Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

硫氧还蛋白1在大脑中的神经保护作用

卷 20, 期 5, 2023

发表于: 07 September, 2023

页: [318 - 340] 页: 23

弟呕挨: 10.2174/1567205020666230809145041

价格: $65

摘要

硫氧还蛋白1 (Trx1)是一种普遍存在的抗氧化蛋白,可调节细胞的氧化还原状态。Trx1的硫醇氧化还原活性保护神经元免受各种引起神经元损伤和神经变性的生理过程,包括氧化应激、细胞凋亡和炎症。一些研究发现,直接或间接调节Trx1在大脑中具有神经保护作用,可以防止、预防或延缓神经退行性过程或脑创伤。本文就Trx1在脑缺血、缺氧、出血、创伤性脑损伤、癫痫、阿尔茨海默病和帕金森病的动物和临床模型中的神经保护作用、Trx1在脑中的定位和表达及其调控进行综述。

关键词: 阿尔茨海默病,癫痫,帕金森病,中风,创伤性脑损伤,Trx1。

[1]
Hadri, K.E.; Mahmood, D.F.D.; Couchie, D.; Jguirim-Souissi, I.; Genze, F.; Diderot, V.; Syrovets, T.; Lunov, O.; Simmet, T.; Rouis, M. Thioredoxin-1 promotes anti-inflammatory macrophages of the M2 phenotype and antagonizes atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(6), 1445-1452.
[http://dx.doi.org/10.1161/ATVBAHA.112.249334] [PMID: 22516068]
[2]
Li, H.; Wan, A.; Xu, G.; Ye, D. Small changes huge impact: The role of thioredoxin 1 in the regulation of apoptosis by S-nitrosylation. Acta Biochim. Biophys. Sin., 2013, 45(3), 153-161.
[http://dx.doi.org/10.1093/abbs/gms103] [PMID: 23212077]
[3]
Lu, J.; Holmgren, A. Thioredoxin system in cell death progression. Antioxid. Redox Signal., 2012, 17(12), 1738-1747.
[http://dx.doi.org/10.1089/ars.2012.4650] [PMID: 22530689]
[4]
Pekkari, K.; Avila-Cariño, J.; Bengtsson, A.; Gurunath, R.; Scheynius, A.; Holmgren, A. Truncated thioredoxin (Trx80) induces production of interleukin-12 and enhances CD14 expression in human monocytes. Blood, 2001, 97(10), 3184-3190.
[http://dx.doi.org/10.1182/blood.V97.10.3184] [PMID: 11342447]
[5]
Seco-Cervera, M.; González-Cabo, P.; Pallardó, F.; Romá-Mateo, C.; García-Giménez, J. Thioredoxin and glutaredoxin systems as potential targets for the development of new treatments in Friedreich’s ataxia. Antioxidants, 2020, 9(12), 1257.
[http://dx.doi.org/10.3390/antiox9121257] [PMID: 33321938]
[6]
Xie, W.; Ma, W.; Liu, P.; Zhou, F. Overview of thioredoxin system and targeted therapies for acute leukemia. Mitochondrion, 2019, 47, 38-46.
[http://dx.doi.org/10.1016/j.mito.2019.04.010] [PMID: 31029641]
[7]
Zhang, J.; Duan, D.; Osama, A.; Fang, J. Natural molecules targeting thioredoxin system and their therapeutic potential. Antioxid. Redox Signal., 2021, 34(14), 1083-1107.
[http://dx.doi.org/10.1089/ars.2020.8213] [PMID: 33115246]
[8]
Cortes-Bratti, X.; Bassères, E.; Herrera-Rodriguez, F.; Botero-Kleiven, S.; Coppotelli, G.; Andersen, J.B.; Masucci, M.G.; Holmgren, A.; Chaves-Olarte, E.; Frisan, T.; Avila-Cariño, J. Thioredoxin 80-activated-monocytes (TAMs) inhibit the replication of intracellular pathogens. PLoS One, 2011, 6(2), e16960.
[http://dx.doi.org/10.1371/journal.pone.0016960] [PMID: 21365006]
[9]
Gil-Bea, F.; Akterin, S.; Persson, T.; Mateos, L.; Sandebring, A.; Avila-Cariño, J.; Gutierrez-Rodriguez, A.; Sundström, E.; Holmgren, A.; Winblad, B.; Cedazo-Minguez, A. Thioredoxin-80 is a product of alpha-secretase cleavage that inhibits amyloid-beta aggregation and is decreased in Alzheimer’s disease brain. EMBO Mol. Med., 2012, 4(10), 1097-1111.
[http://dx.doi.org/10.1002/emmm.201201462] [PMID: 22933306]
[10]
Guevara-Flores, A.; Martínez-González, J.; Rendón, J.; del Arenal, I. The architecture of thiol antioxidant systems among invertebrate parasites. Molecules, 2017, 22(2), 259.
[http://dx.doi.org/10.3390/molecules22020259] [PMID: 28208651]
[11]
Kabe, Y.; Ando, K.; Hirao, S.; Yoshida, M.; Handa, H. Redox regulation of NF-kappaB activation: Distinct redox regulation between the cytoplasm and the nucleus. Antioxid. Redox. Signal., 2005, 7(3-4), 395-403.
[http://dx.doi.org/10.1089/ars.2005.7.395] [PMID: 15706086]
[12]
Wei, S.J.; Botero, A.; Hirota, K.; Bradbury, C.M.; Markovina, S.; Laszlo, A.; Spitz, D.R.; Goswami, P.C.; Yodoi, J.; Gius, D. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res., 2000, 60(23), 6688-6695.
[PMID: 11118054]
[13]
Chen, Y.; Cai, J.; Murphy, T.J.; Jones, D.P. Overexpressed human mitochondrial thioredoxin confers resistance to oxidant-induced apoptosis in human osteosarcoma cells. J. Biol. Chem., 2002, 277(36), 33242-33248.
[http://dx.doi.org/10.1074/jbc.M202026200] [PMID: 12032145]
[14]
Damdimopoulos, A.E.; Miranda-Vizuete, A.; Pelto-Huikko, M.; Gustafsson, J.Å.; Spyrou, G. Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. J. Biol. Chem., 2002, 277(36), 33249-33257.
[http://dx.doi.org/10.1074/jbc.M203036200] [PMID: 12080052]
[15]
Collet, J.F.; Messens, J. Structure, function, and mechanism of thioredoxin proteins. Antioxid. Redox Signal., 2010, 13(8), 1205-1216.
[http://dx.doi.org/10.1089/ars.2010.3114] [PMID: 20136512]
[16]
Kronenfeld, G.; Engelman, R.; Weisman-Shomer, P.; Atlas, D.; Benhar, M. Thioredoxin-mimetic peptides as catalysts of S-denitrosylation and anti-nitrosative stress agents. Free Radic. Biol. Med., 2015, 79, 138-146.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.11.021] [PMID: 25483557]
[17]
Schenk, H.; Vogt, M.; Dröge, W.; Schulze-Osthoff, K. Thioredoxin as a potent costimulus of cytokine expression. J. Immunol., 1996, 156(2), 765-771.
[http://dx.doi.org/10.4049/jimmunol.156.2.765]
[18]
Fujino, G.; Noguchi, T.; Takeda, K.; Ichijo, H. Thioredoxin and protein kinases in redox signaling. Semin. Cancer Biol., 2006, 16(6), 427-435.
[http://dx.doi.org/10.1016/j.semcancer.2006.09.003] [PMID: 17081769]
[19]
King, B. C.; Nowakowska, J.; Karsten, C. M.; Köhl, J.; Renström, E.; Blom, A. M. Truncated and full-length thioredoxin-1 have opposing activating and inhibitory properties for human complement with relevance to endothelial surfaces. J. Immunol., 2012, 188(8), 4103-12.
[http://dx.doi.org/10.4049/jimmunol.1101295]
[20]
Kim, D.O.; Byun, J.E.; Seong, H.A.; Yoon, S.R.; Choi, I.; Jung, H. Thioredoxin-interacting protein-derived peptide (TN13) inhibits LPS-induced inflammation by inhibiting p38 MAPK signaling. Biochem. Biophys. Res. Commun., 2018, 507(1-4), 489-495.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.069] [PMID: 30448175]
[21]
Rancourt, R.; Lee, R.; Oneill, H.; Accurso, F.; White, C. Reduced thioredoxin increases proinflammatory cytokines and neutrophil influx in rat airways: Modulation by airway mucus. Free Radic. Biol. Med., 2007, 42(9), 1441-1453.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.02.007] [PMID: 17395017]
[22]
Tonissen, K.F.; Wells, J.R.E. Isolation and characterization of human thioredoxin-encoding genes. Gene, 1991, 102(2), 221-228.
[http://dx.doi.org/10.1016/0378-1119(91)90081-L] [PMID: 1874447]
[23]
Zhou, R.; Tardivel, A.; Thorens, B.; Choi, I.; Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol., 2010, 11(2), 136-140.
[http://dx.doi.org/10.1038/ni.1831] [PMID: 20023662]
[24]
Mahmood, D.F.D.; Abderrazak, A.; Couchie, D.; Lunov, O.; Diderot, V.; Syrovets, T.; Slimane, M.N.; Gosselet, F.; Simmet, T.; Rouis, M.; El Hadri, K. Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis. J. Cell. Physiol., 2013, 228(7), 1577-1583.
[http://dx.doi.org/10.1002/jcp.24319] [PMID: 23335265]
[25]
Plugis, N.M.; Weng, N.; Zhao, Q.; Palanski, B.A.; Maecker, H.T.; Habtezion, A.; Khosla, C. Interleukin 4 is inactivated via selective disulfide-bond reduction by extracellular thioredoxin. Proc. Natl. Acad. Sci. USA, 2018, 115(35), 8781-8786.
[http://dx.doi.org/10.1073/pnas.1805288115] [PMID: 30104382]
[26]
Powis, G.; Kirkpatrick, D.L. Thioredoxin signaling as a target for cancer therapy. Curr. Opin. Pharmacol., 2007, 7(4), 392-397.
[http://dx.doi.org/10.1016/j.coph.2007.04.003] [PMID: 17611157]
[27]
Yoshihara, E.; Chen, Z.; Matsuo, Y.; Masutani, H.; Yodoi, J. Thiol redox transitions by thioredoxin and thioredoxin-binding protein-2 in cell signaling. Methods Enzymol., 2010, 474, 67-82.
[http://dx.doi.org/10.1016/S0076-6879(10)74005-2] [PMID: 20609905]
[28]
Kim, H.J.; Ha, S.; Lee, H.Y.; Lee, K.J. ROSics: Chemistry and proteomics of cysteine modifications in redox biology. Mass Spectrom. Rev., 2015, 34(2), 184-208.
[http://dx.doi.org/10.1002/mas.21430] [PMID: 24916017]
[29]
Masutani, H.; Bai, J.; Kim, Y.C.; Yodoi, J. Thioredoxin as a neurotrophic cofactor and an important regulator of neuroprotection. Mol. Neurobiol., 2004, 29(3), 229-242.
[http://dx.doi.org/10.1385/MN:29:3:229] [PMID: 15181236]
[30]
Powis, G.; Montfort, W.R. Properties and biological activities of thioredoxins. Annu. Rev. Pharmacol. Toxicol., 2001, 41(1), 261-295.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.261] [PMID: 11264458]
[31]
Powis, G.; Mustacich, D.; Coon, A. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic. Biol. Med., 2000, 29(3-4), 312-322.
[http://dx.doi.org/10.1016/S0891-5849(00)00313-0] [PMID: 11035260]
[32]
Ditgen, D.; Anandarajah, E.M.; Hansmann, J.; Winter, D.; Schramm, G.; Erttmann, K.D.; Liebau, E.; Brattig, N.W. Multifunctional thioredoxin-like protein from the gastrointestinal parasitic nematodes Strongyloides ratti and Trichuris suis affects mucosal homeostasis. J. Parasitol. Res., 2016, 2016, 1-17.
[http://dx.doi.org/10.1155/2016/8421597] [PMID: 27872753]
[33]
Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med., 2014, 66, 75-87.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.036] [PMID: 23899494]
[34]
Martin, J. L. Thioredoxin—A fold for all reasons. Structure, 1995, 3(3), 245-50.
[35]
Fu, C.; Wu, C.; Liu, T.; Ago, T.; Zhai, P.; Sadoshima, J.; Li, H. Elucidation of thioredoxin target protein networks in mouse. Mol. Cell. Proteomics, 2009, 8(7), 1674-1687.
[http://dx.doi.org/10.1074/mcp.M800580-MCP200] [PMID: 19416943]
[36]
Taniguchi, Y.; Taniguchi-Ueda, Y.; Mori, K.; Yodoi, J. A novel promoter sequence is involved in the oxidative stress-induced expression of the adult T-cell leukemia-derived factor (ADF)/human thioredoxin (Trx) gene. Nucleic Acids Res., 1996, 24(14), 2746-2752.
[http://dx.doi.org/10.1093/nar/24.14.2746] [PMID: 8759006]
[37]
Ren, X.; Zou, L.; Zhang, X.; Branco, V.; Wang, J.; Carvalho, C.; Holmgren, A.; Lu, J. Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system. Antioxid. Redox. Signal., 2017, 27(13), 989-1010.
[http://dx.doi.org/10.1089/ars.2016.6925] [PMID: 28443683]
[38]
Rozell, B.; Hansson, H.A.; Luthman, M.; Holmgren, A. Immunohistochemical localization of thioredoxin and thioredoxin reductase in adult rats. Eur. J. Cell Biol., 1985, 38(1), 79-86.
[PMID: 3896810]
[39]
Garman, R.H. Histology of the central nervous system. Toxicol. Pathol., 2011, 39(1), 22-35.
[http://dx.doi.org/10.1177/0192623310389621] [PMID: 21119051]
[40]
Hori, K.; Katayama, M.; Sato, N.; Ishii, K.; Waga, S.; Yodoi, J. Neuroprotection by glial cells through adult T cell leukemia-derived factor/human thioredoxin (ADF/TRX). Brain Res., 1994, 652(2), 304-310.
[http://dx.doi.org/10.1016/0006-8993(94)90241-0] [PMID: 7953744]
[41]
Wang, M.; Zhu, K.; Zhang, L.; Li, L.; Zhao, J. Thioredoxin 1 protects astrocytes from oxidative stress by maintaining peroxiredoxin activity. Mol. Med. Rep., 2016, 13(3), 2864-2870.
[http://dx.doi.org/10.3892/mmr.2016.4855] [PMID: 26846911]
[42]
Sharma, V.; Mishra, M.; Ghosh, S.; Tewari, R.; Basu, A.; Seth, P.; Sen, E. Modulation of interleukin-1β mediated inflammatory response in human astrocytes by flavonoids: Implications in neuroprotection. Brain Res. Bull., 2007, 73(1-3), 55-63.
[http://dx.doi.org/10.1016/j.brainresbull.2007.01.016] [PMID: 17499637]
[43]
Jana, M.; Palencia, C.A.; Pahan, K. Fibrillar amyloid-β peptides activate microglia via TLR2: Implications for Alzheimer’s disease. J. Immunol., 2008, 181(10), 7254-7262.
[http://dx.doi.org/10.4049/jimmunol.181.10.7254] [PMID: 18981147]
[44]
Lively, S.; Schlichter, L.C. Microglia responses to pro-inflammatory stimuli (LPS, IFNγ+TNFα) and reprogramming by resolving cytokines (IL-4, IL-10). Front. Cell. Neurosci., 2018, 12, 215.
[http://dx.doi.org/10.3389/fncel.2018.00215] [PMID: 30087595]
[45]
Monif, M.; Reid, C.A.; Powell, K.L.; Drummond, K.J.; O’Brien, T.J.; Williams, D.A. Interleukin-1β has trophic effects in microglia and its release is mediated by P2X7R pore. J. Neuroinflammation, 2016, 13(1), 173.
[http://dx.doi.org/10.1186/s12974-016-0621-8] [PMID: 27364756]
[46]
Akterin, S.; Cowburn, R.F.; Miranda-Vizuete, A.; Jiménez, A.; Bogdanovic, N.; Winblad, B.; Cedazo-Minguez, A. Involvement of glutaredoxin-1 and thioredoxin-1 in β-amyloid toxicity and Alzheimer’s disease. Cell Death Differ., 2006, 13(9), 1454-1465.
[http://dx.doi.org/10.1038/sj.cdd.4401818] [PMID: 16311508]
[47]
Salzano, S.; Checconi, P.; Hanschmann, E.M.; Lillig, C.H.; Bowler, L.D.; Chan, P.; Vaudry, D.; Mengozzi, M.; Coppo, L.; Sacre, S.; Atkuri, K.R.; Sahaf, B.; Herzenberg, L.A.; Herzenberg, L.A.; Mullen, L.; Ghezzi, P. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc. Natl. Acad. Sci. USA, 2014, 111(33), 12157-12162.
[http://dx.doi.org/10.1073/pnas.1401712111] [PMID: 25097261]
[48]
Ariff-Iqbal, M. Role of thioredoxin system in regulation of neural stem cell proliferation and differentiation. University of Manitoba Winnipeg. 2016.
[49]
Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; Deng, S.; Liddelow, S.A.; Zhang, C.; Daneman, R.; Maniatis, T.; Barres, B.A.; Wu, J.Q. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci., 2014, 34(36), 11929-11947.
[http://dx.doi.org/10.1523/JNEUROSCI.1860-14.2014] [PMID: 25186741]
[50]
Vilhardt, F.; Haslund-Vinding, J.; Jaquet, V.; McBean, G. Microglia antioxidant systems and redox signalling. Br. J. Pharmacol., 2017, 174(12), 1719-1732.
[http://dx.doi.org/10.1111/bph.13426] [PMID: 26754582]
[51]
Godoy, J.R.; Funke, M.; Ackermann, W.; Haunhorst, P.; Oesteritz, S.; Capani, F.; Elsässer, H.P.; Lillig, C.H. Redox atlas of the mouse. Biochim. Biophys. Acta, Gen. Subj., 2011, 1810(1), 2-92.
[http://dx.doi.org/10.1016/j.bbagen.2010.05.006]
[52]
Aon-Bertolino, M.L.; Romero, J.I.; Galeano, P.; Holubiec, M.; Badorrey, M.S.; Saraceno, G.E.; Hanschmann, E.M.; Lillig, C.H.; Capani, F. Thioredoxin and glutaredoxin system proteins-immunolocalization in the rat central nervous system. Biochim. Biophys. Acta, Gen. Subj., 2011, 1810(1), 93-110.
[http://dx.doi.org/10.1016/j.bbagen.2010.06.011] [PMID: 20620191]
[53]
Yin, B.; Barrionuevo, G.; Batinic-Haberle, I.; Sandberg, M.; Weber, S.G. Differences in reperfusion-induced mitochondrial oxidative stress and cell death between hippocampal CA1 and CA3 subfields are due to the mitochondrial thioredoxin system. Antioxid. Redox Signal., 2017, 27(9), 534-549.
[http://dx.doi.org/10.1089/ars.2016.6706] [PMID: 28129719]
[54]
Pirazzini, M.; Azarnia Tehran, D.; Zanetti, G.; Megighian, A.; Scorzeto, M.; Fillo, S.; Shone, C.C.; Binz, T.; Rossetto, O.; Lista, F.; Montecucco, C. Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins. Cell Rep., 2014, 8(6), 1870-1878.
[http://dx.doi.org/10.1016/j.celrep.2014.08.017] [PMID: 25220457]
[55]
Silva-Adaya, D.; Gonsebatt, M.E.; Guevara, J. Thioredoxin system regulation in the central nervous system: Experimental models and clinical evidence. Oxid. Med. Cell. Longev., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/590808] [PMID: 24723994]
[56]
Vajda, F.J.E. Neuroprotection and neurodegenerative disease. J. Clin. Neurosci., 2002, 9(1), 4-8.
[http://dx.doi.org/10.1054/jocn.2001.1027] [PMID: 11749009]
[57]
Farooqui, A.A. Neuroinflammation, resolution, and neuroprotection in the brain, 1st ed.; Elsevier: Amsterdam, 2021.
[58]
Dirnagl, U.; Simon, R.P.; Hallenbeck, J.M. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci., 2003, 26(5), 248-254.
[http://dx.doi.org/10.1016/S0166-2236(03)00071-7] [PMID: 12744841]
[59]
Jain, K.K. The Handbook of Neuroprotection; Springer: New York, 2019.
[http://dx.doi.org/10.1007/978-1-4939-9465-6]
[60]
Marmolejo-Martínez-Artesero, S.; Casas, C.; Romeo-Guitart, D. Endogenous mechanisms of neuroprotection: To boost or not to be. Cells, 2021, 10(2), 370.
[http://dx.doi.org/10.3390/cells10020370] [PMID: 33578870]
[61]
Smirnova, L.; Harris, G.; Leist, M.; Hartung, T. Cellular resilience. Altern. Anim. Exp., 2015, 32(4), 247-260.
[PMID: 26536287]
[62]
Jia, J.; Zhang, X.; Hu, Y.S.; Wu, Y.; Wang, Q.Z.; Li, N.N.; Wu, C.Q.; Yu, H.X.; Guo, Q.C. Protective effect of tetraethyl pyrazine against focal cerebral ischemia/reperfusion injury in rats: Therapeutic time window and its mechanism. Thromb. Res., 2009, 123(5), 727-730.
[http://dx.doi.org/10.1016/j.thromres.2008.11.004] [PMID: 19128823]
[63]
Wu, M.H.; Song, F.Y.; Wei, L.P.; Meng, Z.Y.; Zhang, Z.Q.; Qi, Q.D. Serum levels of thioredoxin are associated with stroke risk, severity, and lesion volumes. Mol. Neurobiol., 2016, 53(1), 677-685.
[http://dx.doi.org/10.1007/s12035-014-9016-y] [PMID: 25520003]
[64]
Tang, Q.; Han, R.; Xiao, H.; Li, J.; Shen, J.; Luo, Q. Protective effect of tanshinone IIA on the brain and its therapeutic time window in rat models of cerebral ischemia-reperfusion. Exp. Ther. Med., 2014, 8(5), 1616-1622.
[http://dx.doi.org/10.3892/etm.2014.1936] [PMID: 25289069]
[65]
Chi, O.Z.; Barsoum, S.; Grayson, J.; Liu, X.; Weiss, H.R. Effects of the thioredoxin-1 inhibitor PX-12 on blood-brain barrier permeability in the early stage of focal cerebral ischemia. Pharmacology, 2013, 92(3-4), 175-181.
[http://dx.doi.org/10.1159/000354583] [PMID: 24060905]
[66]
Zhu, W.; Wang, X.R.; Du, S.Q.; Yan, C.Q.; Yang, N.N.; Lin, L.L.; Shi, G.X.; Liu, C.Z. Anti-oxidative and anti-apoptotic effects of acupuncture: Role of thioredoxin-1 in the hippocampus of vascular dementia rats. Neuroscience, 2018, 379, 281-291.
[http://dx.doi.org/10.1016/j.neuroscience.2018.03.029] [PMID: 29592844]
[67]
Tian, L.; Nie, H.; Zhang, Y.; Chen, Y.; Peng, Z.; Cai, M.; Wei, H.; Qin, P.; Dong, H.; Xiong, L. Recombinant human thioredoxin-1 promotes neurogenesis and facilitates cognitive recovery following cerebral ischemia in mice. Neuropharmacology, 2014, 77, 453-464.
[http://dx.doi.org/10.1016/j.neuropharm.2013.10.027] [PMID: 24212059]
[68]
Yu, T.; Zhang, W.; Lin, Y.; Li, Q.; Xue, J.; Cai, Z.; Cheng, Y.; Shao, B. Prognostic value of serum thioredoxin levels in ischemic stroke. Neurol. Res., 2017, 39(11), 988-995.
[http://dx.doi.org/10.1080/01616412.2017.1359882] [PMID: 28828929]
[69]
Gan, Y.; Ji, X.; Hu, X.; Luo, Y.; Zhang, L.; Li, P.; Liu, X.; Yan, F.; Vosler, P.; Gao, Y.; Stetler, R.A.; Chen, J. Transgenic overexpression of peroxiredoxin-2 attenuates ischemic neuronal injury via suppression of a redox-sensitive pro-death signaling pathway. Antioxid. Redox Signal., 2012, 17(5), 719-732.
[http://dx.doi.org/10.1089/ars.2011.4298] [PMID: 22356734]
[70]
Zhao, J.; Wu, J.; Zhang, L.; Chen, Y.; Yu, S.; Zhao, Y. Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation. Neural Regen. Res., 2015, 10(3), 481-489.
[http://dx.doi.org/10.4103/1673-5374.153700] [PMID: 25878600]
[71]
Takagi, Y.; Horikawa, F.; Nozaki, K.; Sugino, T.; Hashimoto, N.; Yodoi, J. Expression and distribution of redox regulatory protein, thioredoxin during transient focal brain ischemia in the rat. Neurosci. Lett., 1998, 251(1), 25-28.
[http://dx.doi.org/10.1016/S0304-3940(98)00492-3] [PMID: 9714456]
[72]
Takagi, Y.; Tokime, T.; Nozaki, K.; Gon, Y.; Kikuchi, H.; Yodoi, J. Redox control of neuronal damage during brain ischemia after middle cerebral artery occlusion in the rat: Immunohistochemical and hybridization studies of thioredoxin. J. Cereb. Blood Flow Metab., 1998, 18(2), 206-214.
[http://dx.doi.org/10.1097/00004647-199802000-00012] [PMID: 9469164]
[73]
Wang, S.; Li, Y.; Wei, J.; Li, P.; Yang, Q. Sevoflurane preconditioning induces tolerance to brain ischemia partially via inhibiting thioredoxin-1 nitration. BMC Anesthesiol., 2018, 18(1), 171.
[http://dx.doi.org/10.1186/s12871-018-0636-z] [PMID: 30447684]
[74]
Romero, J.I.; Hanschmann, E.M.; Gellert, M.; Eitner, S.; Holubiec, M.I.; Blanco-Calvo, E.; Lillig, C.H.; Capani, F. Thioredoxin 1 and glutaredoxin 2 contribute to maintain the phenotype and integrity of neurons following perinatal asphyxia. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(6), 1274-1285.
[http://dx.doi.org/10.1016/j.bbagen.2015.02.015] [PMID: 25735211]
[75]
Qi, A.; Li, Y.; Liu, Q.; Si, J.Z.; Tang, X.M.; Zhang, Z.Q.; Qi, Q.D.; Chen, W.B. Thioredoxin is a novel diagnostic and prognostic marker in patients with ischemic stroke. Free Radic. Biol. Med., 2015, 80, 129-135.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.12.021] [PMID: 25555670]
[76]
Tomimoto, H.; Akiguchi, I.; Wakita, H.; Kimura, J.; Hori, K.; Yodoi, J. Astroglial expression of ATL-derived factor, a human thioredoxin homologue, in the gerbil brain after transient global ischemia. Brain Res., 1993, 625(1), 1-8.
[http://dx.doi.org/10.1016/0006-8993(93)90130-F] [PMID: 7694770]
[77]
Zeng, X.S.; Zhou, X.S.; Luo, F.C.; Jia, J.J.; Qi, L.; Yang, Z.X.; Zhang, W.; Bai, J. Comparative analysis of the neuroprotective effects of ginsenosides Rg1 and Rb1 extracted from Panax notoginseng against cerebral ischemia. Can. J. Physiol. Pharmacol., 2014, 92(2), 102-108.
[http://dx.doi.org/10.1139/cjpp-2013-0274] [PMID: 24502632]
[78]
Tanaka, N.; Ikeda, Y.; Ohta, Y.; Deguchi, K.; Tian, F.; Shang, J.; Matsuura, T.; Abe, K. Expression of Keap1–Nrf2 system and antioxidative proteins in mouse brain after transient middle cerebral artery occlusion. Brain Res., 2011, 1370, 246-253.
[http://dx.doi.org/10.1016/j.brainres.2010.11.010] [PMID: 21075092]
[79]
Zhao, H.; Wang, R.; Tao, Z.; Gao, L.; Yan, F.; Gao, Z.; Liu, X.; Ji, X.; Luo, Y. Ischemic postconditioning relieves cerebral ischemia and reperfusion injury through activating T-LAK cell-originated protein kinase/protein kinase B pathway in rats. Stroke, 2014, 45(8), 2417-2424.
[http://dx.doi.org/10.1161/STROKEAHA.114.006135] [PMID: 25013016]
[80]
Koh, P.O. Proteomic analysis of focal cerebral ischemic injury in male rats. J. Vet. Med. Sci., 2010, 72(2), 181-185.
[http://dx.doi.org/10.1292/jvms.09-0364] [PMID: 19942814]
[81]
Yamagata, K.; Tagami, M.; Ikeda, K.; Yamori, Y.; Nara, Y. Altered gene expressions during hypoxia and reoxygenation in cortical neurons isolated from stroke-prone spontaneously hypertensive rats. Neurosci. Lett., 2000, 284(3), 131-134.
[http://dx.doi.org/10.1016/S0304-3940(00)00936-8] [PMID: 10773416]
[82]
Li, L.; Zhu, K.; Liu, Y.; Wu, X.; Wu, J.; Zhao, Y.; Zhao, J. Targeting thioredoxin-1 with siRNA exacerbates oxidative stress injury after cerebral ischemia/reperfusion in rats. Neuroscience, 2015, 284, 815-823.
[http://dx.doi.org/10.1016/j.neuroscience.2014.10.066] [PMID: 25451293]
[83]
Wu, X.; Li, L.; Zhang, L.; Wu, J.; Zhou, Y.; Zhou, Y.; Zhao, Y.; Zhao, J. Inhibition of thioredoxin-1 with siRNA exacerbates apoptosis by activating the ASK1-JNK/p38 pathway in brain of a stroke model rats. Brain Res., 2015, 1599, 20-31.
[http://dx.doi.org/10.1016/j.brainres.2014.12.033] [PMID: 25541364]
[84]
Hou, Y.; Wang, Y.; He, Q.; Li, L.; Xie, H.; Zhao, Y.; Zhao, J. Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury. Behav. Brain Res., 2018, 336, 32-39.
[http://dx.doi.org/10.1016/j.bbr.2017.06.027] [PMID: 28851669]
[85]
Takagi, Y.; Mitsui, A.; Nishiyama, A.; Nozaki, K.; Sono, H.; Gon, Y.; Hashimoto, N.; Yodoi, J. Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc. Natl. Acad. Sci. USA, 1999, 96(7), 4131-4136.
[http://dx.doi.org/10.1073/pnas.96.7.4131] [PMID: 10097175]
[86]
Zhou, F.; Gomi, M.; Fujimoto, M.; Hayase, M.; Marumo, T.; Masutani, H.; Yodoi, J.; Hashimoto, N.; Nozaki, K.; Takagi, Y. Attenuation of neuronal degeneration in thioredoxin-1 overexpressing mice after mild focal ischemia. Brain Res., 2009, 1272, 62-70.
[http://dx.doi.org/10.1016/j.brainres.2009.03.023] [PMID: 19328186]
[87]
Hattori, I.; Takagi, Y.; Nakamura, H.; Nozaki, K.; Bai, J.; Kondo, N.; Sugino, T.; Nishimura, M.; Hashimoto, N.; Yodoi, J. Intravenous administration of thioredoxin decreases brain damage following transient focal cerebral ischemia in mice. Antioxid. Redox Signal., 2004, 6(1), 81-87.
[http://dx.doi.org/10.1089/152308604771978372] [PMID: 14713338]
[88]
Ma, Y.H.; Su, N.; Chao, X.D.; Zhang, Y.Q.; Zhang, L.; Han, F.; Luo, P.; Fei, Z.; Qu, Y. Thioredoxin-1 attenuates post-ischemic neuronal apoptosis via reducing oxidative/nitrative stress. Neurochem. Int., 2012, 60(5), 475-483.
[http://dx.doi.org/10.1016/j.neuint.2012.01.029] [PMID: 22330043]
[89]
Park, D.J.; Kang, J.B.; Shah, F.A.; Jin, Y.B.; Koh, P.O. Quercetin attenuates decrease of thioredoxin expression following focal cerebral ischemia and glutamate-induced neuronal cell damage. Neuroscience, 2020, 428, 38-49.
[http://dx.doi.org/10.1016/j.neuroscience.2019.11.043] [PMID: 31874239]
[90]
Jiao, Y.; Wang, J.; Zhang, H.; Cao, Y.; Qu, Y.; Huang, S.; Kong, X.; Song, C.; Li, J.; Li, Q.; Ma, H.; Lu, X.; Wang, L. Inhibition of microglial receptor-interacting protein kinase 1 ameliorates neuroinflammation following cerebral ischaemic stroke. J. Cell. Mol. Med., 2020, 24(21), 12585-12598.
[http://dx.doi.org/10.1111/jcmm.15820] [PMID: 32990414]
[91]
Wang, B.; Tian, S.; Wang, J.; Han, F.; Zhao, L.; Wang, R.; Ning, W.; Chen, W.; Qu, Y. Intraperitoneal administration of thioredoxin decreases brain damage from ischemic stroke. Brain Res., 2015, 1615, 89-97.
[http://dx.doi.org/10.1016/j.brainres.2015.04.033] [PMID: 25935696]
[92]
Zhou, F.; Liu, P.P.; Ying, G.Y.; Zhu, X.D.; Shen, H.; Chen, G. Effects of thioredoxin-1 on neurogenesis after brain ischemia/reperfusion injury. CNS Neurosci. Ther., 2013, 19(3), 204-205.
[http://dx.doi.org/10.1111/cns.12051] [PMID: 23441693]
[93]
Cai, M.; Tong, L.; Dong, B.; Hou, W.; Shi, L.; Dong, H. Kelch-like ECH-associated protein 1-dependent nuclear factor-E2–related factor 2 activation in relation to antioxidation induced by sevoflurane preconditioning. Anesthesiology, 2017, 126(3), 507-521.
[http://dx.doi.org/10.1097/ALN.0000000000001485] [PMID: 28045693]
[94]
Park, D.J.; Kang, J.B.; Shah, M.A.; Koh, P.O. Epigallocatechin gallate alleviates down-regulation of thioredoxin in ischemic brain damage and glutamate-exposed neuron. Neurochem. Res., 2021, 46(11), 3035-3049.
[http://dx.doi.org/10.1007/s11064-021-03403-0] [PMID: 34327632]
[95]
Sung, J.H.; Gim, S.A.; Koh, P.O. Ferulic acid attenuates the cerebral ischemic injury-induced decrease in peroxiredoxin-2 and thioredoxin expression. Neurosci. Lett., 2014, 566, 88-92.
[http://dx.doi.org/10.1016/j.neulet.2014.02.040] [PMID: 24582902]
[96]
Zhang, J.; Zhou, R.; Xiang, C.; Fan, F.; Gao, J.; Zhang, Y.; Tang, S.; Xu, H.; Yang, H. Enhanced thioredoxin, glutathione and Nrf2 antioxidant systems by safflower extract and aceglutamide attenuate cerebral ischaemia/reperfusion injury. J. Cell. Mol. Med., 2020, 24(9), 4967-4980.
[http://dx.doi.org/10.1111/jcmm.15099] [PMID: 32266795]
[97]
Zhu, X.-L.; Xiong, L.-Z.; Wang, Q.; Liu, Z.-G.; Ma, X.; Zhu, Z.-H.; Hu, S.; Gong, G.; Chen, S.-Y. Therapeutic time window and mechanism of tetramethylpyrazine on transient focal cerebral ischemia/reperfusion injury in rats. Neurosci Lett., 2009, 449(1), 24-7.
[98]
Shah, F.A.; Zeb, A.; Ali, T.; Muhammad, T.; Faheem, M.; Alam, S.I.; Saeed, K.; Koh, P.O.; Lee, K.W.; Kim, M.O. Identification of proteins differentially expressed in the striatum by melatonin in a middle cerebral artery occlusion rat model—a proteomic and in silico approach. Front. Neurosci., 2018, 12, 888.
[http://dx.doi.org/10.3389/fnins.2018.00888] [PMID: 30618542]
[99]
Sung, J.H.; Cho, E.H.; Kim, M.O.; Koh, P.O. Identification of proteins differentially expressed by melatonin treatment in cerebral ischemic injury - a proteomics approach. J. Pineal Res., 2009, 46(3), 300-306.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00661.x] [PMID: 19196433]
[100]
Zhang, L-L.; Zhang, Z-J. Sestrin2 aggravates oxidative stress of neurons by decreasing the expression of Nrf2. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(11), 3493-3501.
[PMID: 29917204]
[101]
Guo, Y.D.; Huang, T.; Sheng, W.H.; Guan, Y.F.; Du, Y.F.; Lin, Y.T.; Ruan, X.Y. Neuroprotective effect of recombinant adeno-associated virus human thioredoxin-PR39 on acute cerebral infarction in rats. Exp. Ther. Med., 2018, 16(3), 2633-2638.
[http://dx.doi.org/10.3892/etm.2018.6456] [PMID: 30210608]
[102]
Yeo, E.J.; Eum, W.S.; Yeo, H.J.; Choi, Y.J.; Sohn, E.J.; Kwon, H.J.; Kim, D.W.; Kim, D.S.; Cho, S.W.; Park, J.; Han, K.H.; Lee, K.W.; Park, J.K.; Shin, M.J.; Choi, S.Y. Protective role of transduced tat-thioredoxin1 (Trx1) against oxidative stress-induced neuronal cell death via ASK1-MAPK signal pathway. Biomol. Ther., 2021, 29(3), 321-330.
[http://dx.doi.org/10.4062/biomolther.2020.154] [PMID: 33436533]
[103]
Siu, F.K.W.; Lo, S.C.L.; Leung, M.C.P. Electro-acupuncture potentiates the disulphide-reducing activities of thioredoxin system by increasing thioredoxin expression in ischemia-reperfused rat brains. Life Sci., 2005, 77(4), 386-399.
[http://dx.doi.org/10.1016/j.lfs.2004.10.069] [PMID: 15894008]
[104]
Hattori, I.; Takagi, Y.; Nozaki, K.; Kondo, N.; Bai, J.; Nakamura, H.; Hashimoto, N.; Yodoi, J. Hypoxia-ischemia induces thioredoxin expression and nitrotyrosine formation in new-born rat brain. Redox Rep., 2002, 7(5), 256-259.
[http://dx.doi.org/10.1179/135100002125000749] [PMID: 12688505]
[105]
Barhwal, K.; Hota, S.K.; Jain, V.; Prasad, D.; Singh, S.B.; Ilavazhagan, G. Acetyl-l-carnitine (ALCAR) prevents hypobaric hypoxia–induced spatial memory impairment through extracellular related kinase–mediated nuclear factor erythroid 2-related factor 2 phosphorylation. Neuroscience, 2009, 161(2), 501-514.
[http://dx.doi.org/10.1016/j.neuroscience.2009.02.086] [PMID: 19318118]
[106]
Yang, X-H.; Liu, H-G.; Liu, X.; Chen, J-N. Thioredoxin and impaired spatial learning and memory in the rats exposed to intermittent hypoxia. Chin. Med. J. (Engl.), 2012, 125(17), 3074-3080.
[PMID: 22932184]
[107]
Stroev, S.A.; Tjulkova, E.I.; Gluschenko, T.S.; Rybnikova, E.A.; Samoilov, M.O.; Pelto-Huikko, M. The augmentation of brain thioredoxin-1 expression after severe hypobaric hypoxia by the preconditioning in rats. Neurosci. Lett., 2004, 370(2-3), 224-229.
[http://dx.doi.org/10.1016/j.neulet.2004.08.022] [PMID: 15488327]
[108]
Stroev, S.A.; Tyul’kova, E.I.; Glushchenko, T.S.; Tugoi, I.A.; Samoilov, M.O.; Pelto-Huikko, M. Thioredoxin-1 expression levels in rat hippocampal neurons in moderate hypobaric hypoxia. Neurosci. Behav. Physiol., 2009, 39(1), 1-5.
[http://dx.doi.org/10.1007/s11055-008-9091-5] [PMID: 19089634]
[109]
Bendix, I.; Weichelt, U.; Strasser, K.; Serdar, M.; Endesfelder, S.; von Haefen, C.; Heumann, R.; Ehrkamp, A.; Felderhoff-Mueser, U.; Sifringer, M. Hyperoxia changes the balance of the thioredoxin/peroxiredoxin system in the neonatal rat brain. Brain Res., 2012, 1484, 68-75.
[http://dx.doi.org/10.1016/j.brainres.2012.09.024] [PMID: 23006780]
[110]
Dai, J.X.; Cai, J.Y.; Lin, Q.; Chen, X.D.; Lu, C.; Sun, J.; Ba, H.J. Thioredoxin as a marker for severity and prognosis of aneurysmal subarachnoid hemorrhage. J. Neurol. Sci., 2016, 363, 84-89.
[http://dx.doi.org/10.1016/j.jns.2016.02.043] [PMID: 27000227]
[111]
Qian, S.Q.; Hu, X.C.; He, S.R.; Li, B.B.; Zheng, X.D.; Pan, G.H. Prognostic value of serum thioredoxin concentrations after intracerebral hemorrhage. Clin. Chim. Acta, 2016, 455, 15-19.
[http://dx.doi.org/10.1016/j.cca.2016.01.010] [PMID: 26774697]
[112]
Shang, H.; Yang, D.; Zhang, W.; Li, T.; Ren, X.; Wang, X.; Zhao, W. Time course of Keap1-Nrf2 pathway expression after experimental intracerebral haemorrhage: Correlation with brain oedema and neurological deficit. Free Radic. Res., 2013, 47(5), 368-375.
[http://dx.doi.org/10.3109/10715762.2013.778403] [PMID: 23438812]
[113]
Erdi, F.; Keskin, F.; Esen, H.; Kaya, B.; Feyzioglu, B.; Kilinc, I.; Karatas, Y.; Cuce, G.; Kalkan, E. Telmisartan ameliorates oxidative stress and subarachnoid haemorrhage-induced cerebral vasospasm. Neurol. Res., 2016, 38(3), 224-231.
[http://dx.doi.org/10.1080/01616412.2015.1105626] [PMID: 27078703]
[114]
Menon, D.K.; Schwab, K.; Wright, D.W.; Maas, A.I. Position statement: Definition of traumatic brain injury. Arch. Phys. Med. Rehabil., 2010, 91(11), 1637-1640.
[http://dx.doi.org/10.1016/j.apmr.2010.05.017] [PMID: 21044706]
[115]
Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y-C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; Rosenfeld, J.V.; Park, K.B. Estimating the global incidence of traumatic brain injury. J. Neurosurg., 2018, 130(4), 1-18.
[PMID: 29701556]
[116]
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(5), 459-480.
[117]
Faul, M.; Xu, L.; Wald, M.M.; Coronado, V.G. Emergency department visits, hospitalizations and deaths 2002-2006. Atlanta (GA): Centers for Disease control and prevention, national center for injury prevention and control. 2010. Available From: https://www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdf
[118]
Maas, A.I.R.; Stocchetti, N.; Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol., 2008, 7(8), 728-741.
[http://dx.doi.org/10.1016/S1474-4422(08)70164-9] [PMID: 18635021]
[119]
Ng, S.Y.; Lee, A.Y.W. Traumatic brain injuries: Pathophysiology and potential therapeutic targets. Front. Cell. Neurosci., 2019, 13, 528.
[http://dx.doi.org/10.3389/fncel.2019.00528] [PMID: 31827423]
[120]
Lippoldt, A.; Padilla, C.A.; Gerst, H.; Andbjer, B.; Richter, E.; Holmgren, A.; Fuxe, K. Localization of thioredoxin in the rat brain and functional implications. J. Neurosci., 1995, 15(10), 6747-6756.
[http://dx.doi.org/10.1523/JNEUROSCI.15-10-06747.1995] [PMID: 7472433]
[121]
Mansur, K.; Iwahashi, Y.; Kiryu-Seo, S.; Su, Q.; Namikawa, K.; Yodoi, J.; Kiyama, H. Up-regulation of thioredoxin expression in motor neurons after nerve injury. Brain Res. Mol. Brain Res., 1998, 62(1), 86-91.
[http://dx.doi.org/10.1016/S0169-328X(98)00244-7] [PMID: 9795155]
[122]
Hama, I.; Nakagomi, S.; Konishi, H.; Kiyama, H. Simultaneous expression of glutathione, thioredoxin-1, and their reductases in nerve transected hypoglossal motor neurons of rat. Brain Res., 2010, 1306, 1-7.
[http://dx.doi.org/10.1016/j.brainres.2009.10.014] [PMID: 19833109]
[123]
Cong, P.; Tong, C.; Liu, Y.; Shi, L.; Shi, X.; Zhao, Y.; Xiao, K.; Jin, H.; Liu, Y.; Hou, M. CD28 deficiency ameliorates thoracic blast exposure-induced oxidative stress and apoptosis in the brain through the PI3K/Nrf2/Keap1 signaling pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/8460290] [PMID: 31885821]
[124]
Niu, F.; Qian, K.; Qi, H.; Zhao, Y.; Jiang, Y.; Jia, W.; Sun, M. CPCGI reduces gray and white matter injury by upregulating Nrf2 signaling and suppressing calpain overactivation in a rat model of controlled cortical impact. Neuropsychiatr. Dis. Treat., 2020, 16, 1929-1941.
[http://dx.doi.org/10.2147/NDT.S266136] [PMID: 32904488]
[125]
Pan, D.S.; Le, H.W.; Yan, M.; Hassan, M.; Gong, J.B.; Wang, H. Change of serum levels of thioredoxin in patients with severe traumatic brain injury. Clin. Chim. Acta, 2016, 453, 62-66.
[http://dx.doi.org/10.1016/j.cca.2015.11.030] [PMID: 26656445]
[126]
Dong, X.Q.; Yu, W.H.; Zhang, Z.Y.; Yang, D.B.; Du, Q.; Wang, H.; Shen, Y.F.; Jiang, L.; Che, Z.H.; Zhu, Q. Serum thioredoxin and in-hospital major adverse events after traumatic brain injury. Clin. Chim. Acta, 2017, 469, 75-80.
[http://dx.doi.org/10.1016/j.cca.2017.03.024] [PMID: 28347674]
[127]
Hatic, H.; Kane, M.J.; Saykally, J.N.; Citron, B.A. Modulation of transcription factor Nrf2 in an in vitro model of traumatic brain injury. J. Neurotrauma, 2012, 29(6), 1188-1196.
[http://dx.doi.org/10.1089/neu.2011.1806] [PMID: 22201269]
[128]
Allen, A.R.; Eilertson, K.; Sharma, S.; Baure, J.; Allen, B.; Leu, D.; Rosi, S.; Raber, J.; Huang, T.T.; Fike, J.R. Delayed administration of alpha-difluoromethylornithine prevents hippocampus-dependent cognitive impairment after single and combined injury in mice. Radiat. Res., 2014, 182(5), 489-498.
[http://dx.doi.org/10.1667/RR13753.1] [PMID: 25375198]
[129]
Chen, T.; Wu, Y.; Wang, Y.; Zhu, J.; Chu, H.; Kong, L.; Yin, L.; Ma, H. Brain-derived neurotrophic factor increases synaptic protein levels via the MAPK/Erk signaling pathway and Nrf2/Trx axis following the transplantation of neural stem cells in a rat model of traumatic brain injury. Neurochem. Res., 2017, 42(11), 3073-3083.
[http://dx.doi.org/10.1007/s11064-017-2340-7] [PMID: 28780733]
[130]
Baratz-Goldstein, R.; Deselms, H.; Heim, L.R.; Khomski, L.; Hoffer, B.J.; Atlas, D.; Pick, C.G. Thioredoxin-mimetic-peptides protect cognitive function after mild traumatic brain injury (mTBI). PLoS One, 2016, 11(6), e0157064.
[http://dx.doi.org/10.1371/journal.pone.0157064] [PMID: 27285176]
[131]
Yu, J.T.; Liu, Y.; Dong, P.; Cheng, R.E.; Ke, S.X.; Chen, K.Q.; Wang, J.J.; Shen, Z.S.; Tang, Q.Y.; Zhang, Z. Up-regulation of antioxidative proteins TRX1, TXNL1 and TXNRD1 in the cortex of PTZ kindling seizure model mice. PLoS One, 2019, 14(1), e0210670.
[http://dx.doi.org/10.1371/journal.pone.0210670] [PMID: 30677045]
[132]
Coyle, J.T.; Puttfarcken, P. Oxidative stress, glutamate, and neurodegenerative disorders. Science, 1993, 262(5134), 689-695.
[http://dx.doi.org/10.1126/science.7901908] [PMID: 7901908]
[133]
Pollard, H.; Cantagrel, S.; Charriaut-Marlangue, C.; Moreau, J.; Ari, Y.B. Apoptosis associated DNA fragmentation in epileptic brain damage. Neuroreport, 1994, 5(9), 1053-1055.
[http://dx.doi.org/10.1097/00001756-199405000-00009] [PMID: 8080958]
[134]
Yalcin, A.; Kanit, L.; Sozmen, E.Y. Altered gene expressions in rat hippocampus after kainate injection with or without melatonin pre-treatment. Neurosci. Lett., 2004, 359(1-2), 65-68.
[http://dx.doi.org/10.1016/j.neulet.2004.02.013] [PMID: 15050713]
[135]
Takagi, Y.; Hattori, I.; Nozaki, K.; Mitsui, A.; Ishikawa, M.; Hashimoto, N.; Yodoi, J. Excitotoxic hippocampal injury is attenuated in thioredoxin transgenic mice. J. Cereb. Blood Flow Metab., 2000, 20(5), 829-833.
[http://dx.doi.org/10.1097/00004647-200005000-00009] [PMID: 10826533]
[136]
Yang, H.; Zhao, N.; Lv, L.; Yan, X.; Hu, S.; Xu, T. Functional research and molecular mechanism of Kainic acid-induced denitrosylation of thioredoxin-1 in rat hippocampus. Neurochem. Int., 2017, 108, 448-456.
[http://dx.doi.org/10.1016/j.neuint.2017.06.004] [PMID: 28603024]
[137]
Trstenjak Prebanda, M.; Matjan-Štefin, P.; Turk, B.; Kopitar-Jerala, N. Altered expression of peroxiredoxins in mouse model of progressive myoclonus epilepsy upon LPS-Induced Neuroinflammation. Antioxidants, 2021, 10(3), 357.
[http://dx.doi.org/10.3390/antiox10030357] [PMID: 33673502]
[138]
Trstenjak Prebanda, M.; Završnik, J.; Turk, B.; Kopitar Jerala, N. Upregulation of Mitochondrial Redox Sensitive Proteins in LPS-Treated Stefin B-Deficient Macrophages. Cells, 2019, 8(12), 1476.
[http://dx.doi.org/10.3390/cells8121476] [PMID: 31766320]
[139]
Alzheimer Association. Alzheimer’s Disease Facts and Figures. 2022. Available From: https://www.alz.org/alzheimers-dementia/facts-figures
[140]
Holtzman, D.M.; Morris, J.C.; Goate, A.M. Alzheimer’s disease: The challenge of the second century. Sci. Transl. Med., 2011, 3(77), 77sr1.
[http://dx.doi.org/10.1126/scitranslmed.3002369] [PMID: 21471435]
[141]
Castellani, R.J.; Rolston, R.K.; Smith, M.A. Alzheimer Disease. Dis. Mon., 2010, 56(9), 484-546.
[http://dx.doi.org/10.1016/j.disamonth.2010.06.001] [PMID: 20831921]
[142]
Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease; Harris, J.R., Ed.; Springer: Netherlands, 2012. 65.
[http://dx.doi.org/10.1007/978-94-007-5416-4_1]
[143]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[144]
Di Domenico, F.; Sultana, R.; Tiu, G.F.; Scheff, N.N.; Perluigi, M.; Cini, C.; Butterfield, D.A. Protein levels of heat shock proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: An investigation on the role of cellular stress response in the progression of Alzheimer disease. Brain Res., 2010, 1333, 72-81.
[http://dx.doi.org/10.1016/j.brainres.2010.03.085] [PMID: 20362559]
[145]
Shah, S.Z.A.; Zhao, D.; Khan, S.H.; Yang, L. Unfolded protein response pathways in neurodegenerative diseases. J. Mol. Neurosci., 2015, 57(4), 529-537.
[http://dx.doi.org/10.1007/s12031-015-0633-3] [PMID: 26304853]
[146]
Bossy-Wetzel, E.; Schwarzenbacher, R.; Lipton, S. A. Molecular pathways to neurodegeneration. Nat Med., 2004, 10, S2-9.
[http://dx.doi.org/10.1038/nm1067]
[147]
Tönnies, E.; Trushina, E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1105-1121.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[148]
von Bernhardi, R.; Eugenín-von Bernhardi, L.; Eugenín, J. Microglial cell dysregulation in brain aging and neurodegeneration. Front. Aging Neurosci., 2015, 7, 124.
[http://dx.doi.org/10.3389/fnagi.2015.00124] [PMID: 26257642]
[149]
Wang, C.Y.; Xu, Y.; Wang, X.; Guo, C.; Wang, T.; Wang, Z.Y. Dl-3-n-butylphthalide inhibits NLRP3 inflammasome and mitigates Alzheimer’s-like pathology via Nrf2-TXNIP-TrX axis. Antioxid. Redox Signal., 2019, 30(11), 1411-1431.
[http://dx.doi.org/10.1089/ars.2017.7440] [PMID: 29634349]
[150]
Awan, M.U.N.; Yan, F.; Mahmood, F.; Bai, L.; Liu, J.; Bai, J. The functions of thioredoxin 1 in neurodegeneration. Antioxid. Redox Signal., 2022, 36(13-15), 1023-1036.
[http://dx.doi.org/10.1089/ars.2021.0186] [PMID: 34465198]
[151]
Uttara, B.; Singh, A.; Zamboni, P.; Mahajan, R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[152]
Jia, J.; Zeng, X.; Xu, G.; Wang, Z. The potential roles of redox enzymes in Alzheimer’s Disease: Focus on thioredoxin. ASN Neuro, 2021, 13
[http://dx.doi.org/10.1177/1759091421994351] [PMID: 33557592]
[153]
Ahmad, F.; Singh, K.; Das, D.; Gowaikar, R.; Shaw, E.; Ramachandran, A.; Rupanagudi, K.V.; Kommaddi, R.P.; Bennett, D.A.; Ravindranath, V. Reactive oxygen species-mediated loss of synaptic Akt1 signaling leads to deficient activity-dependent protein translation early in Alzheimer’s disease. Antioxid. Redox Signal., 2017, 27(16), 1269-1280.
[http://dx.doi.org/10.1089/ars.2016.6860] [PMID: 28264587]
[154]
Ellis, G.; Fang, E.; Maheshwari, M.; Roltsch, E.; Holcomb, L.; Zimmer, D.; Martinez, D.; Murray, I.V.J. Lipid oxidation and modification of amyloid-β (Aβ) in vitro and in vivo. J. Alzheimers Dis., 2010, 22(2), 593-607.
[http://dx.doi.org/10.3233/JAD-2010-100960] [PMID: 20847409]
[155]
Sultana, R.; Mecocci, P.; Mangialasche, F.; Cecchetti, R.; Baglioni, M.; Butterfield, D.A. Increased protein and lipid oxidative damage in mitochondria isolated from lymphocytes from patients with Alzheimer’s disease: Insights into the role of oxidative stress in Alzheimer’s disease and initial investigations into a potential biomarker for this dementing disorder. J. Alzheimers Dis., 2011, 24(1), 77-84.
[http://dx.doi.org/10.3233/JAD-2011-101425] [PMID: 21383494]
[156]
Migliore, L.; Fontana, I.; Trippi, F.; Colognato, R.; Coppedè, F.; Tognoni, G.; Nucciarone, B.; Siciliano, G. Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol. Aging, 2005, 26(5), 567-573.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.07.016] [PMID: 15708428]
[157]
Arodin, L.; Lamparter, H.; Karlsson, H.; Nennesmo, I.; Björnstedt, M.; Schröder, J.; Fernandes, A.P. Alteration of thioredoxin and glutaredoxin in the progression of Alzheimer’s disease. J. Alzheimers Dis., 2014, 39(4), 787-797.
[http://dx.doi.org/10.3233/JAD-131814] [PMID: 24270206]
[158]
Lovell, M.A.; Xie, C.; Gabbita, S.P.; Markesbery, W.R. Decreased thioredoxin and increased thioredoxin reductase levels in alzheimer’s disease brain. Free Radic. Biol. Med., 2000, 28(3), 418-427.
[http://dx.doi.org/10.1016/S0891-5849(99)00258-0] [PMID: 10699754]
[159]
Kommaddi, R.P.; Tomar, D.S.; Karunakaran, S.; Bapat, D.; Nanguneri, S.; Ray, A.; Schneider, B.L.; Nair, D.; Ravindranath, V. Glutaredoxin1 diminishes amyloid beta-mediated oxidation of F-actin and reverses cognitive deficits in an Alzheimer’s disease mouse model. Antioxid. Redox Signal., 2019, 31(18), 1321-1338.
[http://dx.doi.org/10.1089/ars.2019.7754] [PMID: 31617375]
[160]
Cornelius, C.; Trovato Salinaro, A.; Scuto, M.; Fronte, V.; Cambria, M.T.; Pennisi, M.; Bella, R.; Milone, P.; Graziano, A.; Crupi, R.; Cuzzocrea, S.; Pennisi, G.; Calabrese, V. Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: Role of vitagenes. Immun. Ageing, 2013, 10(1), 41.
[http://dx.doi.org/10.1186/1742-4933-10-41] [PMID: 24498895]
[161]
Pan, Q.; Guo, K.; Xue, M.; Tu, Q. Estrogen protects neuroblastoma cell from amyloid-β 42 (Aβ42)-induced apoptosis via TXNIP/TRX axis and AMPK signaling. Neurochem. Int., 2020, 135, 104685.
[http://dx.doi.org/10.1016/j.neuint.2020.104685] [PMID: 31931042]
[162]
Wang, Y.; Wang, Y.; Bharti, V.; Zhou, H.; Hoi, V.; Tan, H.; Wu, Z.; Nagakannan, P.; Eftekharpour, E.; Wang, J.F. Upregulation of thioredoxin-interacting protein in brain of amyloid-β protein precursor/presenilin 1 transgenic mice and amyloid-β treated neuronal cells. J. Alzheimers Dis., 2019, 72(1), 139-150.
[http://dx.doi.org/10.3233/JAD-190223] [PMID: 31561358]
[163]
Spindel, O.N.; World, C.; Berk, B.C. Thioredoxin interacting protein: Redox dependent and independent regulatory mechanisms. Antioxid. Redox Signal., 2012, 16(6), 587-596.
[http://dx.doi.org/10.1089/ars.2011.4137] [PMID: 21929372]
[164]
Gerenu, G.; Persson, T.; Goikolea, J.; Calvo-Garrido, J.; Loera-Valencia, R.; Pottmeier, P.; Santiago, C.; Poska, H.; Presto, J.; Cedazo-Minguez, A. Thioredoxin-80 protects against amyloid-beta pathology through autophagic-lysosomal pathway regulation. Mol. Psychiatry, 2021, 26(4), 1410-1423.
[http://dx.doi.org/10.1038/s41380-019-0521-2] [PMID: 31520067]
[165]
Waite, L. Treatment for Alzheimer’s disease: Has anything changed? Aust. Prescr., 2015, 38(2), 60-63.
[http://dx.doi.org/10.18773/austprescr.2015.018] [PMID: 26648618]
[166]
Chen, Y.; Shi, G.W.; Liang, Z.M.; Sheng, S.Y.; Shi, Y.S.; Peng, L.; Wang, Y.P.; Wang, F.; Zhang, X.M. Resveratrol improves cognition and decreases amyloid plaque formation in Tg6799 mice. Mol. Med. Rep., 2019, 19(5), 3783-3790.
[http://dx.doi.org/10.3892/mmr.2019.10010] [PMID: 30864708]
[167]
Chiueh, C.C.; Lee, S.Y.; Andoh, T.; Murphy, D.L. Induction of antioxidative and antiapoptotic thioredoxin supports neuroprotective hypothesis of estrogen. Endocr. J., 2003, 21(1), 27-32.
[http://dx.doi.org/10.1385/ENDO:21:1:27] [PMID: 12777700]
[168]
Gao, J.; He, H.; Jiang, W.; Chang, X.; Zhu, L.; Luo, F.; Zhou, R.; Ma, C.; Yan, T. Salidroside ameliorates cognitive impairment in a d-galactose-induced rat model of Alzheimer’s disease. Behav. Brain Res., 2015, 293, 27-33.
[http://dx.doi.org/10.1016/j.bbr.2015.06.045] [PMID: 26192909]
[169]
Liao, Z.L.; Su, H.; Tan, Y.F.; Qiu, Y.J.; Zhu, J.P.; Chen, Y.; Lin, S.S.; Wu, M.H.; Mao, Y.P.; Hu, J.J.; Yu, E.Y. Salidroside protects PC-12 cells against amyloid β-induced apoptosis by activation of the ERK1/2 and AKT signaling pathways. Int. J. Mol. Med., 2019, 43(4), 1769-1777.
[http://dx.doi.org/10.3892/ijmm.2019.4088] [PMID: 30720058]
[170]
Mateos, L.; Persson, T.; Kathozi, S.; Gil-Bea, F.J.; Cedazo-Minguez, A. Estrogen protects against amyloid-β toxicity by estrogen receptor α-mediated inhibition of Daxx translocation. Neurosci. Lett., 2012, 506(2), 245-250.
[http://dx.doi.org/10.1016/j.neulet.2011.11.016] [PMID: 22119000]
[171]
Feng, L.; Zhang, L. Resveratrol suppresses Aβ-induced microglial activation through the TXNIP/TRX/NLRP3 signaling pathway. DNA Cell Biol., 2019, 38(8), 874-879.
[http://dx.doi.org/10.1089/dna.2018.4308] [PMID: 31215797]
[172]
Hui, Y.; Chengyong, T.; Cheng, L.; Haixia, H.; Yuanda, Z.; Weihua, Y. Resveratrol attenuates the cytotoxicity induced by amyloid-β1–42 in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pathway. Neurochem. Res., 2018, 43(2), 297-305.
[http://dx.doi.org/10.1007/s11064-017-2421-7] [PMID: 29090409]
[173]
Wang, H.; Li, Q.; Sun, S.; Chen, S. Neuroprotective effects of salidroside in a mouse model of Alzheimer’s disease. Cell. Mol. Neurobiol., 2020, 40(7), 1133-1142.
[http://dx.doi.org/10.1007/s10571-020-00801-w] [PMID: 32002777]
[174]
Marongiu, R. Accelerated ovarian failure as a unique model to study peri-menopause influence on Alzheimer’s disease. Front. Aging Neurosci., 2019, 11, 242.
[http://dx.doi.org/10.3389/fnagi.2019.00242] [PMID: 31551757]
[175]
Duarte, A.C.; Hrynchak, M.V.; Gonçalves, I.; Quintela, T.; Santos, C.R.A. Sex hormone decline and amyloid β synthesis, transport and clearance in the brain. J. Neuroendocrinol., 2016, 28(11)
[http://dx.doi.org/10.1111/jne.12432] [PMID: 27632792]
[176]
Zhuo, Y.; Guo, H.; Cheng, Y.; Wang, C.; Wang, C.; Wu, J.; Zou, Z.; Gan, D.; Li, Y.; Xu, J. Inhibition of phosphodiesterase-4 reverses the cognitive dysfunction and oxidative stress induced by Aβ25–35 in rats. Metab. Brain Dis., 2016, 31(4), 779-791.
[http://dx.doi.org/10.1007/s11011-016-9814-1] [PMID: 26920899]
[177]
Masci, A.; Mattioli, R.; Costantino, P.; Baima, S.; Morelli, G.; Punzi, P.; Giordano, C.; Pinto, A.; Donini, L.M.; d’Erme, M.; Mosca, L. Neuroprotective effect of Brassica oleracea sprouts crude juice in a cellular model of Alzheimer’s disease. Oxid. Med. Cell. Longev., 2015, 2015, 1-17.
[http://dx.doi.org/10.1155/2015/781938] [PMID: 26180595]
[178]
Persson, T.; Lattanzio, F.; Calvo-Garrido, J.; Rimondini, R.; Rubio-Rodrigo, M.; Sundström, E.; Maioli, S.; Sandebring-Matton, A.; Cedazo-Mínguez, Á. Apolipoprotein E4 elicits lysosomal cathepsin D release, decreased thioredoxin-1 levels, and apoptosis. J. Alzheimers Dis., 2017, 56(2), 601-617.
[http://dx.doi.org/10.3233/JAD-150738] [PMID: 28035917]
[179]
Dauer, W.; Przedborski, S. Parkinson’s disease. Neuron, 2003, 39(6), 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[180]
Cookson, M.R.; Bandmann, O. Parkinson’s disease: Insights from pathways. Hum. Mol. Genet., 2010, 19(R1), R21-R27.
[http://dx.doi.org/10.1093/hmg/ddq167] [PMID: 20421364]
[181]
Jenner, P. Oxidative stress in Parkinson’s disease and other neurodegenerative disorders. Pathol. Biol. (Paris), 1996, 44(1), 57-64.
[PMID: 8734302]
[182]
Jenner, P.; Olanow, C.W. The pathogenesis of cell death in Parkinson’s disease. Neurology, 2006, 66(10)(Suppl. 4), S24-S36.
[http://dx.doi.org/10.1212/WNL.66.10_suppl_4.S24] [PMID: 16717250]
[183]
Lang, A.E.; Lozano, A.M. Parkinson’s Disease. N. Engl. J. Med., 1998, 339(15), 1044-1053.
[http://dx.doi.org/10.1056/NEJM199810083391506] [PMID: 9761807]
[184]
Parker, W.D., Jr; Parks, J.K.; Swerdlow, R.H. Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res., 2008, 1189, 215-218.
[http://dx.doi.org/10.1016/j.brainres.2007.10.061] [PMID: 18061150]
[185]
Scott, W.K.; Nance, M.A.; Watts, R.L.; Hubble, J.P.; Koller, W.C.; Lyons, K.; Pahwa, R.; Stern, M.B.; Colcher, A.; Hiner, B.C.; Jankovic, J.; Ondo, W.G.; Allen, F.H., Jr; Goetz, C.G.; Small, G.W.; Masterman, D.; Mastaglia, F.; Laing, N.G.; Stajich, J.M.; Slotterbeck, B.; Booze, M.W.; Ribble, R.C.; Rampersaud, E.; West, S.G.; Gibson, R.A.; Middleton, L.T.; Roses, A.D.; Haines, J.L.; Scott, B.L.; Vance, J.M.; Pericak-Vance, M.A. Complete genomic screen in Parkinson disease: Evidence for multiple genes. JAMA, 2001, 286(18), 2239-2244.
[http://dx.doi.org/10.1001/jama.286.18.2239] [PMID: 11710888]
[186]
Cunha, M.P.; Pazini, F.L.; Lieberknecht, V.; Budni, J.; Oliveira, Á.; Rosa, J.M.; Mancini, G.; Mazzardo, L.; Colla, A.R.; Leite, M.C.; Santos, A.R.S.; Martins, D.F.; de Bem, A.F.; Gonçalves, C.A.S.; Farina, M.; Rodrigues, A.L.S. MPP+-Lesioned mice: An experimental model of motor, emotional, memory/learning, and striatal neurochemical dysfunctions. Mol. Neurobiol., 2017, 54(8), 6356-6377.
[http://dx.doi.org/10.1007/s12035-016-0147-1] [PMID: 27722926]
[187]
Sriram, K.; Pai, K.S.; Boyd, M.R.; Ravindranath, V. Evidence for generation of oxidative stress in brain by MPTP: In vitro and in vivo studies in mice. Brain Res., 1997, 749(1), 44-52.
[http://dx.doi.org/10.1016/S0006-8993(96)01271-1] [PMID: 9070626]
[188]
Birkmayer, W.; Knoll, J.; Riederer, P.; Youdim, M.B.H. (-)-Deprenyl leads to prolongation of L-dopa efficacy in Parkinson's disease. Mod. Probl. Pharmacopsychiatry., 1983, 19, 170-6.
[189]
Burns, R.S.; Chiueh, C.C.; Markey, S.P.; Ebert, M.H.; Jacobowitz, D.M.; Kopin, I.J. A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA, 1983, 80(14), 4546-4550.
[http://dx.doi.org/10.1073/pnas.80.14.4546] [PMID: 6192438]
[190]
Mytilineou, C.; Cohen, G. Deprenyl protects dopamine neurons from the neurotoxic effect of 1-methyl-4-phenylpyridinium ion. J. Neurochem., 1985, 45(6), 1951-1953.
[http://dx.doi.org/10.1111/j.1471-4159.1985.tb10556.x] [PMID: 3932598]
[191]
Andoh, T.; Chock, P.B.; Murphy, D.L.; Chiueh, C.C. Role of the redox protein thioredoxin in cytoprotective mechanism evoked by (-)-deprenyl. Mol. Pharmacol., 2005, 68(5), 1408-1414.
[http://dx.doi.org/10.1124/mol.105.012302] [PMID: 16099847]
[192]
Li, Q.; Niu, C.; Zhang, X.; Dong, M. Gastrodin and isorhynchophylline synergistically inhibit MPP+-induced oxidative stress in SH-SY5Y cells by targeting ERK1/2 and GSK-3β pathways: Involvement of Nrf2 nuclear translocation. ACS Chem. Neurosci., 2018, 9(3), 482-493.
[http://dx.doi.org/10.1021/acschemneuro.7b00247] [PMID: 29115830]
[193]
Luo, F.C.; Wang, S.D.; Qi, L.; Song, J.Y.; Lv, T.; Bai, J. Protective effect of panaxatriol saponins extracted from Panax notoginseng against MPTP-induced neurotoxicity in vivo. J. Ethnopharmacol., 2011, 133(2), 448-453.
[http://dx.doi.org/10.1016/j.jep.2010.10.017] [PMID: 20951784]
[194]
Kojima, S.; Matsuki, O.; Nomura, T.; Yamaoka, K.; Takahashi, M.; Niki, E. Elevation of antioxidant potency in the brain of mice by low-dose γ-ray irradiation and its effect on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced brain damage. Free Radic. Biol. Med., 1999, 26(3-4), 388-395.
[http://dx.doi.org/10.1016/S0891-5849(98)00200-7] [PMID: 9895231]
[195]
Titova, N.; Schapira, A.H.V.; Chaudhuri, K.R.; Qamar, M.A.; Katunina, E.; Jenner, P. Nonmotor symptoms in experimental models of Parkinson’s disease. Int. Rev. Neurobiol., 2017, 133, 63-89.
[http://dx.doi.org/10.1016/bs.irn.2017.05.018] [PMID: 28802936]
[196]
Zhang, X.; Bai, L.; Zhang, S.; Zhou, X.; Li, Y.; Bai, J. Trx-1 ameliorates learning and memory deficits in MPTP-induced Parkinson’s disease model in mice. Free Radic. Biol. Med., 2018, 124, 380-387.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.06.029] [PMID: 29960099]
[197]
Ichijo, H.; Nishida, E.; Irie, K.; Dijke, P.; Saitoh, M.; Moriguchi, T.; Takagi, M.; Matsumoto, K.; Miyazono, K.; Gotoh, Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science, 1997, 275(5296), 90-94.
[http://dx.doi.org/10.1126/science.275.5296.90] [PMID: 8974401]
[198]
Saitoh, M.; Nishitoh, H.; Fujii, M.; Takeda, K.; Tobiume, K.; Sawada, Y.; Kawabata, M.; Miyazono, K.; Ichijo, H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J., 1998, 17(9), 2596-2606.
[http://dx.doi.org/10.1093/emboj/17.9.2596] [PMID: 9564042]
[199]
Ray, A.; Sehgal, N.; Karunakaran, S.; Rangarajan, G.; Ravindranath, V. MPTP activates ASK1–p38 MAPK signaling pathway through TNF-dependent Trx1 oxidation in parkinsonism mouse model. Free Radic. Biol. Med., 2015, 87, 312-325.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.041] [PMID: 26164633]
[200]
Bonifati, V.; Rizzu, P.; van Baren, M.J.; Schaap, O.; Breedveld, G.J.; Krieger, E.; Dekker, M.C.J.; Squitieri, F.; Ibanez, P.; Joosse, M.; van Dongen, J.W.; Vanacore, N.; van Swieten, J.C.; Brice, A.; Meco, G.; van Duijn, C.M.; Oostra, B.A.; Heutink, P. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 2003, 299(5604), 256-259.
[http://dx.doi.org/10.1126/science.1077209] [PMID: 12446870]
[201]
Macedo, M.G.; Anar, B.; Bronner, I.F.; Cannella, M.; Squitieri, F.; Bonifati, V.; Hoogeveen, A.; Heutink, P.; Rizzu, P. The DJ-1L166P mutant protein associated with early onset Parkinson’s disease is unstable and forms higher-order protein complexes. Hum. Mol. Genet., 2003, 12(21), 2807-2816.
[http://dx.doi.org/10.1093/hmg/ddg304] [PMID: 12952867]
[202]
Moore, D.J.; Zhang, L.; Dawson, T.M.; Dawson, V.L. A missense mutation (L166P) in DJ-1, linked to familial Parkinson’s disease, confers reduced protein stability and impairs homo-oligomerization. J. Neurochem., 2003, 87(6), 1558-1567.
[http://dx.doi.org/10.1111/j.1471-4159.2003.02265.x] [PMID: 14713311]
[203]
Bandopadhyay, R.; Kingsbury, A.E.; Cookson, M.R.; Reid, A.R.; Evans, I.M.; Hope, A.D.; Pittman, A.M.; Lashley, T.; Canet-Aviles, R.; Miller, D.W.; McLendon, C.; Strand, C.; Leonard, A.J.; Abou-Sleiman, P.M.; Healy, D.G.; Ariga, H.; Wood, N.W.; de Silva, R.; Revesz, T.; Hardy, J.A.; Lees, A.J. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain, 2004, 127(2), 420-430.
[http://dx.doi.org/10.1093/brain/awh054] [PMID: 14662519]
[204]
Im, J.Y.; Lee, K.W.; Junn, E.; Mouradian, M.M. DJ-1 protects against oxidative damage by regulating the thioredoxin/ASK1 complex. Neurosci. Res., 2010, 67(3), 203-208.
[http://dx.doi.org/10.1016/j.neures.2010.04.002] [PMID: 20385180]
[205]
Shulman, L.M. Gender differences in Parkinson’s disease. Gend. Med., 2007, 4(1), 8-18.
[http://dx.doi.org/10.1016/S1550-8579(07)80003-9] [PMID: 17584622]
[206]
Saeed, U.; Karunakaran, S.; Meka, D.P.; Koumar, R.C.; Ramakrishnan, S.; Joshi, S.D.; Nidadavolu, P.; Ravindranath, V. Redox activated MAP kinase death signaling cascade initiated by ASK1 is not activated in female mice following MPTP: Novel mechanism of neuroprotection. Neurotox. Res., 2009, 16(2), 116-126.
[http://dx.doi.org/10.1007/s12640-009-9058-5] [PMID: 19526288]
[207]
Hertzman, C.; Wiens, M.; Bowering, D.; Snow, B.; Calne, D. Parkinson’s disease: A case-control study of occupational and environmental risk factors. Am. J. Ind. Med., 1990, 17(3), 349-355.
[http://dx.doi.org/10.1002/ajim.4700170307] [PMID: 2305814]
[208]
Fei, Q.; McCormack, A.L.; Di Monte, D.A.; Ethell, D.W. Paraquat neurotoxicity is mediated by a Bak-dependent mechanism. J. Biol. Chem., 2008, 283(6), 3357-3364.
[http://dx.doi.org/10.1074/jbc.M708451200] [PMID: 18056701]
[209]
Yang, W.; Tiffany-Castiglioni, E. Paraquat-induced apoptosis in human neuroblastoma SH-SY5Y cells: Involvement of p53 and mitochondria. J. Toxicol. Environ. Health A, 2008, 71(4), 289-299.
[http://dx.doi.org/10.1080/15287390701738467] [PMID: 18253895]
[210]
Niso-Santano, M.; González-Polo, R.A.; Bravo-San Pedro, J.M.; Gómez-Sánchez, R.; Lastres-Becker, I.; Ortiz-Ortiz, M.A.; Soler, G.; Morán, J.M.; Cuadrado, A.; Fuentes, J.M. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: Modulation by the Nrf2/Trx axis. Free Radic. Biol. Med., 2010, 48(10), 1370-1381.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.02.024] [PMID: 20202476]
[211]
Chen, Y.; Zhang, D.; Liao, Z.; Wang, B.; Gong, S.; Wang, C.; Zhang, M.; Wang, G.; Cai, H.; Liao, F.F.; Xu, J. Anti-oxidant polydatin (piceid) protects against substantia nigral motor degeneration in multiple rodent models of Parkinson’s disease. Mol. Neurodegener., 2015, 10(1), 4.
[http://dx.doi.org/10.1186/1750-1326-10-4] [PMID: 26013581]
[212]
Hu, X.; Weng, Z.; Chu, C.T.; Zhang, L.; Cao, G.; Gao, Y.; Signore, A.; Zhu, J.; Hastings, T.; Greenamyre, J.T.; Chen, J. Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascade. J. Neurosci., 2011, 31(1), 247-261.
[http://dx.doi.org/10.1523/JNEUROSCI.4589-10.2011] [PMID: 21209210]
[213]
Bsat, S.; Halaoui, A.; Kobeissy, F.; Moussalem, C.; El Houshiemy, M.N.; Kawtharani, S.; Omeis, I. Acute ischemic stroke biomarkers: A new era with diagnostic promise? Acute Med. Surg., 2021, 8(1), e696.
[http://dx.doi.org/10.1002/ams2.696] [PMID: 34745637]
[214]
Findlay, M.C.; Bauer, S.Z.; Gautam, D.; Lucke-Wold, B. Rehabilitation After Neurotrauma: A Commentary. J Surg Care, 2022, 1(1), 19-26.
[PMID: 36321858]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy