Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Modulation by Anesthetics and Analgesics of Respiratory Rhythm in the Nervous System

Author(s): Xuechao Hao, Yaoxin Yang, Jin Liu, Donghang Zhang, Mengchan Ou, Bowen Ke, Tao Zhu* and Cheng Zhou*

Volume 22, Issue 2, 2024

Published on: 11 August, 2023

Page: [217 - 240] Pages: 24

DOI: 10.2174/1570159X21666230810110901

Price: $65

Abstract

Rhythmic eupneic breathing in mammals depends on the coordinated activities of the neural system that sends cranial and spinal motor outputs to respiratory muscles. These outputs modulate lung ventilation and adjust respiratory airflow, which depends on the upper airway patency and ventilatory musculature. Anesthetics are widely used in clinical practice worldwide. In addition to clinically necessary pharmacological effects, respiratory depression is a critical side effect induced by most general anesthetics. Therefore, understanding how general anesthetics modulate the respiratory system is important for the development of safer general anesthetics. Currently used volatile anesthetics and most intravenous anesthetics induce inhibitory effects on respiratory outputs. Various general anesthetics produce differential effects on respiratory characteristics, including the respiratory rate, tidal volume, airway resistance, and ventilatory response. At the cellular and molecular levels, the mechanisms underlying anesthetic-induced breathing depression mainly include modulation of synaptic transmission of ligand-gated ionotropic receptors (e.g., γ-aminobutyric acid, N-methyl-D-aspartate, and nicotinic acetylcholine receptors) and ion channels (e.g., voltage-gated sodium, calcium, and potassium channels, two-pore domain potassium channels, and sodium leak channels), which affect neuronal firing in brainstem respiratory and peripheral chemoreceptor areas. The present review comprehensively summarizes the modulation of the respiratory system by clinically used general anesthetics, including the effects at the molecular, cellular, anatomic, and behavioral levels. Specifically, analgesics, such as opioids, which cause respiratory depression and the “opioid crisis”, are discussed. Finally, underlying strategies of respiratory stimulation that target general anesthetics and/or analgesics are summarized.

Keywords: General anesthetics, analgesics, respiratory rhythm, synaptic transmission, neurotransmitter, ion channels.

Graphical Abstract
[1]
Rosenbloom, J.M.; Schonberger, R.B. The outlook of physician histories: J. Marion Sims and ‘The Discovery of Anaesthesia’. Med. Humanit., 2015, 41(2), 102-106.
[http://dx.doi.org/10.1136/medhum-2015-010680] [PMID: 26048369]
[2]
Hulsman, N.; Hollmann, M.W.; Preckel, B. Newer propofol, ketamine, and etomidate derivatives and delivery systems relevant to anesthesia practice. Baillieres. Best Pract. Res. Clin. Anaesthesiol., 2018, 32(2), 213-221.
[http://dx.doi.org/10.1016/j.bpa.2018.08.002] [PMID: 30322461]
[3]
Stuth, E.A.; Stucke, A.G.; Brandes, I.F.; Zuperku, E.J. Anesthetic effects on synaptic transmission and gain control in respiratory control. Respir. Physiol. Neurobiol., 2008, 164(1-2), 151-159.
[http://dx.doi.org/10.1016/j.resp.2008.05.007] [PMID: 18583201]
[4]
Teppema, L.J.; Baby, S. Anesthetics and control of breathing. Respir. Physiol. Neurobiol., 2011, 177(2), 80-92.
[http://dx.doi.org/10.1016/j.resp.2011.04.006] [PMID: 21514403]
[5]
Hales, T.G.; Lambert, J.J. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br. J. Pharmacol., 1991, 104(3), 619-628.
[http://dx.doi.org/10.1111/j.1476-5381.1991.tb12479.x] [PMID: 1665745]
[6]
Orser, B.A.; Wang, L.Y.; Pennefather, P.S.; MacDonald, J.F. Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons. J. Neurosci., 1994, 14(12), 7747-7760.
[http://dx.doi.org/10.1523/JNEUROSCI.14-12-07747.1994] [PMID: 7996209]
[7]
Buggy, D.J.; Nicol, B.; Rowbotham, D.J.; Lambert, D.G. Effects of intravenous anesthetic agents on glutamate release: A role for GABAA receptor-mediated inhibition. Anesthesiology, 2000, 92(4), 1067-1073.
[http://dx.doi.org/10.1097/00000542-200004000-00025] [PMID: 10754627]
[8]
Ponte, J.; Sadler, C.L. Effect of thiopentone, etomidate and propofol on carotid body chemoreceptor activity in the rabbit and the cat. Br. J. Anaesth., 1989, 62(1), 41-45.
[http://dx.doi.org/10.1093/bja/62.1.41] [PMID: 2492814]
[9]
Akada, S.; Fagerlund, M.J.; Lindahl, S.G.E.; Sakamoto, A.; Prabhakar, N.R.; Eriksson, L.I. Pronounced depression by propofol on carotid body response to CO2 and K+-induced carotid body activation. Respir. Physiol. Neurobiol., 2008, 160(3), 284-288.
[http://dx.doi.org/10.1016/j.resp.2007.10.011] [PMID: 18054527]
[10]
Yang, J.; Uchida, I. Mechanisms of etomidate potentiation of GABAA receptor-gated currents in cultured postnatal hippocampal neurons. Neuroscience, 1996, 73(1), 69-78.
[http://dx.doi.org/10.1016/0306-4522(96)00018-8] [PMID: 8783230]
[11]
Zhong, H.; Rüsch, D.; Forman, S.A. Photo-activated azi-etomidate, a general anesthetic photolabel, irreversibly enhances gating and desensitization of gamma-aminobutyric acid type A receptors. Anesthesiology, 2008, 108(1), 103-112.
[http://dx.doi.org/10.1097/01.anes.0000296074.33999.52] [PMID: 18156888]
[12]
Latson, T.W.; Maire McCarroll, S.; Andrew Mirhej, M.; Hyndman, V.A.; Whitten, C.W.; Lipton, J.M. Effects of three anesthetic induction techniques on heart rate variability. J. Clin. Anesth., 1992, 4(4), 265-276.
[http://dx.doi.org/10.1016/0952-8180(92)90127-M] [PMID: 1419006]
[13]
Gelissen, H.P.M.M.; Epema, A.H.; Henning, R.H.; Krijnen, H.J.; Hennis, P.J.; den Hertog, A. Inotropic effects of propofol, thiopental, midazolam, etomidate, and ketamine on isolated human atrial muscle. Anesthesiology, 1996, 84(2), 397-403.
[http://dx.doi.org/10.1097/00000542-199602000-00019] [PMID: 8602672]
[14]
Godwin, S.A.; Burton, J.H.; Gerardo, C.J.; Hatten, B.W.; Mace, S.E.; Silvers, S.M.; Fesmire, F.M. Clinical policy: Procedural sedation and analgesia in the emergency department. Ann. Emerg. Med., 2014, 63(2), 247-258.e18.
[http://dx.doi.org/10.1016/j.annemergmed.2013.10.015] [PMID: 24438649]
[15]
Yang, Y.; Ou, M.; Liu, J.; Zhao, W.; Zhuoma, L.; Liang, Y.; Zhu, T.; Mulkey, D.K.; Zhou, C. Volatile anesthetics activate a leak sodium conductance in retrotrapezoid nucleus neurons to maintain breathing during anesthesia in mice. Anesthesiology, 2020, 133(4), 824-838.
[http://dx.doi.org/10.1097/ALN.0000000000003493] [PMID: 32773689]
[16]
Pattinson, K.T.S. Opioids and the control of respiration. Br. J. Anaesth., 2008, 100(6), 747-758.
[http://dx.doi.org/10.1093/bja/aen094] [PMID: 18456641]
[17]
Bachmutsky, I.; Wei, X.P.; Kish, E.; Yackle, K. Opioids depress breathing through two small brainstem sites. eLife, 2020, 9, e52694.
[http://dx.doi.org/10.7554/eLife.52694] [PMID: 32073401]
[18]
Baby, S.M.; Gruber, R.B.; Young, A.P.; MacFarlane, P.M.; Teppema, L.J.; Lewis, S.J. Bilateral carotid sinus nerve transection exacerbates morphine-induced respiratory depression. Eur. J. Pharmacol., 2018, 834, 17-29.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.018] [PMID: 30012498]
[19]
Bianchi, A.L.; Denavit-Saubié, M.; Champagnat, J. Central control of breathing in mammals: Neuronal circuitry, membrane properties, and neurotransmitters. Physiol. Rev., 1995, 75(1), 1-45.
[http://dx.doi.org/10.1152/physrev.1995.75.1.1] [PMID: 7831394]
[20]
Richter, D.W.; Lalley, P.M.; Pierrefiche, O.; Haji, A.; Bischoff, A.M.; Wilken, B.; Hanefeld, F. Intracellular signal pathways controlling respiratory neurons. Respir. Physiol., 1997, 110(2-3), 113-123.
[http://dx.doi.org/10.1016/S0034-5687(97)00077-7] [PMID: 9407605]
[21]
Ghali, M.G.Z. Respiratory rhythm generation and pattern formation: Oscillators and network mechanisms. J. Integr. Neurosci., 2019, 18(4), 481-517.
[http://dx.doi.org/10.31083/j.jin.2019.04.188] [PMID: 31912709]
[22]
Morgado-Valle, C.; Beltran-Parrazal, L. Respiratory rhythm generation: The whole is greater than the sum of the parts. Adv. Exp. Med. Biol., 2017, 1015, 147-161.
[http://dx.doi.org/10.1007/978-3-319-62817-2_9] [PMID: 29080026]
[23]
Molkov, Y.I.; Rubin, J.E.; Rybak, I.A.; Smith, J.C. Computational models of the neural control of breathing. Wiley Interdiscip. Rev. Syst. Biol. Med., 2017, 9(2), 10.1002/wsbm.1371..
[http://dx.doi.org/10.1002/wsbm.1371] [PMID: 28009109]
[24]
Yang, C.F.; Feldman, J.L. Efferent projections of excitatory and inhibitory preBötzinger Complex neurons. J. Comp. Neurol., 2018, 526(8), 1389-1402.
[http://dx.doi.org/10.1002/cne.24415] [PMID: 29473167]
[25]
Bautista, T.G.; Burke, P.G.R.; Sun, Q.J.; Berkowitz, R.G.; Pilowsky, P.M. The generation of post-inspiratory activity in laryngeal motoneurons: A review. Adv. Exp. Med. Biol., 2010, 669, 143-149.
[http://dx.doi.org/10.1007/978-1-4419-5692-7_29] [PMID: 20217338]
[26]
Umezaki, T.; Shiba, K.; Sugiyama, Y. Intracellular activity of pharyngeal motoneurons during breathing, swallowing, and coughing. J. Neurophysiol., 2020, 124(3), 750-762.
[http://dx.doi.org/10.1152/jn.00093.2020] [PMID: 32727254]
[27]
van Lunteren, E.; Dick, T.E. Intrinsic properties of pharyngeal and diaphragmatic respiratory motoneurons and muscles. J. Appl. Physiol., 1992, 733, 787-800.
[28]
Ramirez, J.M.; Baertsch, N.A. The dynamic basis of respiratory rhythm generation: One breath at a time. Annu. Rev. Neurosci., 2018, 41(1), 475-499.
[http://dx.doi.org/10.1146/annurev-neuro-080317-061756] [PMID: 29709210]
[29]
Mulkey, D.K.; Stornetta, R.L.; Weston, M.C.; Simmons, J.R.; Parker, A.; Bayliss, D.A.; Guyenet, P.G. Respiratory control by ventral surface chemoreceptor neurons in rats. Nat. Neurosci., 2004, 7(12), 1360-1369.
[http://dx.doi.org/10.1038/nn1357] [PMID: 15558061]
[30]
Guyenet, P.G.; Mulkey, D.K. Retrotrapezoid nucleus and parafacial respiratory group. Respir. Physiol. Neurobiol., 2010, 173(3), 244-255.
[http://dx.doi.org/10.1016/j.resp.2010.02.005] [PMID: 20188865]
[31]
Guyenet, P.G.; Stornetta, R.L.; Souza, G.M.P.R.; Abbott, S.B.G.; Shi, Y.; Bayliss, D.A. The retrotrapezoid nucleus: Central chemoreceptor and regulator of breathing automaticity. Trends Neurosci., 2019, 42(11), 807-824.
[http://dx.doi.org/10.1016/j.tins.2019.09.002] [PMID: 31635852]
[32]
Dutschmann, M.; Paton, J.F.R. Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat. J. Physiol., 2002, 543(2), 643-653.
[http://dx.doi.org/10.1113/jphysiol.2001.013466] [PMID: 12205196]
[33]
Onimaru, H.; Dutschmann, M. Calcium imaging of neuronal activity in the most rostral parafacial respiratory group of the newborn rat. J. Physiol. Sci., 2012, 62(1), 71-77.
[http://dx.doi.org/10.1007/s12576-011-0179-2] [PMID: 22052247]
[34]
Anderson, T.M.; Garcia, A.J., III; Baertsch, N.A.; Pollak, J.; Bloom, J.C.; Wei, A.D.; Rai, K.G.; Ramirez, J.M. A novel excitatory network for the control of breathing. Nature, 2016, 536(7614), 76-80.
[http://dx.doi.org/10.1038/nature18944] [PMID: 27462817]
[35]
Haji, A.; Takeda, R.; Okazaki, M. Neuropharmacology of control of respiratory rhythm and pattern in mature mammals. Pharmacol. Ther., 2000, 86(3), 277-304.
[http://dx.doi.org/10.1016/S0163-7258(00)00059-0] [PMID: 10882812]
[36]
Paydarfar, D.; Eldridge, F.L. Phase resetting and dysrhythmic responses of the respiratory oscillator. Am. J. Physiol., 1987, 252(1 Pt 2), R55-R62.
[PMID: 3812730]
[37]
Meza, R.; Huidobro, N.; Moreno-Castillo, M.; Mendez-Fernandez, A.; Flores-Hernandez, J.; Flores, A.; Manjarrez, E. Resetting the respiratory rhythm with a spinal central pattern generator. eNeuro, 2019, 6(2), ENEURO.0116-19.2019..
[http://dx.doi.org/10.1523/ENEURO.0116-19.2019] [PMID: 31043462]
[38]
Haji, A.; Ohi, Y.; Kimura, S. Cough-related neurons in the nucleus tractus solitarius of decerebrate cats. Neuroscience, 2012, 218, 100-109.
[http://dx.doi.org/10.1016/j.neuroscience.2012.05.053] [PMID: 22659014]
[39]
Tian, G.F.; Peever, J.H.; Duffin, J. Bötzinger-complex expiratory neurons monosynaptically inhibit phrenic motoneurons in the decerebrate rat. Exp. Brain Res., 1998, 122(2), 149-156.
[http://dx.doi.org/10.1007/s002210050502] [PMID: 9776513]
[40]
Haji, A.; Okazaki, M.; Takeda, R. Synaptic interactions between respiratory neurons during inspiratory on-switching evoked by vagal stimulation in decerebrate cats. Neurosci. Res., 1999, 35(2), 85-93.
[http://dx.doi.org/10.1016/S0168-0102(99)00072-3] [PMID: 10616912]
[41]
Potts, J.T.; Rybak, I.A.; Paton, J.F.R. Respiratory rhythm entrainment by somatic afferent stimulation. J. Neurosci., 2005, 25(8), 1965-1978.
[http://dx.doi.org/10.1523/JNEUROSCI.3881-04.2005] [PMID: 15728836]
[42]
Ezure, K. Synaptic connections between medullary respiratory neurons and considerations on the genesis of respiratory rhythm. Prog. Neurobiol., 1990, 35(6), 429-450.
[http://dx.doi.org/10.1016/0301-0082(90)90030-K] [PMID: 2175923]
[43]
Richter, D.W. Generation and maintenance of the respiratory rhythm. J. Exp. Biol., 1982, 100(1), 93-107.
[http://dx.doi.org/10.1242/jeb.100.1.93] [PMID: 6757372]
[44]
Marchenko, V.; Koizumi, H.; Mosher, B.; Koshiya, N.; Tariq, M.F.; Bezdudnaya, T.G.; Zhang, R.; Molkov, Y.I.; Rybak, I.A.; Smith, J.C. Perturbations of respiratory rhythm and pattern by disrupting synaptic inhibition within Pre-Bötzinger and Bötzinger complexes. eNeuro, 2016, 3(2), ENEURO.0011-16.2016..
[http://dx.doi.org/10.1523/ENEURO.0011-16.2016] [PMID: 27200412]
[45]
McCrimmon, D.R.; Zuperku, E.J.; Hayashi, F.; Dogas, Z.; Hinrichsen, C.F.L.; Stuth, E.A.; Tonkovic-Capin, M.; Krolo, M.; Hopp, F.A. Modulation of the synaptic drive to respiratory premotor and motor neurons. Respir. Physiol., 1997, 110(2-3), 161-176.
[http://dx.doi.org/10.1016/S0034-5687(97)00081-9] [PMID: 9407609]
[46]
Souza, G.M.P.R.; Stornetta, R.L.; Stornetta, D.S.; Abbott, S.B.G.; Guyenet, P.G. Contribution of the retrotrapezoid nucleus and carotid bodies to hypercapnia- and hypoxia-induced arousal from sleep. J. Neurosci., 2019, 39(49), 9725-9737.
[http://dx.doi.org/10.1523/JNEUROSCI.1268-19.2019] [PMID: 31641048]
[47]
Czeisler, C.M.; Silva, T.M.; Fair, S.R.; Liu, J.; Tupal, S.; Kaya, B.; Cowgill, A.; Mahajan, S.; Silva, P.E.; Wang, Y.; Blissett, A.R.; Göksel, M.; Borniger, J.C.; Zhang, N.; Fernandes-Junior, S.A.; Catacutan, F.; Alves, M.J.; Nelson, R.J.; Sundaresean, V.; Rekling, J.; Takakura, A.C.; Moreira, T.S.; Otero, J.J. The role of PHOX2B-derived astrocytes in chemosensory control of breathing and sleep homeostasis. J. Physiol., 2019, 597(8), 2225-2251.
[http://dx.doi.org/10.1113/JP277082] [PMID: 30707772]
[48]
Mulkey, D.K.; Wenker, I.C. Astrocyte chemoreceptors: mechanisms of H + sensing by astrocytes in the retrotrapezoid nucleus and their possible contribution to respiratory drive. Exp. Physiol., 2011, 96(4), 400-406.
[http://dx.doi.org/10.1113/expphysiol.2010.053140] [PMID: 21169332]
[49]
Guyenet, P.G. Regulation of breathing and autonomic outflows by chemoreceptors. Compr. Physiol., 2014, 4(4), 1511-1562.
[http://dx.doi.org/10.1002/cphy.c140004] [PMID: 25428853]
[50]
Dahan, A.; Ward, D.; van den Elsen, M.; Temp, J.; Berkenbosch, A. Influence of reduced carotid body drive during sustained hypoxia on hypoxic depression of ventilation in humans. J. Appl. Physiol., 1996, 81(2), 565-572.
[51]
Pijacka, W.; Katayama, P.L.; Salgado, H.C.; Lincevicius, G.S.; Campos, R.R.; McBryde, F.D.; Paton, J.F.R. Variable role of carotid bodies in cardiovascular responses to exercise, hypoxia and hypercapnia in spontaneously hypertensive rats. J. Physiol., 2018, 596(15), 3201-3216.
[http://dx.doi.org/10.1113/JP275487] [PMID: 29313987]
[52]
Busch, S.A.; Bruce, C.D.; Skow, R.J.; Pfoh, J.R.; Day, T.A.; Davenport, M.H.; Steinback, C.D. Mechanisms of sympathetic regulation during Apnea. Physiol. Rep., 2019, 7(2), e13991.
[http://dx.doi.org/10.14814/phy2.13991] [PMID: 30693670]
[53]
Steinback, C.D.; Breskovic, T.; Banic, I.; Dujic, Z.; Shoemaker, J.K. Autonomic and cardiovascular responses to chemoreflex stress in apnoea divers. Auton. Neurosci., 2010, 156(1-2), 138-143.
[http://dx.doi.org/10.1016/j.autneu.2010.05.002] [PMID: 20627720]
[54]
Ghali, M.G.Z.; Beshay, S. Role of fast inhibitory synaptic transmission in neonatal respiratory rhythmogenesis and pattern formation. Mol. Cell. Neurosci., 2019, 100, 103400.
[http://dx.doi.org/10.1016/j.mcn.2019.103400] [PMID: 31472222]
[55]
Bancalari, E.; Clausen, J. Pathophysiology of changes in absolute lung volumes. Eur. Respir. J., 1998, 12(1), 248-258.
[http://dx.doi.org/10.1183/09031936.98.12010248] [PMID: 9701447]
[56]
Guyenet, P.G. The 2008 Carl Ludwig Lecture: Retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity. J. Appl. Physiol. (1985), 2008, 105(2), 404-416.
[57]
Pagliardini, S.; Greer, J.J.; Funk, G.D.; Dickson, C.T. State-dependent modulation of breathing in urethane-anesthetized rats. J. Neurosci., 2012, 32(33), 11259-11270.
[http://dx.doi.org/10.1523/JNEUROSCI.0948-12.2012] [PMID: 22895710]
[58]
Hunter, J.D.; McLeod, J.Z.; Milsom, W.K. Cortical activation states in sleep and anesthesia. II: Respiratory reflexes. Respir. Physiol., 1998, 112(1), 83-94.
[http://dx.doi.org/10.1016/S0034-5687(98)00020-6] [PMID: 9696285]
[59]
Pagliardini, S.; Funk, G.D.; Dickson, C.T. Breathing and brain state: Urethane anesthesia as a model for natural sleep. Respir. Physiol. Neurobiol., 2013, 188(3), 324-332.
[http://dx.doi.org/10.1016/j.resp.2013.05.035] [PMID: 23751523]
[60]
Cravero, J.P.; Beach, M.L.; Blike, G.T.; Gallagher, S.M.; Hertzog, J.H. The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the Pediatric Sedation Research Consortium. Anesth. Analg., 2009, 108(3), 795-804.
[http://dx.doi.org/10.1213/ane.0b013e31818fc334] [PMID: 19224786]
[61]
Muir, W.W., III; Gadawski, J.E. Respiratory depression and apnea induced by propofol in dogs. Am. J. Vet. Res., 1998, 59(2), 157-161.
[PMID: 9492929]
[62]
Blouin, R.T.; Conard, P.F.; Gross, J.B. Time course of ventilatory depression following induction doses of propofol and thiopental. Anesthesiology, 1991, 75(6), 940-944.
[http://dx.doi.org/10.1097/00000542-199112000-00003] [PMID: 1741514]
[63]
Sarton, E.; Teppema, L.J.; Olievier, C.; Nieuwenhuijs, D.; Matthes, H.W.D.; Kieffer, B.L.; Dahan, A. The involvement of the mu-opioid receptor in ketamine-induced respiratory depression and antinociception. Anesth. Analg., 2001, 93(6), 1495-1500.
[http://dx.doi.org/10.1097/00000539-200112000-00031] [PMID: 11726430]
[64]
Shulman, D.; Bar-Yishay, E.; Godfrey, S. Drive and timing components of respiration in young children following induction of anaesthesia with halo-thane or ketamine. Can. J. Anaesth., 1988, 35(4), 368-374.
[http://dx.doi.org/10.1007/BF03010858] [PMID: 3402014]
[65]
Yan, J.W.; McLeod, S.L.; Iansavitchene, A. Ketamine-propofol versus propofol alone for procedural sedation in the emergency department: A systematic review and meta-analysis. Acad. Emerg. Med., 2015, 22(9), 1003-1013.
[http://dx.doi.org/10.1111/acem.12737] [PMID: 26292077]
[66]
Dosani, M. McCORMACK, J.O.N.; Reimer, E.; Brant, R.; Dumont, G.; Lim, J.; Ansermino, J. Slower administration of propofol preserves adequate respiration in children. Paediatr. Anaesth., 2010, 20(11), 1001-1008.
[http://dx.doi.org/10.1111/j.1460-9592.2010.03398.x] [PMID: 20880151]
[67]
Masuda, A.; Ito, Y.; Haji, A.; Takeda, R. The influence of halothane and thiopental on respiratory-related nerve activities in decerebrate cats. Acta Anaesthesiol. Scand., 1989, 33(8), 660-665.
[http://dx.doi.org/10.1111/j.1399-6576.1989.tb02987.x] [PMID: 2511728]
[68]
Forman, S.A.; Warner, D.S. Clinical and molecular pharmacology of etomidate. Anesthesiology, 2011, 114(3), 695-707.
[http://dx.doi.org/10.1097/ALN.0b013e3181ff72b5] [PMID: 21263301]
[69]
Morgan, M.; Lumley, J.; Whitwam, J.G. Respiratory effects of etomidate. Br. J. Anaesth., 1977, 49(3), 233-236.
[http://dx.doi.org/10.1093/bja/49.3.233] [PMID: 20912]
[70]
Kim, M.G.; Park, S.W.; Kim, J.H.; Lee, J.; Kae, S.H.; Jang, H.J.; Koh, D.H.; Choi, M.H. Etomidate versus propofol sedation for complex upper endoscopic procedures: A prospective double-blinded randomized controlled trial. Gastrointest. Endosc., 2017, 86(3), 452-461.
[http://dx.doi.org/10.1016/j.gie.2017.02.033] [PMID: 28284883]
[71]
Prachanpanich, N.; Apinyachon, W.; Ittichaikulthol, W.; Moontripakdi, O.; Jitaree, A. A comparison of dexmedetomidine and propofol in Patients undergoing electrophysiology study. J. Med. Assoc. Thai., 2013, 96(3), 307-311.
[PMID: 23539933]
[72]
Bhana, N.; Goa, K.L.; McClellan, K.J. Dexmedetomidine. Drugs, 2000, 59(2), 263-268.
[http://dx.doi.org/10.2165/00003495-200059020-00012] [PMID: 10730549]
[73]
Furst, S.R.; Weinger, M.B. Dexmedetomidine, a selective alpha 2-agonist, does not potentiate the cardiorespiratory depression of alfentanil in the rat. Anesthesiology, 1990, 72(5), 882-888.
[http://dx.doi.org/10.1097/00000542-199005000-00019] [PMID: 1971163]
[74]
Steffey, M.A.; Brosnan, R.J.; Steffey, E.P. Assessment of halothane and sevoflurane anesthesia in spontaneously breathing rats. Am. J. Vet. Res., 2003, 64(4), 470-474.
[http://dx.doi.org/10.2460/ajvr.2003.64.470] [PMID: 12693538]
[75]
Groeben, H.; Meier, S.; Tankersley, C.G.; Mitzner, W.; Brown, R.H. Heritable differences in respiratory drive and breathing pattern in mice during anaesthesia and emergence. Br. J. Anaesth., 2003, 91(4), 541-545.
[http://dx.doi.org/10.1093/bja/aeg222] [PMID: 14504157]
[76]
Groeben, H.; Meier, S.; Tankersley, C.G.; Mitzner, W.; Brown, R.H. Influence of volatile anaesthetics on hypercapnoeic ventilatory responses in mice with blunted respiratory drive. Br. J. Anaesth., 2004, 92(5), 697-703.
[http://dx.doi.org/10.1093/bja/aeh124] [PMID: 15003977]
[77]
Hikasa, Y.; Okuyama, K.; Kakuta, T.; Takase, K.; Ogasawara, S. Anesthetic potency and cardiopulmonary effects of sevoflurane in goats: comparison with isoflurane and halothane. Can. J. Vet. Res., 1998, 62(4), 299-306.
[PMID: 9798097]
[78]
Lazarenko, R.M.; Fortuna, M.G.; Shi, Y.; Mulkey, D.K.; Takakura, A.C.; Moreira, T.S.; Guyenet, P.G.; Bayliss, D.A. Anesthetic activation of central respiratory chemoreceptor neurons involves inhibition of a THIK-1-like background K(+) current. J. Neurosci., 2010, 30(27), 9324-9334.
[http://dx.doi.org/10.1523/JNEUROSCI.1956-10.2010] [PMID: 20610767]
[79]
Olofsen, E.; Boom, M.; Nieuwenhuijs, D.; Sarton, E.; Teppema, L.; Aarts, L.; Dahan, A. Modeling the non-steady state respiratory effects of remifentanil in awake and propofol-sedated healthy volunteers. Anesthesiology, 2010, 112(6), 1382-1395.
[http://dx.doi.org/10.1097/ALN.0b013e3181d69087] [PMID: 20461001]
[80]
Berkenbosch, A.; Bovill, J.G.; Dahan, A.; DeGoede, J.; Olievier, I.C. The ventilatory CO2 sensitivities from Read’s rebreathing method and the steady-state method are not equal in man. J. Physiol., 1989, 411(1), 367-377.
[http://dx.doi.org/10.1113/jphysiol.1989.sp017578] [PMID: 2515274]
[81]
Read, D.J.; Leigh, J. Blood-brain tissue Pco2 relationships and ventilation during rebreathing. J. Appl. Physiol., 1967, 23(1), 53-70.
[http://dx.doi.org/10.1152/jappl.1967.23.1.53] [PMID: 6028163]
[82]
Read, D.C. A clinical method for assessing the ventilatory response to carbon dioxide. Australas. Ann. Med., 1967, 16(1), 20-32.
[http://dx.doi.org/10.1111/imj.1967.16.1.20] [PMID: 6032026]
[83]
Bouillon, T.; Bruhn, J.; Radu-Radulescu, L.; Andresen, C.; Cohane, C.; Shafer, S.L. Mixed-effects modeling of the intrinsic ventilatory depressant potency of propofol in the non-steady state. Anesthesiology, 2004, 100(2), 240-250.
[http://dx.doi.org/10.1097/00000542-200402000-00010] [PMID: 14739795]
[84]
Pandit, J.J. Effect of low dose inhaled anaesthetic agents on the ventilatory response to carbon dioxide in humans: A quantitative review. Anaesthesia, 2005, 60(5), 461-469.
[http://dx.doi.org/10.1111/j.1365-2044.2004.04088.x] [PMID: 15819767]
[85]
Choi, S.D.; Spaulding, B.C.; Gross, J.B.; Apfelbaum, J.L. Comparison of the ventilatory effects of etomidate and methohexital. Anesthesiology, 1985, 62(4), 442-447.
[http://dx.doi.org/10.1097/00000542-198504000-00012] [PMID: 3920932]
[86]
Bourke, D.L.; Malit, L.A.; Smith, T.C. Respiratory interactions of ketamine and morphine. Anesthesiology, 1987, 66(2), 153-156.
[http://dx.doi.org/10.1097/00000542-198702000-00008] [PMID: 3101549]
[87]
Tankersley, C.G.; Elston, R.C.; Schnell, A.H. Genetic determinants of acute hypoxic ventilation: Patterns of inheritance in mice. J. Appl. Physiol. (1985), 2000, 88(6), 2310-2318.
[88]
Nishida, T.; Nishimura, M.; Kagawa, K.; Hayashi, Y.; Mashimo, T. The effects of dexmedetomidine on the ventilatory response to hypercapnia in rabbits. Intensive Care Med., 2002, 28(7), 969-975.
[http://dx.doi.org/10.1007/s00134-002-1338-y] [PMID: 12122538]
[89]
Weingarten, T.N.; Sprung, J. Review of postoperative respiratory depression: From recovery room to general care unit. Anesthesiology, 2022, 137(6), 735-741.
[http://dx.doi.org/10.1097/ALN.0000000000004391] [PMID: 36413782]
[90]
Pandit, J.J. The variable effect of low-dose volatile anaesthetics on the acute ventilatory response to hypoxia in humans: A quantitative review. Anaesthesia, 2002, 57(7), 632-643.
[http://dx.doi.org/10.1046/j.1365-2044.2002.02604.x] [PMID: 12059820]
[91]
Tankersley, C.G.; Fitzgerald, R.S.; Kleeberger, S.R. Differential control of ventilation among inbred strains of mice. Am. J. Physiol., 1994, 267(5 Pt 2), R1371-R1377.
[PMID: 7977867]
[92]
Koh, S.O.; Severinghaus, J.W. Effect of halothane on hypoxic and hypercapnic ventilatory responses of goats. Br. J. Anaesth., 1990, 65(5), 713-717.
[http://dx.doi.org/10.1093/bja/65.5.713] [PMID: 2123397]
[93]
Easton, P.A.; Slykerman, L.J.; Anthonisen, N.R. Ventilatory response to sustained hypoxia in normal adults. J. Appl. Physiol., 1986, 61(3), 906-911.
[94]
Teppema, L.J.; Dahan, A. The ventilatory response to hypoxia in mammals: Mechanisms, measurement, and analysis. Physiol. Rev., 2010, 90(2), 675-754.
[http://dx.doi.org/10.1152/physrev.00012.2009] [PMID: 20393196]
[95]
Gautier, H. Pattern of breathing during hypoxia or hypercapnia of the awake or anesthetized cat. Respir. Physiol., 1976, 27(2), 193-206.
[http://dx.doi.org/10.1016/0034-5687(76)90074-8] [PMID: 959676]
[96]
O’Donohoe, P.B.; Turner, P.J.; Huskens, N.; Buckler, K.J.; Pandit, J.J. Influence of propofol on isolated neonatal rat carotid body glomus cell response to hypoxia and hypercapnia. Respir. Physiol. Neurobiol., 2019, 260, 17-27.
[http://dx.doi.org/10.1016/j.resp.2018.10.007] [PMID: 30389452]
[97]
Davies, R.O.; Edwards, M.W., Jr; Lahiri, S. Halothane depresses the response of carotid body chemoreceptors to hypoxia and hypercapnia in the cat. Anesthesiology, 1982, 57(3), 153-159.
[http://dx.doi.org/10.1097/00000542-198209000-00002] [PMID: 7114537]
[98]
Karanovic, N.; Pecotic, R.; Valic, M.; Jeroncic, A.; Carev, M.; Karanovic, S.; Ujevic, A.; Dogas, Z. The acute hypoxic ventilatory response under halothane, isoflurane, and sevoflurane anaesthesia in rats. Anaesthesia, 2010, 65(3), 227-234.
[http://dx.doi.org/10.1111/j.1365-2044.2009.06194.x] [PMID: 20003117]
[99]
Knill, R.L.; Gelb, A.W. Ventilatory responses to hypoxia and hypercapnia during halothane sedation and anesthesia in man. Anesthesiology, 1978, 49(4), 244-251.
[http://dx.doi.org/10.1097/00000542-197810000-00004] [PMID: 697078]
[100]
Pandit, J.J. Volatile anaesthetic depression of the carotid body chemoreflex-mediated ventilatory response to hypoxia: Directions for future research. Scientifica, 2014, 2014, 1-15.
[http://dx.doi.org/10.1155/2014/394270] [PMID: 24808974]
[101]
Weiskopf, R.B.; Raymond, L.W.; Severinghaus, J.W. Effects of halothane on canine respiratory responses to hypoxia with and without hypercarbia. Anesthesiology, 1974, 41(4), 350-359.
[http://dx.doi.org/10.1097/00000542-197410000-00008] [PMID: 4413139]
[102]
Stuth, E.A.E.; Dogas, Z.; Krolo, M.; Kampine, J.P.; Hopp, F.A.; Zuperku, E.J. Dose-dependent effects of halothane on the phrenic nerve responses to acute hypoxia in vagotomized dogs. Anesthesiology, 1997, 87(6), 1428-1439.
[http://dx.doi.org/10.1097/00000542-199712000-00022] [PMID: 9416728]
[103]
Knill, R.L.; Clement, J.L. Site of selective action of halothane on the peripheral chemoreflex pathway in humans. Anesthesiology, 1984, 61(2), 121-126.
[http://dx.doi.org/10.1097/00000542-198408000-00002] [PMID: 6465595]
[104]
Pandit, J.J.; Huskens, N.; O’Donohoe, P.B.; Turner, P.J.; Buckler, K.J. Competitive interactions between halothane and isoflurane at the carotid body and TASK channels. Anesthesiology, 2020, 133(5), 1046-1059.
[http://dx.doi.org/10.1097/ALN.0000000000003520] [PMID: 32826405]
[105]
Pandit, J.J.; O’Gallagher, K. Effects of volatile anesthetics on carotid body response to hypoxia in animals. Adv. Exp. Med. Biol., 2008, 605, 46-50.
[http://dx.doi.org/10.1007/978-0-387-73693-8_8] [PMID: 18085245]
[106]
Pandit, J.J.; Winter, V.; Bayliss, R.; Buckler, K.J. Differential effects of halothane and isoflurane on carotid body glomus cell intracellular Ca2+ and background K+ channel responses to hypoxia. Adv. Exp. Med. Biol., 2010, 669, 205-208.
[http://dx.doi.org/10.1007/978-1-4419-5692-7_41] [PMID: 20217350]
[107]
Pandit, J.J.; Buckler, K.J. Halothane and sevoflurane exert different degrees of inhibition on carotid body glomus cell intracellular Ca2+ response to hypoxia. Adv. Exp. Med. Biol., 2010, 669, 201-204.
[http://dx.doi.org/10.1007/978-1-4419-5692-7_40] [PMID: 20217349]
[108]
Kubin, L. Neural control of the upper airway: Respiratory and state-dependent mechanisms. Compr. Physiol., 2016, 6(4), 1801-1850.
[http://dx.doi.org/10.1002/cphy.c160002] [PMID: 27783860]
[109]
Hillman, D.R.; Platt, P.R.; Eastwood, P.R. The upper airway during anaesthesia. Br. J. Anaesth., 2003, 91(1), 31-39.
[http://dx.doi.org/10.1093/bja/aeg126] [PMID: 12821563]
[110]
Shin, H.J.; Kim, E.Y.; Hwang, J.W.; Do, S.H.; Na, H.S. Comparison of upper airway patency in patients with mild obstructive sleep apnea during dexmedetomidine or propofol sedation: A prospective, randomized, controlled trial. BMC Anesthesiol., 2018, 18(1), 120.
[http://dx.doi.org/10.1186/s12871-018-0586-5] [PMID: 30185146]
[111]
Del Olmo-Arroyo, F.; Hernandez-Castillo, R.; Soto, A.; Martínez, J.; Rodríguez-Cintrón, W. Perioperative management of obstructive sleep apnea: A survey of Puerto Rico anesthesia providers. Sleep Breath., 2015, 19(4), 1141-1146.
[http://dx.doi.org/10.1007/s11325-015-1124-z] [PMID: 25643763]
[112]
Eikermann, M.; Grosse-Sundrup, M.; Zaremba, S.; Henry, M.E.; Bittner, E.A.; Hoffmann, U.; Chamberlin, N.L. Ketamine activates breathing and abolishes the coupling between loss of consciousness and upper airway dilator muscle dysfunction. Anesthesiology, 2012, 116(1), 35-46.
[http://dx.doi.org/10.1097/ALN.0b013e31823d010a] [PMID: 22108392]
[113]
Eikermann, M.; Fassbender, P.; Zaremba, S.; Jordan, A.S.; Rosow, C.; Malhotra, A.; Chamberlin, N.L. Pentobarbital dose-dependently increases respiratory genioglossus muscle activity while impairing diaphragmatic function in anesthetized rats. Anesthesiology, 2009, 110(6), 1327-1334.
[http://dx.doi.org/10.1097/ALN.0b013e3181a16337] [PMID: 19417601]
[114]
Park, E.; Younes, M.; Liu, H.; Liu, X.; Horner, R.L. Systemic vs. central administration of common hypnotics reveals opposing effects on genioglossus muscle activity in rats. Sleep, 2008, 31(3), 355-365.
[http://dx.doi.org/10.1093/sleep/31.3.355] [PMID: 18363312]
[115]
Younes, M.; Park, E.; Horner, R.L. Pentobarbital sedation increases genioglossus respiratory activity in sleeping rats. Sleep, 2007, 30(4), 478-488.
[http://dx.doi.org/10.1093/sleep/30.4.478] [PMID: 17520792]
[116]
Drummond, G.B. Influence of thiopentone on upper airway muscles. Br. J. Anaesth., 1989, 63(1), 12-21.
[http://dx.doi.org/10.1093/bja/63.1.12] [PMID: 2765337]
[117]
Mishima, G.; Sanuki, T.; Sato, S.; Kobayashi, M.; Kurata, S.; Ayuse, T. Upper-airway collapsibility and compensatory responses under moderate sedation with ketamine, dexmedetomidine, and propofol in healthy volunteers. Physiol. Rep., 2020, 8(10), e14439.
[http://dx.doi.org/10.14814/phy2.14439] [PMID: 32441458]
[118]
Lodenius, Å.; Maddison, K.J.; Lawther, B.K.; Scheinin, M.; Eriksson, L.I.; Eastwood, P.R.; Hillman, D.R.; Fagerlund, M.J.; Walsh, J.H. Upper airway collapsibility during dexmedetomidine and propofol sedation in healthy volunteers. Anesthesiology, 2019, 131(5), 962-973.
[http://dx.doi.org/10.1097/ALN.0000000000002883] [PMID: 31403974]
[119]
Berger, A.J.; Sebe, J. Developmental effects of ketamine on inspiratory hypoglossal nerve activity studied in vivo and in vitro. Respir. Physiol. Neurobiol., 2007, 157(2-3), 206-214.
[http://dx.doi.org/10.1016/j.resp.2007.01.001] [PMID: 17267296]
[120]
Eikermann, M.; Malhotra, A.; Fassbender, P.; Zaremba, S.; Jordan, A.S.; Gautam, S.; White, D.P.; Chamberlin, N.L. Differential effects of isoflurane and propofol on upper airway dilator muscle activity and breathing. Anesthesiology, 2008, 108(5), 897-906.
[http://dx.doi.org/10.1097/ALN.0b013e31816c8a60] [PMID: 18431126]
[121]
Nishino, T.; Honda, Y.; Kohchi, T.; Shirahata, M.; Yonezawa, T. Effects of increasing depth of anaesthesia on phrenic nerve and hypoglossal nerve activity during the swallowing reflex in cats. Br. J. Anaesth., 1985, 57(2), 208-213.
[http://dx.doi.org/10.1093/bja/57.2.208] [PMID: 3970801]
[122]
Ochiai, R.; Guthrie, R.D.; Motoyama, E.K. Effects of varying concentrations of halothane on the activity of the genioglossus, intercostals, and diaphragm in cats: An electromyographic study. Anesthesiology, 1989, 70(5), 812-816.
[http://dx.doi.org/10.1097/00000542-198905000-00018] [PMID: 2719316]
[123]
Steenland, H.W.; Liu, H.; Horner, R.L. Endogenous glutamatergic control of rhythmically active mammalian respiratory motoneurons in vivo. J. Neurosci., 2008, 28(27), 6826-6835.
[http://dx.doi.org/10.1523/JNEUROSCI.1019-08.2008] [PMID: 18596158]
[124]
Nandi, P.R.; Charlesworth, C.H.; Taylor, S.J.; Nunn, J.F.; Doré, C.J. Effect of general anaesthesia on the pharynx. Br. J. Anaesth., 1991, 66(2), 157-162.
[http://dx.doi.org/10.1093/bja/66.2.157] [PMID: 1817614]
[125]
Ouedraogo, N.; Roux, E.; Forestier, F.; Rossetti, M.; Savineau, J.P.; Marthan, R. Effects of intravenous anesthetics on normal and passively sensitized human isolated airway smooth muscle. Anesthesiology, 1998, 88(2), 317-326.
[http://dx.doi.org/10.1097/00000542-199802000-00008] [PMID: 9477050]
[126]
Cheng, E.Y.; Mazzeo, A.J.; Bosnjak, Z.J.; Coon, R.L.; Kampine, J.P. Direct relaxant effects of intravenous anesthetics on airway smooth muscle. Anesth. Analg., 1996, 83(1), 162-168.
[http://dx.doi.org/10.1213/00000539-199607000-00028] [PMID: 8659728]
[127]
Zhi, J.; Duan, Q.; Wang, Q.; Du, X.; Yang, D. Dexmedetomidine reduces IL-4 and IgE expression through downregulation of theTLR4/NF-κB signaling pathway to alleviate airway hyperresponsiveness in OVA mice. Pulm. Pharmacol. Ther., 2022, 75, 102147.
[http://dx.doi.org/10.1016/j.pupt.2022.102147] [PMID: 35863724]
[128]
Eilers, H.; Cattaruzza, F.; Nassini, R.; Materazzi, S.; Andre, E.; Chu, C.; Cottrell, G.S.; Schumacher, M.; Geppetti, P.; Bunnett, N.W. Pungent general anesthetics activate transient receptor potential-A1 to produce hyperalgesia and neurogenic bronchoconstriction. Anesthesiology, 2010, 112(6), 1452-1463.
[http://dx.doi.org/10.1097/ALN.0b013e3181d94e00] [PMID: 20463581]
[129]
Habre, W.; Peták, F.; Sly, P.D.; Hantos, Z.; Morel, D.R. Protective effects of volatile agents against methacholine-induced bronchoconstriction in rats. Anesthesiology, 2001, 94(2), 348-353.
[http://dx.doi.org/10.1097/00000542-200102000-00026] [PMID: 11176101]
[130]
Pabelick, C.M.; Ay, B.; Prakash, Y.S.; Sieck, G.C. Effects of volatile anesthetics on store-operated Ca(2+) influx in airway smooth muscle. Anesthesiology, 2004, 101(2), 373-380.
[http://dx.doi.org/10.1097/00000542-200408000-00018] [PMID: 15277920]
[131]
Hirshman, C.A.; Bergman, N.A. Halothane and enflurane protect against bronchospasm in an asthma dog model. Anesth. Analg., 1978, 57(6), 629-633.
[http://dx.doi.org/10.1213/00000539-197811000-00009] [PMID: 569987]
[132]
Kong, C.F.; Chew, S.T.H.; Ip-Yam, P.C. Intravenous opioids reduce airway irritation during induction of anaesthesia with desflurane in adults. Br. J. Anaesth., 2000, 85(3), 364-367.
[http://dx.doi.org/10.1093/bja/85.3.364] [PMID: 11103175]
[133]
Nordmann, G.R.; Read, J.A.; Sale, S.M.; Stoddart, P.A.; Wolf, A.R. Emergence and recovery in children after desflurane and isoflurane anaesthesia: Effect of anaesthetic duration. Br. J. Anaesth., 2006, 96(6), 779-785.
[http://dx.doi.org/10.1093/bja/ael092] [PMID: 16613927]
[134]
Lerman, J.; Hammer, G.B.; Verghese, S.; Ehlers, M.; Khalil, S.N.; Betts, E.; Trillo, R.; Deutsch, J. Airway responses to desflurane during maintenance of anesthesia and recovery in children with laryngeal mask airways. Paediatr. Anaesth., 2010, 20(6), 495-505.
[http://dx.doi.org/10.1111/j.1460-9592.2010.03305.x] [PMID: 20456065]
[135]
Johnson, S.M.; Koshiya, N.; Smith, J.C. Isolation of the kernel for respiratory rhythm generation in a novel preparation: The pre-Bötzinger complex “island”. J. Neurophysiol., 2001, 85(4), 1772-1776.
[http://dx.doi.org/10.1152/jn.2001.85.4.1772] [PMID: 11287498]
[136]
Kuribayashi, J.; Sakuraba, S.; Kashiwagi, M.; Hatori, E.; Tsujita, M.; Hosokawa, Y.; Takeda, J.; Kuwana, S. Neural mechanisms of sevoflurane-induced respiratory depression in newborn rats. Anesthesiology, 2008, 109(2), 233-242.
[http://dx.doi.org/10.1097/ALN.0b013e31817f5baf] [PMID: 18648232]
[137]
Koizumi, H.; Smerin, S.E.; Yamanishi, T.; Moorjani, B.R.; Zhang, R.; Smith, J.C. TASK channels contribute to the K+-dominated leak current regulating respiratory rhythm generation in vitro. J. Neurosci., 2010, 30(12), 4273-4284.
[http://dx.doi.org/10.1523/JNEUROSCI.4017-09.2010] [PMID: 20335463]
[138]
Talley, E.M.; Bayliss, D.A. Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: Volatile anesthetics and neurotransmitters share a molecular site of action. J. Biol. Chem., 2002, 277(20), 17733-17742.
[http://dx.doi.org/10.1074/jbc.M200502200] [PMID: 11886861]
[139]
Bayliss, D.A.; Sirois, J.E.; Talley, E.M. The TASK family: two-pore domain background K+ channels. Mol. Interv., 2003, 3(4), 205-219.
[http://dx.doi.org/10.1124/mi.3.4.205] [PMID: 14993448]
[140]
Carlà, V.; Moroni, F. General anaesthetics inhibit the responses induced by glutamate receptor agonists in the mouse cortex. Neurosci. Lett., 1992, 146(1), 21-24.
[http://dx.doi.org/10.1016/0304-3940(92)90162-Z] [PMID: 1282227]
[141]
Pace, R.W.; Del Negro, C.A. AMPA and metabotropic glutamate receptors cooperatively generate inspiratory-like depolarization in mouse respiratory neurons in vitro. Eur. J. Neurosci., 2008, 28(12), 2434-2442.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06540.x] [PMID: 19032588]
[142]
Ge, Q.; Feldman, J.L. AMPA receptor activation and phosphatase inhibition affect neonatal rat respiratory rhythm generation. J. Physiol., 1998, 509(Pt 1), 255-266.
[http://dx.doi.org/10.1111/j.1469-7793.1998.255bo.x]
[143]
Martel, B.; Guimond, J.C.; Gariépy, J.F.; Gravel, J.; Auclair, F.; Kolta, A.; Lund, J.P.; Dubuc, R. Respiratory rhythms generated in the lamprey rhombencephalon. Neuroscience, 2007, 148(1), 279-293.
[http://dx.doi.org/10.1016/j.neuroscience.2007.05.023] [PMID: 17618060]
[144]
Dogas, Z.; Stuth, E.A.; Hopp, F.A.; McCrimmon, D.R.; Zuperku, E.J. NMDA receptor-mediated transmission of carotid body chemoreceptor input to expiratory bulbospinal neurones in dogs. J. Physiol., 1995, 487(Pt 3), 639-651.
[http://dx.doi.org/10.1113/jphysiol.1995.sp020906]
[145]
Krolo, M.; Stuth, E.A.; Tonkovic-Capin, M.; Hopp, F.A.; McCrimmon, D.R.; Zuperku, E.J. Relative magnitude of tonic and phasic synaptic excitation of medullary inspiratory neurons in dogs. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, 279(2), R639-R649.
[http://dx.doi.org/10.1152/ajpregu.2000.279.2.R639] [PMID: 10938255]
[146]
Shimazu, Y.; Umemura, K.; Kawano, K.; Hokamura, K.; Kawazura, H.; Nakashima, M. Respiratory effects of halothane and AMPA receptor antagonist synergy in rats. Eur. J. Pharmacol., 1998, 342(2-3), 261-265.
[http://dx.doi.org/10.1016/S0014-2999(97)01484-2] [PMID: 9548395]
[147]
Hoffmann, V.L.H.; Vermeyen, K.M.; Adriaensen, H.F.; Meert, T.F. Effects of NMDA receptor antagonists on opioid-induced respiratory depression and acute antinociception in rats. Pharmacol. Biochem. Behav., 2003, 74(4), 933-941.
[http://dx.doi.org/10.1016/S0091-3057(03)00020-0] [PMID: 12667908]
[148]
Sears, T.A.; Berger, A.J.; Phillipson, E.A. Reciprocal tonic activation of inspiratory and expiratory motoneurones by chemical drives. Nature, 1982, 299(5885), 728-730.
[http://dx.doi.org/10.1038/299728a0] [PMID: 6811952]
[149]
Dogas, Z.; Krolo, M.; Stuth, E.A.; Tonkovic-Capin, M.; Hopp, F.A.; McCrimmon, D.R.; Zuperku, E.J. Differential effects of GABAA receptor antagonists in the control of respiratory neuronal discharge patterns. J. Neurophysiol., 1998, 80(5), 2368-2377.
[http://dx.doi.org/10.1152/jn.1998.80.5.2368] [PMID: 9819249]
[150]
Takita, K.; Morimoto, Y. Effects of sevoflurane on respiratory rhythm oscillators in the medulla oblongata. Respir. Physiol. Neurobiol., 2010, 173(1), 86-94.
[http://dx.doi.org/10.1016/j.resp.2010.06.016] [PMID: 20603230]
[151]
Doi, M.; Ikeda, K. Postanesthetic respiratory depression in humans: A comparison of sevoflurane, isoflurane and halothane. J. Anesth., 1987, 1(2), 137-142.
[http://dx.doi.org/10.1007/s0054070010137] [PMID: 15235849]
[152]
Masuda, A.; Haji, A.; Kiriyama, M.; Ito, Y.; Takeda, R. Effects of sevoflurane on respiratory activities in the phrenic nerve of decerebrate cats. Acta Anaesthesiol. Scand., 1995, 39(6), 774-781.
[http://dx.doi.org/10.1111/j.1399-6576.1995.tb04169.x] [PMID: 7484033]
[153]
Stucke, A.G.; Stuth, E.A.E.; Tonkovic-Capin, V.; Tonkovic-Capin, M.; Hopp, F.A.; Kampine, J.P.; Zuperku, E.J. Effects of sevoflurane on excitatory neurotransmission to medullary expiratory neurons and on phrenic nerve activity in a decerebrate dog model. Anesthesiology, 2001, 95(2), 485-491.
[http://dx.doi.org/10.1097/00000542-200108000-00034] [PMID: 11506124]
[154]
Dahan, A.; Sarton, E.; Teppema, L.; Olievier, C.; Nieuwenhuijs, D.; Matthes, H.W.D.; Kieffer, B.L. Anesthetic potency and influence of morphine and sevoflurane on respiration in mu-opioid receptor knockout mice. Anesthesiology, 2001, 94(5), 824-832.
[http://dx.doi.org/10.1097/00000542-200105000-00021] [PMID: 11388534]
[155]
Freye, E.; Latasch, L.; Schmidhammer, H.; Portoghese, P. Interaction of S-(+)-ketamine with opiate receptors. Effects on EEG, evoked potentials and respiration in awake dogs. Anaesthesist, 1994, 43(Suppl. 2), S52-S58.
[PMID: 7840415]
[156]
Cochet-Bissuel, M.; Lory, P.; Monteil, A. The sodium leak channel, NALCN, in health and disease. Front. Cell. Neurosci., 2014, 8, 132.
[http://dx.doi.org/10.3389/fncel.2014.00132] [PMID: 24904279]
[157]
Lozic, B.; Johansson, S.; Lovric Kojundzic, S.; Markic, J.; Knappskog, P.M.; Hahn, A.F.; Boman, H. Novel NALCN variant: Altered respiratory and circadian rhythm, anesthetic sensitivity. Ann. Clin. Transl. Neurol., 2016, 3(11), 876-883.
[http://dx.doi.org/10.1002/acn3.362] [PMID: 27844033]
[158]
Chong, J.X.; McMillin, M.J.; Shively, K.M.; Beck, A.E.; Marvin, C.T.; Armenteros, J.R.; Buckingham, K.J.; Nkinsi, N.T.; Boyle, E.A.; Berry, M.N.; Bocian, M.; Foulds, N.; Uzielli, M.L.G.; Haldeman-Englert, C.; Hennekam, R.C.M.; Kaplan, P.; Kline, A.D.; Mercer, C.L.; Nowaczyk, M.J.M.; Klein Wassink-Ruiter, J.S.; McPherson, E.W.; Moreno, R.A.; Scheuerle, A.E.; Shashi, V.; Stevens, C.A.; Carey, J.C.; Monteil, A.; Lory, P.; Tabor, H.K.; Smith, J.D.; Shendure, J.; Nickerson, D.A.; Bamshad, M.J.; Bamshad, M.J.; Shendure, J.; Nickerson, D.A.; Abecasis, G.R.; Anderson, P.; Blue, E.M.; Annable, M.; Browning, B.L.; Buckingham, K.J.; Chen, C.; Chin, J.; Chong, J.X.; Cooper, G.M.; Davis, C.P.; Frazar, C.; Harrell, T.M.; He, Z.; Jain, P.; Jarvik, G.P.; Jimenez, G.; Johanson, E.; Jun, G.; Kircher, M.; Kolar, T.; Krauter, S.A.; Krumm, N.; Leal, S.M.; Luksic, D.; Marvin, C.T.; McMillin, M.J.; McGee, S.; O’Reilly, P.; Paeper, B.; Patterson, K.; Perez, M.; Phillips, S.W.; Pijoan, J.; Poel, C.; Reinier, F.; Robertson, P.D.; Santos-Cortez, R.; Shaffer, T.; Shephard, C.; Shively, K.M.; Siegel, D.L.; Smith, J.D.; Staples, J.C.; Tabor, H.K.; Tackett, M.; Underwood, J.G.; Wegener, M.; Wang, G.; Wheeler, M.M.; Yi, Q. De novo mutations in NALCN cause a syndrome characterized by congenital contractures of the limbs and face, hypotonia, and developmental delay. Am. J. Hum. Genet., 2015, 96(3), 462-473.
[http://dx.doi.org/10.1016/j.ajhg.2015.01.003] [PMID: 25683120]
[159]
Oonuma, H.; Iwasawa, K.; Iida, H.; Nagata, T.; Imuta, H.; Morita, Y.; Yamamoto, K.; Nagai, R.; Omata, M.; Nakajima, T. Inward rectifier K(+) current in human bronchial smooth muscle cells: Inhibition with antisense oligonucleotides targeted to Kir2.1 mRNA. Am. J. Respir. Cell Mol. Biol., 2002, 26(3), 371-379.
[http://dx.doi.org/10.1165/ajrcmb.26.3.4542] [PMID: 11867346]
[160]
Jiang, C.; Xu, H.; Cui, N.; Wu, J. An alternative approach to the identification of respiratory central chemoreceptors in the brainstem. Respir. Physiol., 2001, 129(1-2), 141-157.
[http://dx.doi.org/10.1016/S0034-5687(01)00301-2] [PMID: 11738651]
[161]
Trapp, S.; Tucker, S.J.; Gourine, A.V. Respiratory responses to hypercapnia and hypoxia in mice with genetic ablation of Kir5.1 (Kcnj16). Exp. Physiol., 2011, 96(4), 451-459.
[http://dx.doi.org/10.1113/expphysiol.2010.055848] [PMID: 21239463]
[162]
Ou, M.; Kuo, F.S.; Chen, X.; Kahanovitch, U.; Olsen, M.L.; Du, G.; Mulkey, D.K. Isoflurane inhibits a Kir4.1/5.1-like conductance in neonatal rat brainstem astrocytes and recombinant Kir4.1/5.1 channels in a heterologous expression system. J. Neurophysiol., 2020, 124(3), 740-749.
[http://dx.doi.org/10.1152/jn.00358.2020] [PMID: 32727273]
[163]
Sirois, J.E.; Lei, Q.; Talley, E.M.; Lynch, C., III; Bayliss, D.A. The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J. Neurosci., 2000, 20(17), 6347-6354.
[http://dx.doi.org/10.1523/JNEUROSCI.20-17-06347.2000] [PMID: 10964940]
[164]
Washburn, C.P.; Sirois, J.E.; Talley, E.M.; Guyenet, P.G.; Bayliss, D.A. Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J. Neurosci., 2002, 22(4), 1256-1265.
[http://dx.doi.org/10.1523/JNEUROSCI.22-04-01256.2002] [PMID: 11850453]
[165]
Jin, Z.; Choi, M.J.; Park, C.S.; Park, Y.S.; Jin, Y.H. Propofol facilitated excitatory postsynaptic currents frequency on nucleus tractus solitarii (NTS) neurons. Brain Res., 2012, 1432, 1-6.
[http://dx.doi.org/10.1016/j.brainres.2011.11.018] [PMID: 22119393]
[166]
McDougall, S.J.; Bailey, T.W.; Mendelowitz, D.; Andresen, M.C. Propofol enhances both tonic and phasic inhibitory currents in second-order neurons of the solitary tract nucleus (NTS). Neuropharmacology, 2008, 54(3), 552-563.
[http://dx.doi.org/10.1016/j.neuropharm.2007.11.001] [PMID: 18082229]
[167]
Fagerlund, M.J.; Kåhlin, J.; Ebberyd, A.; Schulte, G.; Mkrtchian, S.; Eriksson, L.I. The human carotid body: Expression of oxygen sensing and signaling genes of relevance for anesthesia. Anesthesiology, 2010, 113(6), 1270-1279.
[http://dx.doi.org/10.1097/ALN.0b013e3181fac061] [PMID: 20980909]
[168]
Pandit, J.J.; Buckler, K.J. Differential effects of halothane and sevoflurane on hypoxia-induced intracellular calcium transients of neonatal rat carotid body type I cells. Br. J. Anaesth., 2009, 103(5), 701-710.
[http://dx.doi.org/10.1093/bja/aep223] [PMID: 19700444]
[169]
Patel, A.J.; Honoré, E. Anesthetic-sensitive 2P domain K+ channels. Anesthesiology, 2001, 95(4), 1013-1021.
[http://dx.doi.org/10.1097/00000542-200110000-00034] [PMID: 11605899]
[170]
Wu, X.S.; Sun, J.Y.; Evers, A.S.; Crowder, M.; Wu, L.G. Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology, 2004, 100(3), 663-670.
[http://dx.doi.org/10.1097/00000542-200403000-00029] [PMID: 15108983]
[171]
Speigel, I.A.; Hemmings, H.C., Jr Selective inhibition of gamma aminobutyric acid release from mouse hippocampal interneurone subtypes by the volatile anaesthetic isoflurane. Br. J. Anaesth., 2021, 127(4), 587-599.
[http://dx.doi.org/10.1016/j.bja.2021.06.042] [PMID: 34384592]
[172]
Stock, L.; Hosoume, J.; Treptow, W. Concentration-dependent binding of small ligands to multiple saturable sites in membrane proteins. Sci. Rep., 2017, 7(1), 5734.
[http://dx.doi.org/10.1038/s41598-017-05896-8] [PMID: 28720769]
[173]
Stock, L.; Hosoume, J.; Cirqueira, L.; Treptow, W. Binding of the general anesthetic sevoflurane to ion channels. PLOS Comput. Biol., 2018, 14(11), e1006605.
[http://dx.doi.org/10.1371/journal.pcbi.1006605] [PMID: 30475796]
[174]
Conforti, L.; Bodi, I.; Nisbet, J.W.; Millhorn, D.E. O2-sensitive K+ channels: Role of the Kv1.2 -subunit in mediating the hypoxic response. J. Physiol., 2000, 524(Pt 3), 783-793.
[175]
Patel, A.J.; Honoré, E. Molecular physiology of oxygen-sensitive potassium channels. Eur. Respir. J., 2001, 18(1), 221-227.
[http://dx.doi.org/10.1183/09031936.01.00204001] [PMID: 11510795]
[176]
Marina, N.; Turovsky, E.; Christie, I.N.; Hosford, P.S.; Hadjihambi, A.; Korsak, A.; Ang, R.; Mastitskaya, S.; Sheikhbahaei, S.; Theparambil, S.M.; Gourine, A.V. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia, 2018, 66(6), 1185-1199.
[http://dx.doi.org/10.1002/glia.23283] [PMID: 29274121]
[177]
Guyenet, P.G.; Bayliss, D.A. Neural control of breathing and CO2 homeostasis. Neuron, 2015, 87(5), 946-961.
[http://dx.doi.org/10.1016/j.neuron.2015.08.001] [PMID: 26335642]
[178]
Erlichman, J.S.; Leiter, J.C.; Gourine, A.V. ATP, glia and central respiratory control. Respir. Physiol. Neurobiol., 2010, 173(3), 305-311.
[http://dx.doi.org/10.1016/j.resp.2010.06.009] [PMID: 20601205]
[179]
Kasymov, V.; Larina, O.; Castaldo, C.; Marina, N.; Patrushev, M.; Kasparov, S.; Gourine, A.V. Differential sensitivity of brainstem versus cortical astrocytes to changes in pH reveals functional regional specialization of astroglia. J. Neurosci., 2013, 33(2), 435-441.
[http://dx.doi.org/10.1523/JNEUROSCI.2813-12.2013] [PMID: 23303924]
[180]
Sheikhbahaei, S.; Turovsky, E.A.; Hosford, P.S.; Hadjihambi, A.; Theparambil, S.M.; Liu, B.; Marina, N.; Teschemacher, A.G.; Kasparov, S.; Smith, J.C.; Gourine, A.V. Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity. Nat. Commun., 2018, 9(1), 370.
[http://dx.doi.org/10.1038/s41467-017-02723-6] [PMID: 29371650]
[181]
Gourine, A.V.; Kasymov, V.; Marina, N.; Tang, F.; Figueiredo, M.F.; Lane, S.; Teschemacher, A.G.; Spyer, K.M.; Deisseroth, K.; Kasparov, S. Astrocytes control breathing through pH-dependent release of ATP. Science, 2010, 329(5991), 571-575.
[http://dx.doi.org/10.1126/science.1190721] [PMID: 20647426]
[182]
Turovsky, E.; Theparambil, S.M.; Kasymov, V.; Deitmer, J.W.; del Arroyo, A.G.; Ackland, G.L.; Corneveaux, J.J.; Allen, A.N.; Huentelman, M.J.; Kasparov, S.; Marina, N.; Gourine, A.V. Mechanisms of CO2/H+ sensitivity of astrocytes. J. Neurosci., 2016, 36(42), 10750-10758.
[http://dx.doi.org/10.1523/JNEUROSCI.1281-16.2016] [PMID: 27798130]
[183]
Zuperku, E.J.; McCrimmon, D.R. Gain modulation of respiratory neurons. Respir. Physiol. Neurobiol., 2002, 131(1-2), 121-133.
[http://dx.doi.org/10.1016/S1569-9048(02)00042-3] [PMID: 12107000]
[184]
Tonkovic-Capin, V.; Stucke, A.G.; Stuth, E.A.; Tonkovic-Capin, M.; Hopp, F.A.; McCrimmon, D.R.; Zuperku, E.J. Differential processing of excitation by GABAergic gain modulation in canine caudal ventral respiratory group neurons. J. Neurophysiol., 2003, 89(2), 862-870.
[http://dx.doi.org/10.1152/jn.00761.2002] [PMID: 12574464]
[185]
Stucke, A.G.; Zuperku, E.J.; Tonkovic-Capin, V.; Tonkovic-Capin, M.; Hopp, F.A.; Kampine, J.P.; Stuth, E.A.E. Halothane depresses glutamatergic neurotransmission to brain stem inspiratory premotor neurons in a decerebrate dog model. Anesthesiology, 2003, 98(4), 897-905.
[http://dx.doi.org/10.1097/00000542-200304000-00016] [PMID: 12657851]
[186]
Stucke, A.G.; Zuperku, E.J.; Tonkovic-Capin, V.; Krolo, M.; Hopp, F.A.; Kampine, J.P.; Stuth, E.A.E. Sevoflurane depresses glutamatergic neurotransmission to brainstem inspiratory premotor neurons but not postsynaptic receptor function in a decerebrate dog model. Anesthesiology, 2005, 103(1), 50-56.
[http://dx.doi.org/10.1097/00000542-200507000-00011] [PMID: 15983456]
[187]
Stucke, A.G.; Zuperku, E.J.; Tonkovic-Capin, V.; Krolo, M.; Hopp, F.A.; Kampine, J.P.; Stuth, E.A.E. Halothane enhances gamma-aminobutyric acid receptor type A function but does not change overall inhibition in inspiratory premotor neurons in a decerebrate dog model. Anesthesiology, 2003, 99(6), 1303-1312.
[http://dx.doi.org/10.1097/00000542-200312000-00011] [PMID: 14639142]
[188]
Stucke, A.G.; Stuth, E.A.E.; Tonkovic-Capin, V.; Tonkovic-Capin, M.; Hopp, F.A.; Kampine, J.P.; Zuperku, E.J. Effects of halothane and sevoflurane on inhibitory neurotransmission to medullary expiratory neurons in a decerebrate dog model. Anesthesiology, 2002, 96(4), 955-962.
[http://dx.doi.org/10.1097/00000542-200204000-00025] [PMID: 11964605]
[189]
Ireland, M.F.; Lenal, F.C.; Lorier, A.R.; Loomes, D.E.; Adachi, T.; Alvares, T.S.; Greer, J.J.; Funk, G.D. Distinct receptors underlie glutamatergic signalling in inspiratory rhythm-generating networks and motor output pathways in neonatal rat. J. Physiol., 2008, 586(9), 2357-2370.
[http://dx.doi.org/10.1113/jphysiol.2007.150532] [PMID: 18339693]
[190]
Robinson, D.; Ellenberger, H. Distribution of N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptor subunits on respiratory motor and premotor neurons in the rat. J. Comp. Neurol., 1997, 389(1), 94-116.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19971208)389:1<94:AID-CNE7>3.0.CO;2-9] [PMID: 9390762]
[191]
Dildy-Mayfield, J.E.; Eger, E.I., II; Harris, R.A. Anesthetics produce subunit-selective actions on glutamate receptors. J. Pharmacol. Exp. Ther., 1996, 276(3), 1058-1065.
[PMID: 8786535]
[192]
Joo, D.T.; Gong, D.; Sonner, J.M.; Jia, Z.; MacDonald, J.F.; Eger, E.I., II; Orser, B.A. Blockade of AMPA receptors and volatile anesthetics: reduced anesthetic requirements in GluR2 null mutant mice for loss of the righting reflex and antinociception but not minimum alveolar concentration. Anesthesiology, 2001, 94(3), 478-488.
[http://dx.doi.org/10.1097/00000542-200103000-00020] [PMID: 11374610]
[193]
Mody, I. Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem. Res., 2001, 26(8/9), 907-913.
[http://dx.doi.org/10.1023/A:1012376215967] [PMID: 11699942]
[194]
Stórustovu, S.; Ebert, B. Pharmacological characterization of agonists at delta-containing GABAA receptors: Functional selectivity for extrasynaptic receptors is dependent on the absence of gamma2. J. Pharmacol. Exp. Ther., 2006, 316(3), 1351-1359.
[http://dx.doi.org/10.1124/jpet.105.092403] [PMID: 16272218]
[195]
Stuth, E.A.E.; Krolo, M.; Tonkovic-Capin, M.; Hopp, F.A.; Kampine, J.P.; Zuperku, E.J. Effects of halothane on synaptic neurotransmission to medullary expiratory neurons in the ventral respiratory group of dogs. Anesthesiology, 1999, 91(3), 804-814.
[http://dx.doi.org/10.1097/00000542-199909000-00033] [PMID: 10485792]
[196]
Ou, M.; Zhao, W.; Liu, J.; Liang, P.; Huang, H.; Yu, H.; Zhu, T.; Zhou, C. The general anesthetic isoflurane bilaterally modulates neuronal excitability. iScience, 2020, 23(1), 100760.
[http://dx.doi.org/10.1016/j.isci.2019.100760] [PMID: 31926429]
[197]
Banks, M.I.; Pearce, R.A. Dual actions of volatile anesthetics on GABA(A) IPSCs: Dissociation of blocking and prolonging effects. Anesthesiology, 1999, 90(1), 120-134.
[http://dx.doi.org/10.1097/00000542-199901000-00018] [PMID: 9915321]
[198]
Stuth, E.A.E.; Krolo, M.; Stucke, A.G.; Tonkovic-Capin, M.; Tonkovic-Capin, V.; Hopp, F.A.; Kampine, J.P.; Zuperku, E.J. Effects of halothane on excitatory neurotransmission to medullary expiratory neurons in a decerebrate dog model. Anesthesiology, 2000, 93(6), 1474-1481.
[http://dx.doi.org/10.1097/00000542-200012000-00020] [PMID: 11149443]
[199]
Vanini, G.; Watson, C.J.; Lydic, R.; Baghdoyan, H.A. Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia. Anesthesiology, 2008, 109(6), 978-988.
[http://dx.doi.org/10.1097/ALN.0b013e31818e3b1b] [PMID: 19034094]
[200]
Westphalen, R.I.; Hemmings, H.C. Jr Selective depression by general anesthetics of glutamate versus GABA release from isolated cortical nerve terminals. J. Pharmacol. Exp. Ther., 2003, 304(3), 1188-1196.
[http://dx.doi.org/10.1124/jpet.102.044685] [PMID: 12604696]
[201]
Housley, G.D.; Sinclair, J.D. Localization by kainic acid lesions of neurones transmitting the carotid chemoreceptor stimulus for respiration in rat. J. Physiol., 1988, 406(1), 99-114.
[http://dx.doi.org/10.1113/jphysiol.1988.sp017371] [PMID: 3254424]
[202]
Burton, M.D.; Kazemi, H. Neurotransmitters in central respiratory control. Respir. Physiol., 2000, 122(2-3), 111-121.
[http://dx.doi.org/10.1016/S0034-5687(00)00153-5] [PMID: 10967338]
[203]
Sirois, J.E.; Lynch, C., III; Bayliss, D.A. Convergent and reciprocal modulation of a leak K + current and Ih by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J. Physiol., 2002, 541(3), 717-729.
[http://dx.doi.org/10.1113/jphysiol.2002.018119] [PMID: 12068035]
[204]
Sirois, J.E.; Pancrazio, J.J.; Lynch, C.3rd; Bayliss, D.A. Multiple ionic mechanisms mediate inhibition of rat motoneurones by inhalation anaesthetics. J. Physiol., 1998, 512(Pt 3), 851-862.
[http://dx.doi.org/10.1111/j.1469-7793.1998.851bd.x]
[205]
Washburn, C.P.; Bayliss, D.A.; Guyenet, P.G. Cardiorespiratory neurons of the rat ventrolateral medulla contain TASK-1 and TASK-3 channel mRNA. Respir. Physiol. Neurobiol., 2003, 138(1), 19-35.
[http://dx.doi.org/10.1016/S1569-9048(03)00185-X] [PMID: 14519375]
[206]
Brandes, I.F.; Zuperku, E.J.; Stucke, A.G.; Hopp, F.A.; Jakovcevic, D.; Stuth, E.A.E. Isoflurane depresses the response of inspiratory hypoglossal motoneurons to serotonin in vivo. Anesthesiology, 2007, 106(4), 736-745.
[http://dx.doi.org/10.1097/01.anes.0000264750.93769.99] [PMID: 17413911]
[207]
Montaño, L.M.; Bazán-Perkins, B. Resting calcium influx in airway smooth muscle. Can. J. Physiol. Pharmacol., 2005, 83(8-9), 717-723.
[http://dx.doi.org/10.1139/y05-063] [PMID: 16333373]
[208]
Perez-Zoghbi, J.F.; Karner, C.; Ito, S.; Shepherd, M.; Alrashdan, Y.; Sanderson, M.J. Ion channel regulation of intracellular calcium and airway smooth muscle function. Pulm. Pharmacol. Ther., 2009, 22(5), 388-397.
[http://dx.doi.org/10.1016/j.pupt.2008.09.006] [PMID: 19007899]
[209]
Hall, A.C.; Lieb, W.R.; Franks, N.P. Insensitivity of P-type calcium channels to inhalational and intravenous general anesthetics. Anesthesiology, 1994, 81(1), 117-123.
[http://dx.doi.org/10.1097/00000542-199407000-00017] [PMID: 8042779]
[210]
Reyes-García, J.; Flores-Soto, E.; Carbajal-García, A.; Sommer, B.; Montaño, L.M. Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (Review). Int. J. Mol. Med. , 2018, 42(6), 2998-3008.
[PMID: 30280184]
[211]
Yamakage, M.; Hirshman, C.A.; Croxton, T.L. Volatile anesthetics inhibit voltage-dependent Ca2+ channels in porcine tracheal smooth muscle cells. Am. J. Physiol., 1995, 268(2 Pt 1), L187-L191.
[PMID: 7864139]
[212]
Study, R.E. Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons. Anesthesiology, 1994, 81(1), 104-116.
[http://dx.doi.org/10.1097/00000542-199407000-00016] [PMID: 8042778]
[213]
Hemmings, H.C., Jr Sodium channels and the synaptic mechanisms of inhaled anaesthetics. Br. J. Anaesth., 2009, 103(1), 61-69.
[http://dx.doi.org/10.1093/bja/aep144] [PMID: 19508978]
[214]
Cannon, S.C. Sodium channelopathies of skeletal muscle. Handb. Exp. Pharmacol., 2017, 246, 309-330.
[http://dx.doi.org/10.1007/164_2017_52] [PMID: 28939973]
[215]
Pechmann, A.; Eckenweiler, M.; Schorling, D.; Stavropoulou, D.; Lochmüller, H.; Kirschner, J. De novo variant in SCN4A causes neonatal sodium channel myotonia with general muscle stiffness and respiratory failure. Neuromuscul. Disord., 2019, 29(11), 907-909.
[http://dx.doi.org/10.1016/j.nmd.2019.09.001] [PMID: 31732390]
[216]
Ouyang, W.; Wang, G.; Hemmings, H.C., Jr Isoflurane and propofol inhibit voltage-gated sodium channels in isolated rat neurohypophysial nerve terminals. Mol. Pharmacol., 2003, 64(2), 373-381.
[http://dx.doi.org/10.1124/mol.64.2.373] [PMID: 12869642]
[217]
Bardou, O.; Trinh, N.T.N.; Brochiero, E. Molecular diversity and function of K + channels in airway and alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, 296(2), L145-L155.
[http://dx.doi.org/10.1152/ajplung.90525.2008] [PMID: 19060226]
[218]
Miller, J.R.; Zuperku, E.J.; Stuth, E.A.E.; Banerjee, A.; Hopp, F.A.; Stucke, A.G. A subregion of the parabrachial nucleus partially mediates respiratory rate depression from intravenous remifentanil in young and adult rabbits. Anesthesiology, 2017, 127(3), 502-514.
[http://dx.doi.org/10.1097/ALN.0000000000001719] [PMID: 28590302]
[219]
Montandon, G.; Qin, W.; Liu, H.; Ren, J.; Greer, J.J.; Horner, R.L. PreBotzinger complex neurokinin-1 receptor-expressing neurons mediate opioid-induced respiratory depression. J. Neurosci., 2011, 31(4), 1292-1301.
[http://dx.doi.org/10.1523/JNEUROSCI.4611-10.2011] [PMID: 21273414]
[220]
Montandon, G.; Horner, R. Crosstalk proposal: The preBötzinger complex is essential for the respiratory depression following systemic administration of opioid analgesics. J. Physiol., 2014, 592(6), 1159-1162.
[http://dx.doi.org/10.1113/jphysiol.2013.261974] [PMID: 24634011]
[221]
Prkic, I.; Mustapic, S.; Radocaj, T.; Stucke, A.G.; Stuth, E.A.E.; Hopp, F.A.; Dean, C.; Zuperku, E.J. Pontine μ-opioid receptors mediate bradypnea caused by intravenous remifentanil infusions at clinically relevant concentrations in dogs. J. Neurophysiol., 2012, 108(9), 2430-2441.
[http://dx.doi.org/10.1152/jn.00185.2012] [PMID: 22875901]
[222]
Liu, S.; Kim, D.I.; Oh, T.G.; Pao, G.M.; Kim, J.H.; Palmiter, R.D.; Banghart, M.R.; Lee, K.F.; Evans, R.M.; Han, S. Neural basis of opioid-induced respiratory depression and its rescue. Proc. Natl. Acad. Sci. USA, 2021, 118(23), e2022134118.
[http://dx.doi.org/10.1073/pnas.2022134118] [PMID: 34074761]
[223]
Varga, A.G.; Reid, B.T.; Kieffer, B.L.; Levitt, E.S. Differential impact of two critical respiratory centres in opioid-induced respiratory depression in awake mice. J. Physiol., 2020, 598(1), 189-205.
[http://dx.doi.org/10.1113/JP278612] [PMID: 31589332]
[224]
Manzke, T.; Guenther, U.; Ponimaskin, E.G.; Haller, M.; Dutschmann, M.; Schwarzacher, S.; Richter, D.W. 5-HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science, 2003, 301(5630), 226-229.
[http://dx.doi.org/10.1126/science.1084674] [PMID: 12855812]
[225]
Gray, P.A.; Janczewski, W.A.; Mellen, N.; McCrimmon, D.R.; Feldman, J.L. Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons. Nat. Neurosci., 2001, 4(9), 927-930.
[http://dx.doi.org/10.1038/nn0901-927] [PMID: 11528424]
[226]
McKay, L.C.; Feldman, J.L. Unilateral ablation of pre-Botzinger complex disrupts breathing during sleep but not wakefulness. Am. J. Respir. Crit. Care Med., 2008, 178(1), 89-95.
[http://dx.doi.org/10.1164/rccm.200712-1901OC] [PMID: 18420958]
[227]
Kim, D.W.; Joo, J.D.; In, J.H.; Jeon, Y.S.; Jung, H.S.; Jeon, K.B.; Park, J.S.; Choi, J.W. Comparison of the recovery and respiratory effects of aminophylline and doxapram following total intravenous anesthesia with propofol and remifentanil. J. Clin. Anesth., 2013, 25(3), 173-176.
[http://dx.doi.org/10.1016/j.jclinane.2012.07.005] [PMID: 23583458]
[228]
Roozekrans, M.; van der Schrier, R.; Okkerse, P.; Hay, J.; McLeod, J.F.; Dahan, A. Two studies on reversal of opioid-induced respiratory depression by BK-channel blocker GAL021 in human volunteers. Anesthesiology, 2014, 121(3), 459-468.
[http://dx.doi.org/10.1097/ALN.0000000000000367] [PMID: 25222672]
[229]
Dahan, A.; van der Schrier, R.; Smith, T.; Aarts, L.; van Velzen, M.; Niesters, M. Averting opioid-induced respiratory depression without affecting analgesia. Anesthesiology, 2018, 128(5), 1027-1037.
[http://dx.doi.org/10.1097/ALN.0000000000002184] [PMID: 29553984]
[230]
Algera, M.H.; Kamp, J.; van der Schrier, R.; van Velzen, M.; Niesters, M.; Aarts, L.; Dahan, A.; Olofsen, E. Opioid-induced respiratory depression in humans: A review of pharmacokinetic–pharmacodynamic modelling of reversal. Br. J. Anaesth., 2019, 122(6), e168-e179.
[http://dx.doi.org/10.1016/j.bja.2018.12.023] [PMID: 30915997]
[231]
Ren, J.; Ding, X.; Greer, J.J. 5-HT1A receptor agonist Befiradol reduces fentanyl-induced respiratory depression, analgesia, and sedation in rats. Anesthesiology, 2015, 122(2), 424-434.
[http://dx.doi.org/10.1097/ALN.0000000000000490] [PMID: 25313880]
[232]
Guenther, U.; Wrigge, H.; Theuerkauf, N.; Boettcher, M.F.; Wensing, G.; Zinserling, J.; Putensen, C.; Hoeft, A. Repinotan, a selective 5-HT1A-R-agonist, antagonizes morphine-induced ventilatory depression in anesthetized rats. Anesth. Analg., 2010, 111(4), 901-907.
[http://dx.doi.org/10.1213/ANE.0b013e3181eac011] [PMID: 20802053]
[233]
Guenther, U.; Theuerkauf, N.U.; Huse, D.; Boettcher, M.F.; Wensing, G.; Putensen, C.; Hoeft, A. Selective 5-HT(1A)-R-agonist repinotan prevents remifentanil-induced ventilatory depression and prolongs antinociception. Anesthesiology, 2012, 116(1), 56-64.
[http://dx.doi.org/10.1097/ALN.0b013e31823d08fa] [PMID: 22082683]
[234]
Buckler, K.J. Background leak K+-currents and oxygen sensing in carotid body type 1 cells. Respir. Physiol., 1999, 115(2), 179-187.
[http://dx.doi.org/10.1016/S0034-5687(99)00015-8] [PMID: 10385032]
[235]
Funk, G.D.; Smith, J.C.; Feldman, J.L. Generation and transmission of respiratory oscillations in medullary slices: Role of excitatory amino acids. J. Neurophysiol., 1993, 70(4), 1497-1515.
[http://dx.doi.org/10.1152/jn.1993.70.4.1497] [PMID: 8283211]
[236]
Lee, K.; Goodman, L.; Fourie, C.; Schenk, S.; Leitch, B.; Montgomery, J.M. AMPA receptors as therapeutic targets for neurological disorders. Adv. Protein Chem. Struct. Biol., 2016, 103, 203-261.
[http://dx.doi.org/10.1016/bs.apcsb.2015.10.004] [PMID: 26920691]
[237]
ElMallah, M.K.; Pagliardini, S.; Turner, S.M.; Cerreta, A.J.; Falk, D.J.; Byrne, B.J.; Greer, J.J.; Fuller, D.D. Stimulation of respiratory motor output and ventilation in a murine model of Pompe disease by Ampakines. Am. J. Respir. Cell Mol. Biol., 2015, 53(3), 326-335.
[http://dx.doi.org/10.1165/rcmb.2014-0374OC] [PMID: 25569118]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy