11, 436.
[http://dx.doi.org/10.3389/fphar.2020.00436] [PMID: 32390832]
[27]
Huo, W.; Liu, Y.; Lei, Y.; Zhang, Y.; Huang, Y.; Mao, Y.; Wang, C.; Sun, Y.; Zhang, W.; Ma, Z.; Gu, X. Imbalanced spinal infiltration of Th17/Treg cells contributes to bone cancer pain via promoting microglial activation. Brain Behav. Immun., 2019, 79, 139-151.
[http://dx.doi.org/10.1016/j.bbi.2019.01.024] [PMID: 30685532]
[28]
Luo, H.; Liu, H.Z.; Zhang, W.W.; Matsuda, M.; Lv, N.; Chen, G.; Xu, Z.Z.; Zhang, Y.Q. Interleukin-17 regulates neuron-glial communications, synaptic transmission, and neuropathic pain after chemotherapy. Cell Rep., 2019, 29(8), 2384-2397.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.10.085] [PMID: 31747607]
[29]
Xu, D.; Robinson, A.P.; Ishii, T.; Duncan, D.A.S.; Alden, T.D.; Goings, G.E.; Ifergan, I.; Podojil, J.R.; Penaloza-MacMaster, P.; Kearney, J.A.; Swanson, G.T.; Miller, S.D.; Koh, S. Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J. Exp. Med., 2018, 215(4), 1169-1186.
[http://dx.doi.org/10.1084/jem.20171285] [PMID: 29487082]
[30]
Kebir, H.; Kreymborg, K.; Ifergan, I.; Dodelet-Devillers, A.; Cayrol, R.; Bernard, M.; Giuliani, F.; Arbour, N.; Becher, B.; Prat, A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med., 2007, 13(10), 1173-1175.
[http://dx.doi.org/10.1038/nm1651] [PMID: 17828272]
[31]
Kostic, M.; Dzopalic, T.; Zivanovic, S.; Zivkovic, N.; Cvetanovic, A.; Stojanovic, I.; Vojinovic, S.; Marjanovic, G.; Savic, V.; Colic, M. IL-17 and glutamate excitotoxicity in the pathogenesis of multiple sclerosis. Scand. J. Immunol., 2014, 79(3), 181-186.
[http://dx.doi.org/10.1111/sji.12147] [PMID: 24383677]
[32]
Gelderblom, M.; Weymar, A.; Bernreuther, C.; Velden, J.; Arunachalam, P.; Steinbach, K.; Orthey, E.; Arumugam, T.V.; Leypoldt, F.; Simova, O.; Thom, V.; Friese, M.A.; Prinz, I.; Hölscher, C.; Glatzel, M.; Korn, T.; Gerloff, C.; Tolosa, E.; Magnus, T. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood, 2012, 120(18), 3793-3802.
[http://dx.doi.org/10.1182/blood-2012-02-412726] [PMID: 22976954]
[33]
Aronica, E.; Crino, P.B. Inflammation in epilepsy: Clinical observations. Epilepsia, 2011, 52(Suppl. 3), 26-32.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03033.x] [PMID: 21542843]
[34]
He, J.J.; Li, S.; Shu, H.F.; Yu, S.X.; Liu, S.Y.; Yin, Q.; Yang, H. The interleukin 17 system in cortical lesions in focal cortical dysplasias. J. Neuropathol. Exp. Neurol., 2013, 72(2), 152-163.
[http://dx.doi.org/10.1097/NEN.0b013e318281262e] [PMID: 23334598]
[35]
He, J.J.; Sun, F.J.; Wang, Y.; Luo, X.Q.; Lei, P.; Zhou, J.; Zhu, D.; Li, Z.Y.; Yang, H. Increased expression of interleukin 17 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy. J. Neuroimmunol., 2016, 298, 153-159.
[http://dx.doi.org/10.1016/j.jneuroim.2016.07.017] [PMID: 27609289]
[36]
Krakowski and M.L.; Owens, T. Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation. Eur. J. Immunol., 2000, 30(4), 1002-1009.
[http://dx.doi.org/10.1002/(SICI)1521-4141(200004)30:4<1002:AID-IMMU1002>3.0.CO;2-2] [PMID: 10760787]
[37]
Liu, G.; Guo, J.; Liu, J.; Wang, Z.; Liang, D. Toll-like receptor signaling directly increases functional IL-17RA expression in neuroglial cells. Clin. Immunol., 2014, 154(2), 127-140.
[http://dx.doi.org/10.1016/j.clim.2014.07.006] [PMID: 25076485]
[38]
Barone, F.C.; Feuerstein, G.Z. Inflammatory mediators and stroke: New opportunities for novel therapeutics. J. Cereb. Blood Flow Metab., 1999, 19(8), 819-834.
[http://dx.doi.org/10.1097/00004647-199908000-00001] [PMID: 10458589]
[39]
Wang, D.; Zhao, Y.; Wang, G.; Sun, B.; Kong, Q.; Zhao, K.; Zhang, Y.; Wang, J.; Liu, Y.; Mu, L.; Wang, D.; Li, H. IL-17 potentiates neuronal injury induced by oxygen–glucose deprivation and affects neuronal IL-17 receptor expression. J. Neuroimmunol., 2009, 212(1-2), 17-25.
[http://dx.doi.org/10.1016/j.jneuroim.2009.04.007] [PMID: 19457561]
[40]
Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science, 2016, 353(6301), 777-783.
[http://dx.doi.org/10.1126/science.aag2590] [PMID: 27540165]
[41]
Sommer, A.; Marxreiter, F.; Krach, F.; Fadler, T.; Grosch, J.; Maroni, M.; Graef, D.; Eberhardt, E.; Riemenschneider, M.J.; Yeo, G.W.; Kohl, Z.; Xiang, W.; Gage, F.H.; Winkler, J.; Prots, I.; Winner, B. Th17 lymphocytes induce neuronal cell death in a human ipsc-based model of parkinson’s disease. Cell Stem Cell, 2018, 23(1), 123-131.e6.
[http://dx.doi.org/10.1016/j.stem.2018.06.015] [PMID: 29979986]
[42]
Nerurkar, P.V.; Johns, L.M.; Buesa, L.M.; Kipyakwai, G.; Volper, E.; Sato, R.; Shah, P.; Feher, D.; Williams, P.G.; Nerurkar, V.R. Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J. Neuroinflammation, 2011, 8(1), 64.
[http://dx.doi.org/10.1186/1742-2094-8-64] [PMID: 21639917]
[43]
Noma, N.; Khan, J.; Chen, I.F.; Markman, S.; Benoliel, R.; Hadlaq, E.; Imamura, Y.; Eliav, E. Interleukin-17 levels in rat models of nerve damage and neuropathic pain. Neurosci. Lett., 2011, 493(3), 86-91.
[http://dx.doi.org/10.1016/j.neulet.2011.01.079] [PMID: 21316418]
[44]
Li, J.; Wei, G.H.; Huang, H.; Lan, Y.P.; Liu, B.; Liu, H.; Zhang, W.; Zuo, Y.X. Nerve injury-related autoimmunity activation leads to chronic inflammation and chronic neuropathic pain. Anesthesiology, 2013, 118(2), 416-429.
[http://dx.doi.org/10.1097/ALN.0b013e31827d4b82] [PMID: 23340353]
[45]
Chen, H.; Tang, X.; Li, J.; Hu, B.; Yang, W.; Zhan, M.; Ma, T.; Xu, S. IL-17 crosses the blood–brain barrier to trigger neuroinflammation: A novel mechanism in nitroglycerin-induced chronic migraine. J. Headache Pain, 2022, 23(1), 1.
[http://dx.doi.org/10.1186/s10194-021-01374-9] [PMID: 34979902]
[46]
Liu, H.; Dolkas, J.; Hoang, K.; Angert, M.; Chernov, A.V.; Remacle, A.G.; Shiryaev, S.A.; Strongin, A.Y.; Nishihara, T.; Shubayev, V.I. The alternatively spliced fibronectin CS1 isoform regulates IL-17A levels and mechanical allodynia after peripheral nerve injury. J. Neuroinflammation, 2015, 12(1), 158.
[http://dx.doi.org/10.1186/s12974-015-0377-6] [PMID: 26337825]
[47]
Day, Y.J.; Liou, J.T.; Lee, C.M.; Lin, Y.C.; Mao, C.C.; Chou, A.H.; Liao, C.C.; Lee, H.C. Lack of interleukin-17 leads to a modulated micro-environment and amelioration of mechanical hypersensitivity after peripheral nerve injury in mice. Pain, 2014, 155(7), 1293-1302.
[http://dx.doi.org/10.1016/j.pain.2014.04.004] [PMID: 24721689]
[48]
Stettner, M.; Lohmann, B.; Wolffram, K.; Weinberger, J.P.; Dehmel, T.; Hartung, H.P.; Mausberg, A.K.; Kieseier, B.C. Interleukin-17 impedes Schwann cell-mediated myelination. J. Neuroinflammation, 2014, 11(1), 63.
[http://dx.doi.org/10.1186/1742-2094-11-63] [PMID: 24678820]
[49]
Fattori, V.; Amaral, F.A.; Verri, W.A., Jr Neutrophils and arthritis: Role in disease and pharmacological perspectives. Pharmacol. Res., 2016, 112, 84-98.
[http://dx.doi.org/10.1016/j.phrs.2016.01.027] [PMID: 26826283]
[50]
Vestweber, D. How leukocytes cross the vascular endothelium. Nat. Rev. Immunol., 2015, 15(11), 692-704.
[http://dx.doi.org/10.1038/nri3908] [PMID: 26471775]
[51]
Sadik, C.D.; Kim, N.D.; Luster, A.D. Neutrophils cascading their way to inflammation. Trends Immunol., 2011, 32(10), 452-460.
[http://dx.doi.org/10.1016/j.it.2011.06.008] [PMID: 21839682]
[52]
Sarma, J.V.; Ward, P.A. New developments in C5a receptor signaling. Cell Health Cytoskelet., 2012, 4, 73-82.
[PMID: 23576881]
[53]
Pinto, L.G.; Cunha, T.M.; Vieira, S.M.; Lemos, H.P.; Verri, W.A., Jr; Cunha, F.Q.; Ferreira, S.H. IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain, 2010, 148(2), 247-256.
[http://dx.doi.org/10.1016/j.pain.2009.11.006] [PMID: 19969421]
[54]
Ritter, A.M.V.; Domiciano, T.P.; Verri, W.A., Jr; Zarpelon, A.C.; da Silva, L.G.; Barbosa, C.P.; Natali, M.R.M.; Cuman, R.K.N.; Bersani-Amado, C.A. Antihypernociceptive activity of anethole in experimental inflammatory pain. Inflammopharmacology, 2013, 21(2), 187-197.
[http://dx.doi.org/10.1007/s10787-012-0152-6] [PMID: 23054333]
[55]
Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science, 2004, 303(5663), 1532-1535.
[http://dx.doi.org/10.1126/science.1092385] [PMID: 15001782]
[56]
Urban, C.F.; Reichard, U.; Brinkmann, V.; Zychlinsky, A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol., 2006, 8(4), 668-676.
[http://dx.doi.org/10.1111/j.1462-5822.2005.00659.x] [PMID: 16548892]
[57]
Saitoh, T.; Komano, J.; Saitoh, Y.; Misawa, T.; Takahama, M.; Kozaki, T.; Uehata, T.; Iwasaki, H.; Omori, H.; Yamaoka, S.; Yamamoto, N.; Akira, S. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe, 2012, 12(1), 109-116.
[http://dx.doi.org/10.1016/j.chom.2012.05.015] [PMID: 22817992]
[58]
Abi Abdallah, D.S.; Lin, C.; Ball, C.J.; King, M.R.; Duhamel, G.E.; Denkers, E.Y. Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect. Immun., 2012, 80(2), 768-777.
[http://dx.doi.org/10.1128/IAI.05730-11] [PMID: 22104111]
[59]
Zhang, Y.; Chandra, V.; Riquelme Sanchez, E.; Dutta, P.; Quesada, P.R.; Rakoski, A.; Zoltan, M.; Arora, N.; Baydogan, S.; Horne, W.; Burks, J.; Xu, H.; Hussain, P.; Wang, H.; Gupta, S.; Maitra, A.; Bailey, J.M.; Moghaddam, S.J.; Banerjee, S.; Sahin, I.; Bhattacharya, P.; McAllister, F. Interleukin-17–induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J. Exp. Med., 2020, 217(12), e20190354.
[http://dx.doi.org/10.1084/jem.20190354] [PMID: 32860704]
[60]
Papagoras, C.; Chrysanthopoulou, A.; Mitsios, A.; Ntinopoulou, M.; Tsironidou, V.; Batsali, A.K.; Papadaki, H.A.; Skendros, P.; Ritis, K. IL‐17A expressed on neutrophil extracellular traps promotes mesenchymal stem cell differentiation toward bone‐forming cells in ankylosing spondylitis. Eur. J. Immunol., 2021, 51(4), 930-942.
[http://dx.doi.org/10.1002/eji.202048878] [PMID: 33340091]
[61]
Michel-Flutot, P.; Bourcier, C.H.; Emam, L.; Gasser, A.; Glatigny, S.; Vinit, S.; Mansart, A. Extracellular traps formation following cervical spinal cord injury. Eur. J. Neurosci., 2022, ejn.15902.
[http://dx.doi.org/10.1111/ejn.15902] [PMID: 36537022]
[62]
Suzuki, K.; Tsuchiya, M.; Yoshida, S.; Ogawa, K.; Chen, W.; Kanzaki, M.; Takahashi, T.; Fujita, R.; Li, Y.; Yabe, Y.; Aizawa, T.; Hagiwara, Y. Tissue accumulation of neutrophil extracellular traps mediates muscle hyperalgesia in a mouse model. Sci. Rep., 2022, 12(1), 4136.
[http://dx.doi.org/10.1038/s41598-022-07916-8] [PMID: 35264677]
[63]
Schneider, A.H.; Machado, C.C.; Veras, F.P.; Maganin, A.G.M.; de Souza, F.F.L.; Barroso, L.C.; de Oliveira, R.D.R.; Alves-Filho, J.C.; Cunha, T.M.; Fukada, S.Y.; Louzada-Júnior, P.; da Silva, T.A.; Cunha, F.Q. Neutrophil extracellular traps mediate joint hyperalgesia induced by immune inflammation. Rheumatology, 2021, 60(7), 3461-3473.
[http://dx.doi.org/10.1093/rheumatology/keaa794] [PMID: 33367912]
[64]
Lin, T.; Hu, L.; Hu, F.; Li, K.; Wang, C.Y.; Zong, L.J.; Zhao, Y.Q.; Zhang, X.; Li, Y.; Yang, Y.; Wang, Y.; Jiang, C.Y.; Wu, X.; Liu, W.T. Net-triggered nlrp3 activation and il18 release drive oxaliplatin-induced peripheral neuropathy. Cancer Immunol. Res., 2022, 10(12), 1542-1558.
[http://dx.doi.org/10.1158/2326-6066.CIR-22-0197] [PMID: 36255412]
[65]
Hamilton, J.A.; Tak, P.P. The dynamics of macrophage lineage populations in inflammatory and autoimmune diseases. Arthritis Rheum., 2009, 60(5), 1210-1221.
[http://dx.doi.org/10.1002/art.24505] [PMID: 19404968]
[66]
Kleinschnitz, C.; Hofstetter, H.H.; Meuth, S.G.; Braeuninger, S.; Sommer, C.; Stoll, G. T cell infiltration after chronic constriction injury of mouse sciatic nerve is associated with interleukin-17 expression. Exp. Neurol., 2006, 200(2), 480-485.
[http://dx.doi.org/10.1016/j.expneurol.2006.03.014] [PMID: 16674943]
[67]
Luo, X.; Chen, O.; Wang, Z.; Bang, S.; Ji, J.; Lee, S.H.; Huh, Y.; Furutani, K.; He, Q.; Tao, X.; Ko, M.C.; Bortsov, A.; Donnelly, C.R.; Chen, Y.; Nackley, A.; Berta, T.; Ji, R.R. IL-23/IL-17A/] TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron, 2021, 109(17), 2691-2706.e5.
[http://dx.doi.org/10.1016/j.neuron.2021.06.015] [PMID: 34473953]
[68]
Motrich, R.D.; Breser, M.L.; Sánchez, L.R.; Godoy, G.J.; Prinz, I.; Rivero, V.E. IL-17 is not essential for inflammation and chronic pelvic pain development in an experimental model of chronic prostatitis/chronic pelvic pain syndrome. Pain, 2016, 157(3), 585-597.
[http://dx.doi.org/10.1097/j.pain.0000000000000405] [PMID: 26882345]
[69]
Hogan, Q.H. Labat lecture: The primary sensory neuron: where it is, what it does, and why it matters. Reg. Anesth. Pain Med., 2010, 35(3), 306-311.
[http://dx.doi.org/10.1097/AAP.0b013e3181d2375e] [PMID: 20460965]
[70]
Esposito, M.F.; Malayil, R.; Hanes, M.; Deer, T. Unique characteristics of the dorsal root ganglion as a target for neuromodulation. Pain Med., 2019, 20(Suppl. 1), S23-S30.
[http://dx.doi.org/10.1093/pm/pnz012] [PMID: 31152179]
[71]
Wu, Z.; Li, L.; Xie, F.; Du, J.; Zuo, Y.; Frost, J.A.; Carlton, S.M.; Walters, E.T.; Yang, Q. Activation of kcnq channels suppresses spontaneous activity in dorsal root ganglion neurons and reduces chronic pain after spinal cord injury. J. Neurotrauma, 2017, 34(6), 1260-1270.
[http://dx.doi.org/10.1089/neu.2016.4789] [PMID: 28073317]
[72]
Segond von Banchet, G.; Boettger, M.K.; König, C.; Iwakura, Y.; Bräuer, R.; Schaible, H.G. Neuronal IL-17 receptor upregulates TRPV4 but not TRPV1 receptors in DRG neurons and mediates mechanical but not thermal hyperalgesia. Mol. Cell. Neurosci., 2013, 52, 152-160.
[http://dx.doi.org/10.1016/j.mcn.2012.11.006] [PMID: 23147107]
[73]
Ebbinghaus, M.; Natura, G.; Segond von Banchet, G.; Hensellek, S.; Böttcher, M.; Hoffmann, B.; Salah, F.S.; Gajda, M.; Kamradt, T.; Schaible, H.G. Interleukin-17A is involved in mechanical hyperalgesia but not in the severity of murine antigen-induced arthritis. Sci. Rep., 2017, 7(1), 10334.
[http://dx.doi.org/10.1038/s41598-017-10509-5] [PMID: 28871176]
[74]
Pinho-Ribeiro, F.A.; Verri, W.A., Jr; Chiu, I.M. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol., 2017, 38(1), 5-19.
[http://dx.doi.org/10.1016/j.it.2016.10.001] [PMID: 27793571]
[75]
Ji, R.R.; Chamessian, A.; Zhang, Y.Q. Pain regulation by non-neuronal cells and inflammation. Science, 2016, 354(6312), 572-577.
[http://dx.doi.org/10.1126/science.aaf8924] [PMID: 27811267]
[76]
Zong, S.; Zeng, G.; Fang, Y.; Peng, J.; Tao, Y.; Li, K.; Zhao, J. The role of IL-17 promotes spinal cord neuroinflammation via activation of the transcription factor STAT3 after spinal cord injury in the rat. Mediators Inflamm., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/786947] [PMID: 24914249]
[77]
You, T.; Bi, Y. li, J.; Zhang, M.; Chen, X.; Zhang, K.; Li, J. IL-17 induces reactive astrocytes and up-regulation of vascular endothelial growth factor (VEGF) through JAK/STAT signaling. Sci. Rep., 2017, 7(1), 41779.
[http://dx.doi.org/10.1038/srep41779] [PMID: 28281545]
[78]
Hu, J.; Yang, Z.; Li, X.; Lu, H. C-C motif chemokine ligand 20 regulates neuroinflammation following spinal cord injury via Th17 cell recruitment. J. Neuroinflammation, 2016, 13(1), 162.
[http://dx.doi.org/10.1186/s12974-016-0630-7] [PMID: 27334337]
[79]
Sun, C.; Zhang, J.; Chen, L.; Liu, T.; Xu, G.; Li, C.; Yuan, W.; Xu, H.; Su, Z. IL-17 contributed to the neuropathic pain following peripheral nerve injury by promoting astrocyte proliferation and secretion of proinflammatory cytokines. Mol. Med. Rep., 2017, 15(1), 89-96.
[http://dx.doi.org/10.3892/mmr.2016.6018] [PMID: 27959414]
[80]
Wang, J.; Zhang, R.; Dong, C.; Jiao, L.; Xu, L.; Liu, J.; Wang, Z.; Lao, L. Transient receptor potential channel and interleukin-17a involvement in lttl gel inhibition of bone cancer pain in a rat model. Integr. Cancer Ther., 2015, 14(4), 381-393.
[http://dx.doi.org/10.1177/1534735415580677] [PMID: 26100378]
[81]
Dutra, R.C.; Bento, A.F.; Leite, D.F.P.; Manjavachi, M.N.; Marcon, R.; Bicca, M.A.; Pesquero, J.B.; Calixto, J.B. The role of kinin B1 and B2 receptors in the persistent pain induced by experimental autoimmune encephalomyelitis (EAE) in mice: Evidence for the involvement of astrocytes. Neurobiol. Dis., 2013, 54, 82-93.
[http://dx.doi.org/10.1016/j.nbd.2013.02.007] [PMID: 23454198]
[82]
Liu, X.J.; Gingrich, J.R.; Vargas-Caballero, M.; Dong, Y.N.; Sengar, A.; Beggs, S.; Wang, S.H.; Ding, H.K.; Frankland, P.W.; Salter, M.W. Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat. Med., 2008, 14(12), 1325-1332.
[http://dx.doi.org/10.1038/nm.1883] [PMID: 19011637]
[83]
Meng, X.; Zhang, Y.; Lao, L.; Saito, R.; Li, A.; Bäckman, C.M.; Berman, B.M.; Ren, K.; Wei, P.K.; Zhang, R.X. Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model. Pain, 2013, 154(2), 294-305.
[http://dx.doi.org/10.1016/j.pain.2012.10.022] [PMID: 23246025]
[84]
Zhu, M.; Yuan, S.T.; Yu, W.L.; Jia, L.L.; Sun, Y. CXCL13 regulates the trafficking of GluN2B-containing NMDA receptor via IL-17 in the development of remifentanil-induced hyperalgesia in rats. Neurosci. Lett., 2017, 648, 26-33.
[http://dx.doi.org/10.1016/j.neulet.2017.03.044] [PMID: 28359934]
[85]
Duan, B.; Cheng, L.; Bourane, S.; Britz, O.; Padilla, C.; Garcia-Campmany, L.; Krashes, M.; Knowlton, W.; Velasquez, T.; Ren, X.; Ross, S.E.; Lowell, B.B.; Wang, Y.; Goulding, M.; Ma, Q. Identification of spinal circuits transmitting and gating mechanical pain. Cell, 2014, 159(6), 1417-1432.
[http://dx.doi.org/10.1016/j.cell.2014.11.003] [PMID: 25467445]
[86]
Le, Y.; Chen, X.; Wang, L.; He, W.; He, J.; Xiong, Q.; Wang, Y.; Zhang, L.; Zheng, X.; Wang, H. Chemotherapy-induced peripheral neuropathy is promoted by enhanced spinal insulin-like growth factor-1 levels via astrocyte-dependent mechanisms. Brain Res. Bull., 2021, 175, 205-212.
[http://dx.doi.org/10.1016/j.brainresbull.2021.07.026] [PMID: 34333050]
[87]
Zhang, L.; Lu, C.; Kang, L.; Li, Y.; Tang, W.; Zhao, D.; Yu, S.; Liu, R. Temporal characteristics of astrocytic activation in the TNC in a mice model of pain induced by recurrent dural infusion of inflammatory soup. J. Headache Pain, 2022, 23(1), 8.
[http://dx.doi.org/10.1186/s10194-021-01382-9] [PMID: 35033010]
[88]
Kim, C.F.; Moalem-Taylor, G. Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. J. Pain, 2011, 12(3), 370-383.
[http://dx.doi.org/10.1016/j.jpain.2010.08.003] [PMID: 20889388]
[89]
Reich, K.; Papp, K.A.; Blauvelt, A.; Tyring, S.K.; Sinclair, R.; Thaçi, D.; Nograles, K.; Mehta, A.; Cichanowitz, N.; Li, Q.; Liu, K.; La Rosa, C.; Green, S.; Kimball, A.B. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet, 2017, 390(10091), 276-288.
[http://dx.doi.org/10.1016/S0140-6736(17)31279-5] [PMID: 28596043]
[90]
Tahir, H.; Deodhar, A.; Genovese, M.; Takeuchi, T.; Aelion, J.; Van den Bosch, F.; Haemmerle, S.; Richards, H.B. Secukinumab in active rheumatoid arthritis after anti-tnfalpha therapy: A randomized, double-blind placebo-controlled phase 3 study. Rheumatol. Ther., 2017, 4(2), 475-488.
[http://dx.doi.org/10.1007/s40744-017-0086-y] [PMID: 29138986]
[91]
Genovese, M.C.; Greenwald, M.; Cho, C.S.; Berman, A.; Jin, L.; Cameron, G.S.; Benichou, O.; Xie, L.; Braun, D.; Berclaz, P.Y.; Banerjee, S. A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol., 2014, 66(7), 1693-1704.
[http://dx.doi.org/10.1002/art.38617] [PMID: 24623718]
[92]
Mease, P.J.; Asahina, A.; Gladman, D.D.; Tanaka, Y.; Tillett, W.; Ink, B.; Assudani, D.; de la Loge, C.; Coarse, J.; Eells, J.; Gossec, L. Effect of bimekizumab on symptoms and impact of disease in patients with psoriatic arthritis over 3 years: Results from be active. Rheumatology, 2022, 62(2), 617-628.
[93]
Pavelka, K.; Chon, Y.; Newmark, R.; Lin, S.L.; Baumgartner, S.; Erondu, N. A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate. J. Rheumatol., 2015, 42(6), 912-919.
[http://dx.doi.org/10.3899/jrheum.141271] [PMID: 25877498]
[94]
Jin, Y.; Meng, Q.; Mei, L.; Zhou, W.; Zhu, X.; Mao, Y.; Xie, W.; Zhang, X.; Luo, M.H.; Tao, W.; Wang, H.; Li, J.; Li, J.; Li, X.; Zhang, Z. A somatosensory cortex input to the caudal dorsolateral striatum controls comorbid anxiety in persistent pain. Pain, 2020, 161(2), 416-428.
[http://dx.doi.org/10.1097/j.pain.0000000000001724] [PMID: 31651582]
[95]
Liang, S.H.; Zhao, W.J.; Yin, J.B.; Chen, Y.B.; Li, J.N.; Feng, B.; Lu, Y.C.; Wang, J.; Dong, Y.L.; Li, Y.Q. A neural circuit from thalamic paraventricular nucleus to central amygdala for the facilitation of neuropathic pain. J. Neurosci., 2020, 40(41), 7837-7854.
[http://dx.doi.org/10.1523/JNEUROSCI.2487-19.2020] [PMID: 32958568]
[96]
Berkley, K.J. Sex differences in pain. Behav. Brain Sci., 1997, 20(3), 371-380.
[http://dx.doi.org/10.1017/S0140525X97221485] [PMID: 10097000]
[97]
Unruh, A.M. Gender variations in clinical pain experience. Pain, 1996, 65(2), 123-167.
[http://dx.doi.org/10.1016/0304-3959(95)00214-6] [PMID: 8826503]
[98]
Fillingim, R.B.; King, C.D.; Ribeiro-Dasilva, M.C.; Rahim-Williams, B.; Riley, J.L. III Sex, gender, and pain: A review of recent clinical and experimental findings. J. Pain, 2009, 10(5), 447-485.
[http://dx.doi.org/10.1016/j.jpain.2008.12.001] [PMID: 19411059]
[99]
Mogil, J.S. Sex differences in pain and pain inhibition: Multiple explanations of a controversial phenomenon. Nat. Rev. Neurosci., 2012, 13(12), 859-866.
[http://dx.doi.org/10.1038/nrn3360] [PMID: 23165262]
[100]
El-Darouti, M.A.; Hegazy, R.A.; Abdel Hay, R.M.; Rashed, L.A. Study of T helper (17) and T regulatory cells in psoriatic patients receiving live attenuated varicella vaccine therapy in a randomized controlled trial. Eur. J. Dermatol., 2014, 24(4), 464-469.
[http://dx.doi.org/10.1684/ejd.2014.2377] [PMID: 25119950]
[101]
Hendrawan, K.; Khoo, M.L.M.; Visweswaran, M.; Massey, J.C.; Withers, B.; Sutton, I.; Ma, D.D.F.; Moore, J.J. Long-term suppression of circulating proinflammatory cytokines in multiple sclerosis patients following autologous haematopoietic stem cell transplantation. Front. Immunol., 2022, 12, 782935.
[http://dx.doi.org/10.3389/fimmu.2021.782935] [PMID: 35126353]
[102]
Khadem Azarian, S.; Jafarnezhad-Ansariha, F.; Nazeri, S.; Azizi, G.; Aghazadeh, Z.; Hosseinzadeh, E.; Mirshafiey, A. Effects of guluronic acid, as a new NSAID with immunomodulatory properties on IL-17, RORγt, IL-4 and GATA-3 gene expression in rheumatoid arthritis patients. Immunopharmacol. Immunotoxicol., 2020, 42(1), 22-27.
[http://dx.doi.org/10.1080/08923973.2019.1702053] [PMID: 31856612]
[103]
Mostafa, T.M.; Hegazy, S.K.; El-Ghany, S.E.A.; Kotkata, F.A.E.M. Comparative study evaluating antihistamine versus leukotriene receptor antagonist as adjuvant therapy for rheumatoid arthritis. Eur. J. Clin. Pharmacol., 2021, 77(12), 1825-1834.
[http://dx.doi.org/10.1007/s00228-021-03181-2] [PMID: 34218304]
[104]
Pidala, J.; Beato, F.; Kim, J.; Betts, B.; Jim, H.; Sagatys, E.; Levine, J.E.; Ferrara, J.L.M.; Ozbek, U.; Ayala, E.; Davila, M.; Fernandez, H.F.; Field, T.; Kharfan-Dabaja, M.A.; Khaira, D.; Khimani, F.; Locke, F.L.; Mishra, A.; Nieder, M.; Nishihori, T.; Perez, L.; Riches, M.; Anasetti, C. In vivo IL-12/IL-23p40 neutralization blocks Th1/Th17 response after allogeneic hematopoietic cell transplantation. Haematologica, 2018, 103(3), 531-539.
[http://dx.doi.org/10.3324/haematol.2017.171199] [PMID: 29242294]
[105]
Shi, Y.; Ullrich, S.J.; Zhang, J.; Connolly, K.; Grzegorzewski, K.J.; Barber, M.C.; Wang, W.; Wathen, K.; Hodge, V.; Fisher, C.L.; Olsen, H.; Ruben, S.M.; Knyazev, I.; Cho, Y.H.; Kao, V.; Wilkinson, K.A.; Carrell, J.A.; Ebner, R. A novel cytokine receptor-ligand pair. Identification, molecular characterization, and in vivo immunomodulatory activity. J. Biol. Chem., 2000, 275(25), 19167-19176.
[http://dx.doi.org/10.1074/jbc.M910228199] [PMID: 10749887]
[106]
Ramirez-Carrozzi, V.; Ota, N.; Sambandam, A.; Wong, K.; Hackney, J.; Martinez-Martin, N.; Ouyang, W.; Pappu, R. Cutting edge: Il-17b uses il-17ra and il-17rb to induce type 2 inflammation from human lymphocytes. J. Immunol., 2019, 202(7), 1935-1941.
[http://dx.doi.org/10.4049/jimmunol.1800696] [PMID: 30770417]
[107]
Létuvé, S.; Lajoie-Kadoch, S.; Audusseau, S.; Rothenberg, M.E.; Fiset, P.O.; Ludwig, M.S.; Hamid, Q. IL-17E upregulates the expression of proinflammatory cytokines in lung fibroblasts. J. Allergy Clin. Immunol., 2006, 117(3), 590-596.
[http://dx.doi.org/10.1016/j.jaci.2005.10.025] [PMID: 16522458]
[108]
Ferreira, N.; Mesquita, I.; Baltazar, F.; Silvestre, R.; Granja, S. IL-17A and IL-17F orchestrate macrophages to promote lung cancer. Cell. Oncol., 2020, 43(4), 643-654.
[http://dx.doi.org/10.1007/s13402-020-00510-y] [PMID: 32227296]
[109]
Pavlov, O.; Selutin, A.; Pavlova, O.; Selkov, S. Macrophages are a source of IL-17 in the human placenta. Am. J. Reprod. Immunol., 2018, 80(4), e13016.
[http://dx.doi.org/10.1111/aji.13016] [PMID: 29956865]
[110]
Senra, L.; Stalder, R.; Alvarez Martinez, D.; Chizzolini, C.; Boehncke, W.H.; Brembilla, N.C. Keratinocyte-derived il-17e contributes to inflammation in psoriasis. J. Invest. Dermatol., 2016, 136(10), 1970-1980.
[http://dx.doi.org/10.1016/j.jid.2016.06.009] [PMID: 27329229]
[111]
Senra, L.; Mylonas, A.; Kavanagh, R.D.; Fallon, P.G.; Conrad, C.; Borowczyk-Michalowska, J.; Wrobel, L.J.; Kaya, G.; Yawalkar, N.; Boehncke, W.H.; Brembilla, N.C.N.C. Il-17e (il-25) enhances innate immune responses during skin inflammation. J. Invest. Dermatol., 2019, 139(8), 1732-1742.
[112]
Yan, Y.; Ding, X.; Li, K.; Ciric, B.; Wu, S.; Xu, H.; Gran, B.; Rostami, A.; Zhang, G.X. CNS-specific therapy for ongoing EAE by silencing IL-17 pathway in astrocytes. Mol. Ther., 2012, 20(7), 1338-1348.
[http://dx.doi.org/10.1038/mt.2012.12] [PMID: 22434134]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy