Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

From Basics of Coordination Chemistry to Understanding Cisplatin-analogue Pt Drugs

Author(s): Takashiro Akitsu, Dobrina Tsvetkova*, Yuma Yamamoto, Daisuke Nakane and Irena Kostova

Volume 29, Issue 22, 2023

Published on: 18 August, 2023

Page: [1747 - 1774] Pages: 28

DOI: 10.2174/1381612829666230809094251

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Cisplatin, a platinum complex discovered by Rosenberg in 1969, has long been known as the first metal-based anticancer agent. Since then, various similar derivatives of cisplatin have been investigated for pharmacological activity, and the approved complexes have been applied as drugs.

Objectives: The aims of the current study are: 1) to summarize the advantages and dose-limiting effects of the approved and unapproved chemotherapy platinum cytostatics, 2) to develop new strategies for the development of platinum anticancer drugs, and 3) to clarify the important factors for the mechanism of action of platinum complexes.

Methods: A search was conducted in the literature databases, and the obtained information was summarized and analyzed.

Results: Myelosuppression is the main dose-limiting effect and the reason for the disapproval of platinum complexes, such as picoplatin, enloplatin, miboplatin, sebriplatin, zeniplatin, spiroplatin, iproplatin, and ormaplatin. From the basic point of view of inorganic coordination chemistry, such as theoretical calculations, crystal structures of model complexes, docking structures with nucleic acid molecules, spectroscopy, and biological aspects, the importance of physicochemical properties of inorganic platinum complexes for their mechanism of action has been indicated. Spectroscopic methods, such as FTIR, NMR, X-ray crystal structure analysis, and fluorescence microscopy, are important for the investigation of the conformational changes in the binding of platinum complexes and DNA.

Conclusion: In the development of platinum complexes, strong anti-cancer drug activity, low toxicity, and resistance can be obtained by the application of polynuclear platinum agents, complexes with targeted activity, and nanoparticle formulations. Electronic structure, stereochemical, and thermodynamic properties are essential for understanding the reaction mechanism of platinum complexes.

Keywords: Cisplatin, Pt(II), antitumor drugs, coordination chemistry, physical inorganic chemistry, platinum complexes.

[1]
Blagosklonny MV. Carcinogenesis, cancer therapy and chemoprevention. Cell Death Differ 2005; 12(6): 592-602.
[http://dx.doi.org/10.1038/sj.cdd.4401610] [PMID: 15818400]
[2]
Deo KM, Ang DL, McGhie B, et al. Platinum coordination compounds with potent anticancer activity. Coord Chem Rev 2018; 375(1): 148-63.
[http://dx.doi.org/10.1016/j.ccr.2017.11.014]
[3]
Kostova I. Platinum complexes as anticancer agents. Recent Patents Anticancer Drug Discov 2006; 1(1): 1-22.
[http://dx.doi.org/10.2174/157489206775246458] [PMID: 18221023]
[4]
Momekov G, Karaivanova M, Ugrinova I, et al. In vitro pharmacological study of monomeric platinum(III) hematoporphyrin IX complexes. Invest New Drugs 2011; 29(5): 742-51.
[http://dx.doi.org/10.1007/s10637-010-9412-8] [PMID: 20225009]
[5]
Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev 2016; 116(5): 3436-86.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[6]
Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem 2019; 88(1): 102925.
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[7]
Rosenberg B, Vancamp L, Trosko J, Mansour VH. Platinum compounds: A new class of potent antitumour agents. Nature 1969; 222(5191): 385-6.
[http://dx.doi.org/10.1038/222385a0] [PMID: 5782119]
[8]
Zhou J, Kang Y, Chen L, et al. The drug-resistance mechanisms of five platinum-based antitumor agents. Front Pharmacol 2020; 11: 343.
[http://dx.doi.org/10.3389/fphar.2020.00343] [PMID: 32265714]
[9]
Olaussen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 2006; 355(10): 983-91.
[http://dx.doi.org/10.1056/NEJMoa060570] [PMID: 16957145]
[10]
Usanova S, Piée-Staffa A, Sied U, et al. Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression. Mol Cancer 2010; 9(1): 248.
[http://dx.doi.org/10.1186/1476-4598-9-248] [PMID: 20846399]
[11]
Strojan P, Vermorken JB, Beitler JJ, et al. Cumulative cisplatin dose in concurrent chemoradiotherapy for head and neck cancer: A systematic review. Head Neck 2016; 38(S1): E2151-8.
[http://dx.doi.org/10.1002/hed.24026] [PMID: 25735803]
[12]
Aisner J, Abrams J. Cisplatin for small-cell lung cancer. Semin Oncol 1989; 16(4(S6)): 2-9.
[PMID: 2548282]
[13]
da Fonseca LM, da Silva VA, da Costa KM, et al. Resistance to cisplatin in human lung adenocarcinoma cells: Effects on the glycophenotype and epithelial to mesenchymal transition markers. Glycoconj J 2022; 39(2): 247-59.
[http://dx.doi.org/10.1007/s10719-022-10042-2] [PMID: 35156157]
[14]
Wang H, Guo S, Kim SJ, et al. Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Theranostics 2021; 11(5): 2442-59.
[http://dx.doi.org/10.7150/thno.46460] [PMID: 33500735]
[15]
Seski JC, Edwards CL, Herson J, Rutledge FN. Cisplatin chemotherapy for disseminated endometrial cancer. Obstet Gynecol 1982; 59(2): 225-8.
[PMID: 7043339]
[16]
Papadopoulou AL, Moschovi M, Panagopoulou-Cristaki M, et al. Could cisplatin as a front-line treatment in childhood non-Hodgkin’s lymphoma be a promising therapy? Pediatr Hematol Oncol 1999; 16(4): 341-6.
[http://dx.doi.org/10.1080/088800199277173] [PMID: 10407871]
[17]
Noone AM, Howlader N, Krapcho MA, et al. SEER cancer statistics review. 2018. Available from: https://seer.cancer.gov/csr/
[18]
Le X, Hanna EY. Optimal regimen of cisplatin in squamous cell carcinoma of head and neck yet to be determined. Ann Transl Med 2018; 6(11): 229.
[http://dx.doi.org/10.21037/atm.2018.05.10] [PMID: 30023392]
[19]
Nauta IH, Klausch T, van de Ven PM, et al. The important role of cisplatin in the treatment of HPV-positive oropharyngeal cancer assessed by real-world data analysis. Oral Oncol 2021; 121: 105454.
[http://dx.doi.org/10.1016/j.oraloncology.2021.105454] [PMID: 34311328]
[20]
Pliarchopoulou K, Pectasides D. Pancreatic cancer: Current and future treatment strategies. Cancer Treat Rev 2009; 35(5): 431-6.
[http://dx.doi.org/10.1016/j.ctrv.2009.02.005]
[21]
Galluzzi L, Vitale I, Michels J, et al. Systems biology of cisplatin resistance: Past, present and future. Cell Death Dis 2014; 5(5): e1257.
[http://dx.doi.org/10.1038/cddis.2013.428] [PMID: 24874729]
[22]
Samimi G, Safaei R, Katano K, et al. Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res 2004; 10(14): 4661-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0137] [PMID: 15269138]
[23]
Komatsu M, Sumizawa T, Mutoh M, et al. Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res 2000; 60(5): 1312-6.
[PMID: 10728692]
[24]
De Luca A, Parker LJ, Ang WH, et al. A structure-based mechanism of cisplatin resistance mediated by glutathione transferase P1-1. Proc Natl Acad Sci 2019; 116(28): 13943-51.
[http://dx.doi.org/10.1073/pnas.1903297116] [PMID: 31221747]
[25]
Köberle B, Schoch S. Platinum complexes in colorectal cancer and other solid tumors. Cancers 2021; 13(9): 2073.
[http://dx.doi.org/10.3390/cancers13092073] [PMID: 33922989]
[26]
Zeng HZ, Qu YQ, Zhang WJ, Xiu B, Deng AM, Liang AB. Proteomic analysis identified DJ-1 as a cisplatin resistant marker in non-small cell lung cancer. Int J Mol Sci 2011; 12(6): 3489-99.
[http://dx.doi.org/10.3390/ijms12063489] [PMID: 21747690]
[27]
Garand C, Guay D, Sereduk C, et al. An integrative approach to identify YB-1-interacting proteins required for cisplatin resistance in MCF7 and MDA-MB-231 breast cancer cells. Cancer Sci 2011; 102(7): 1410-7.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01948.x] [PMID: 21466612]
[28]
Liang S-Q, Marti TM, Dorn P, et al. Blocking the epithelial-to-mesenchymal transition pathway abrogates resistance to anti-folate chemotherapy in lung cancer. Cell Death Dis 2015; 6(7): e1824.
[http://dx.doi.org/10.1038/cddis.2015.195] [PMID: 26181204]
[29]
Wang X, Xu Z, Sun J, et al. Cisplatin resistance in gastric cancer cells is involved with GPR30‐mediated epithelial‐mesenchymal transition. J Cell Mol Med 2020; 24(6): 3625-33.
[http://dx.doi.org/10.1111/jcmm.15055] [PMID: 32052561]
[30]
Zhou P, Li B, Liu F, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: Implication for treatment resistance in pancreatic cancer. Mol Cancer 2017; 16(1): 52.
[http://dx.doi.org/10.1186/s12943-017-0624-9] [PMID: 28245823]
[31]
Piskareva O, Harvey H, Nolan J, et al. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. Cancer Lett 2015; 364(2): 142-55.
[http://dx.doi.org/10.1016/j.canlet.2015.05.004] [PMID: 25960282]
[32]
Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: A global overview and recent trends. Eur Urol 2017; 71(1): 96-108.
[http://dx.doi.org/10.1016/j.eururo.2016.06.010] [PMID: 27370177]
[33]
Skowron M, Melnikova M, van Roermund J, et al. Multifaceted mechanisms of cisplatin resistance in long-term treated urothelial carcinoma cell lines. Int J Mol Sci 2018; 19(2): 590.
[http://dx.doi.org/10.3390/ijms19020590] [PMID: 29462944]
[34]
Shen DW, Pouliot LM, Hall MD, Gottesman MM. Cisplatin resistance: A cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev 2012; 64(3): 706-21.
[http://dx.doi.org/10.1124/pr.111.005637] [PMID: 22659329]
[35]
Zhu X, Zhu H, Luo H, Zhang W, Shen Z, Hu X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des Devel Ther 2016; 10(1): 1885-95.
[http://dx.doi.org/10.2147/DDDT.S106412] [PMID: 27354763]
[36]
Chappell NP, Teng P, Hood BL, et al. Mitochondrial proteomic analysis of cisplatin resistance in ovarian cancer. J Proteome Res 2012; 11(9): 4605-14.
[http://dx.doi.org/10.1021/pr300403d] [PMID: 22900918]
[37]
Dai Z, Yin J, He H, et al. Mitochondrial comparative proteomics of human ovarian cancer cells and their platinum-resistant sublines. Proteomics 2010; 10(21): 3789-99.
[http://dx.doi.org/10.1002/pmic.200900685] [PMID: 20957754]
[38]
Aldossary SA. Review on pharmacology of cisplatin: Clinical use, toxicity and mechanism of resistance of cisplatin. Biomed Pharmacol J 2019; 12(1): 07-15.
[http://dx.doi.org/10.13005/bpj/1608]
[39]
Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J Exp Pharmacol 2021; 13(1): 303-28.
[http://dx.doi.org/10.2147/JEP.S267383] [PMID: 33776489]
[40]
Arozarena I, Wellbrock C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat Rev Cancer 2019; 19(7): 377-91.
[http://dx.doi.org/10.1038/s41568-019-0154-4] [PMID: 31209265]
[41]
Siddik ZH. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene 2003; 22(47): 7265-79.
[http://dx.doi.org/10.1038/sj.onc.1206933] [PMID: 14576837]
[42]
Budd GT, Metch B, Balcerzak SP, Fletcher WS, Baker LH, Mortimer JE. High‐dose cisplatin for metastatic soft tissue sarcoma. Cancer 1990; 65(4): 866-9.
[http://dx.doi.org/10.1002/1097-0142(19900215)65:4<866::AIDCNCR2820650406>3.0.CO;2-#] [PMID: 2297655]
[43]
Krarup-Hansen A, Helweg-Larsen S, Schmalbruch H, Rørth M, Krarup C. Neuronal involvement in cisplatin neuropathy: Prospective clinical and neurophysiological studies. Brain 2006; 130(4): 1076-88.
[http://dx.doi.org/10.1093/brain/awl356] [PMID: 17301082]
[44]
Brouwers EEM, Huitema ADR, Boogerd W, Beijnen JH, Schellens JHM. Persistent neuropathy after treatment with cisplatin and oxaliplatin. Acta Oncol 2009; 48(6): 832-41.
[http://dx.doi.org/10.1080/02841860902806609] [PMID: 19308757]
[45]
dos Santos NAG, Rodrigues CMA, Martins NM, dos Santos AC. Cisplatin-induced nephrotoxicity and targets of nephroprotection: An update. Arch Toxicol 2012; 86(8): 1233-50.
[http://dx.doi.org/10.1007/s00204-012-0821-7] [PMID: 22382776]
[46]
Hellberg V, Wallin I, Eriksson S, et al. Cisplatin and oxaliplatin toxicity: Importance of cochlear kinetics as a determinant for ototoxicity. J Natl Cancer Inst 2009; 101(1): 37-47.
[http://dx.doi.org/10.1093/jnci/djn418] [PMID: 19116379]
[47]
Cherniawsky H, Merchant N, Sawyer M, Ho M. A case report of posterior reversible encephalopathy syndrome in a patient receiving gemcitabine and cisplatin. Medicine 2017; 96(8): e5850.
[http://dx.doi.org/10.1097/MD.0000000000005850] [PMID: 28225482]
[48]
Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett 2015; 237(3): 219-7.
[http://dx.doi.org/10.1016/j.toxlet.2015.06.012] [PMID: 26101797]
[49]
Cheng CY, Lin YC, Chen JS, Chen CH, Deng ST. Cisplatin-induced acute hyponatremia leading to a seizure and coma: A case report. Chang Gung Med J 2011; 34(6): 48-51.
[PMID: 22490459]
[50]
Wheate NJ, Walker S, Craig GE, Oun R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 2010; 39(35): 8113-27.
[http://dx.doi.org/10.1039/c0dt00292e] [PMID: 20593091]
[51]
Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans 2018; 47(19): 6645-53.
[http://dx.doi.org/10.1039/C8DT00838H] [PMID: 29632935]
[52]
Ndagi U, Mhlongo N, Soliman M. Metal complexes in cancer therapy - an update from drug design perspective. Drug Des Devel Ther 2017; 11(1): 599-616.
[http://dx.doi.org/10.2147/DDDT.S119488] [PMID: 28424538]
[53]
Dilruba S, Kalayda GV. Platinum-based drugs: Past, present and future. Cancer Chemother Pharmacol 2016; 77(6): 1103-24.
[http://dx.doi.org/10.1007/s00280-016-2976-z] [PMID: 26886018]
[54]
Ho GY, Woodward N, Coward JIG. Cisplatin versus carboplatin: Comparative review of therapeutic management in solid malignancies. Crit Rev Oncol Hematol 2016; 102(1): 37-46.
[http://dx.doi.org/10.1016/j.critrevonc.2016.03.014] [PMID: 27105947]
[55]
Laurie SA, Siu LL, Winquist E, et al. A phase 2 study of platinum and gemcitabine in patients with advanced salivary gland cancer. Cancer 2010; 116(2): 362-8.
[http://dx.doi.org/10.1002/cncr.24745] [PMID: 19924794]
[56]
Gerson SL, Caimi PF, William BM, Creger RJ. Pharmacology and molecular mechanisms of antineoplastic agents for hematologic malignancies. In: Hoffman R, Benz EJ, Silberstein LE, Eds. Hematology. (7th ed.). Elsevier 2018; pp. 849-912.
[57]
Eisenberger M, Hornedo J, Silva H, Donehower R, Spaulding M, Van Echo D. Carboplatin (NSC-241-240): An active platinum analog for the treatment of squamous-cell carcinoma of the head and neck. J Clin Oncol 1986; 4(10): 1506-9.
[http://dx.doi.org/10.1200/JCO.1986.4.10.1506] [PMID: 3531424]
[58]
Rossi A, Di Maio M, Chiodini P, et al. carboplatin- or cisplatin-based chemotherapy in first-line treatment of small-cell lung cancer: He COCIS meta-analysis of individual patient data. J Clin Oncol 2012; 30(14): 1692-8.
[http://dx.doi.org/10.1200/JCO.2011.40.4905] [PMID: 22473169]
[59]
Lang T, Li N, Zhang J, Li Y, Rong R, Fu Y. Prodrug-based nano-delivery strategy to improve the antitumor ability of carboplatin in vivo and in vitro. Drug Deliv 2021; 28(1): 1272-80.
[http://dx.doi.org/10.1080/10717544.2021.1938754] [PMID: 34176381]
[60]
Martín M, Díaz-Rubio E, Casado A, et al. Carboplatin: An active drug in metastatic breast cancer. J Clin Oncol 1992; 10(3): 433-7.
[http://dx.doi.org/10.1200/JCO.1992.10.3.433] [PMID: 1740682]
[61]
Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol 2019; 14(2): 89-103.
[http://dx.doi.org/10.5114/pg.2018.81072] [PMID: 31616522]
[62]
Nolè F, Biganzoli L, Buzzoni R, Bajetta E. Carboplatin in patients with advanced colorectal cancer pretreated with fluoropyrimidines. Eur J Cancer 1993; 29(9): 1330-1.
[http://dx.doi.org/10.1016/0959-8049(93)90085-T] [PMID: 8343280]
[63]
Gooding AJ, Zhang B, Gunawardane L, Beard A, Valadkhan S, Schiemann WP. The lncRNA BORG facilitates the survival and chemoresistance of triple-negative breast cancers. Oncogene 2019; 38(12): 2020-41.
[http://dx.doi.org/10.1038/s41388-018-0586-4] [PMID: 30467380]
[64]
Li J, Ma J, Zhang X, Tai X, Liu L, Zhang L. Long non-coding RNA (lncRNA) BMP/OP-responsive gene (BORG) promotes development of chemoresistance of colorectal cancer cells to carboplatin. Med Sci Monit 2020; 26: e919103.
[http://dx.doi.org/10.12659/MSM.919103] [PMID: 31937750]
[65]
Falandry C, Rousseau F, Mouret-Reynier MA, et al. Efficacy and safety of first-line single-agent carboplatin vs carboplatin plus paclitaxel for vulnerable older adult women with ovarian cancer - a GINECO/GCIG randomized clinical trial. JAMA Oncol 2021; 7(6): 853-61.
[http://dx.doi.org/10.1001/jamaoncol.2021.0696] [PMID: 33885718]
[66]
Azmy AM, Nasr KE, Gobran NS, Yassin M. Gemcitabine plus carboplatin in patients with advanced hepatocellular carcinoma: Results of a phase II study. ISRN Oncol 2012; 2012(1): 1-5.
[http://dx.doi.org/10.5402/2012/420931] [PMID: 22848843]
[67]
Sebastião AM, da Silva Rocha LS, Gimenez RD, et al. Carboplatin-based chemoradiotherapy in advanced cervical cancer: An alternative to cisplatin-based regimen? Eur J Obstet Gynecol Reprod Biol 2016; 201: 161-5.
[http://dx.doi.org/10.1016/j.ejogrb.2016.03.016] [PMID: 27137353]
[68]
Alifrangis C, Sharma A, Chowdhury S, et al. Single-agent carboplatin AUC10 in metastatic seminoma: A multi-centre UK study of 216 patients. Eur J Cancer 2022; 164(1): 105-13.
[http://dx.doi.org/10.1016/j.ejca.2020.08.031] [PMID: 33041185]
[69]
Horwich A, Mason M, Dearnaley DP. Use of carboplatin in germ cell tumors of the testis. Semin Oncol 1992; 19(1(S2)): 72-7.
[PMID: 1329224]
[70]
Witjes JA, Bruins HM, Cathomas R, et al. European Association of Urology guidelines on muscle-invasive and metastatic bladder cancer: Summary of the 2020 guidelines. Eur Urol 2021; 79(1): 82-104.
[http://dx.doi.org/10.1016/j.eururo.2020.03.055] [PMID: 32360052]
[71]
Mori K, Schuettfort VM, Yanagisawa T, et al. Reassessment of the efficacy of carboplatin for metastatic urothelial carcinoma in the era of immunotherapy: A systematic review and meta-analysis. Eur Urol Focus 2022; 8(6): 1687-95.
[http://dx.doi.org/10.1016/j.euf.2022.02.007] [PMID: 35279408]
[72]
Wu K, Tan MY, Jiang JT, et al. Cisplatin inhibits the progression of bladder cancer by selectively depleting G-MDSCs: A novel chemoimmunomodulating strategy. Clin Immunol 2018; 193: 60-9.
[http://dx.doi.org/10.1016/j.clim.2018.01.012] [PMID: 29410331]
[73]
Yang G, Shen W, Zhang Y, et al. Accumulation of myeloid-derived suppressor cells (MDSCs) induced by low levels of IL-6 correlates with poor prognosis in bladder cancer. Oncotarget 2017; 8(24): 38378-88.
[http://dx.doi.org/10.18632/oncotarget.16386] [PMID: 28418913]
[74]
Tsai TF, Lin JF, Lin YC, et al. Cisplatin contributes to programmed death-ligand 1 expression in bladder cancer through ERK1/2-AP-1 signaling pathway. Biosci Rep 2019; 39(9): BSR20190362.
[http://dx.doi.org/10.1042/BSR20190362] [PMID: 31341011]
[75]
Xu J, Liu Z, Liu Y, Wu G, Zeng L, Xu J. The inhibitory effect of carboplatin injection on human neuroblastoma SK-N-SH. Cell Transplant 2020; 29(1): 0963689720920815.
[http://dx.doi.org/10.1177/0963689720920815] [PMID: 32659114]
[76]
Said AMA, Aly MG, Rashed HO, Rady AM. Safety and efficacy of posterior sub-Tenon’s carboplatin injection versus intravitreal melphalan therapy in the management of retinoblastoma with secondary vitreous seeds. Int J Ophthalmol 2018; 11(3): 445-55.
[PMID: 29600179]
[77]
Katirtzoglou N, Gkiozos I, Makrilia N, et al. Carboplatin plus pemetrexed as first-line treatment of patients with malignant pleural mesothelioma: A phase II study. Clin Lung Cancer 2010; 11(1): 30-5.
[http://dx.doi.org/10.3816/CLC.2010.n.005] [PMID: 20085865]
[78]
Amptoulach S, Tsavaris N. Neurotoxicity caused by the treatment with platinum analogues. Chemother Res Pract 2011; 2011(1): 1-5.
[http://dx.doi.org/10.1155/2011/843019] [PMID: 22312559]
[79]
Cheng Y, Wu R, Cheng M, et al. Carboplatin-induced hematotoxicity among patients with non-small cell lung cancer: Analysis on clinical adverse events and drug-gene interactions. Oncotarget 2017; 8(19): 32228-36.
[http://dx.doi.org/10.18632/oncotarget.12951] [PMID: 27802181]
[80]
Perego P, Robert J. Oxaliplatin in the era of personalized medicine: From mechanistic studies to clinical efficacy. Cancer Chemother Pharmacol 2016; 77(1): 5-18.
[http://dx.doi.org/10.1007/s00280-015-2901-x] [PMID: 26589793]
[81]
Woynarowski JM, Faivre S, Herzig MCS, et al. Oxaliplatin-induced damage of cellular DNA. Mol Pharmacol 2000; 58(5): 920-7.
[http://dx.doi.org/10.1124/mol.58.5.920] [PMID: 11040038]
[82]
Scheeff ED, Briggs JM, Howell SB. Molecular modeling of the intrastrand guanine-guanine DNA adducts produced by cisplatin and oxaliplatin. Mol Pharmacol 1999; 56(3): 633-43.
[http://dx.doi.org/10.1124/mol.56.3.633] [PMID: 10462551]
[83]
Arango D, Wilson AJ, Shi Q, et al. Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br J Cancer 2004; 91(11): 1931-46.
[http://dx.doi.org/10.1038/sj.bjc.6602215] [PMID: 15545975]
[84]
Espinosa M, Martinez M, Aguilar JL, et al. Oxaliplatin activity in head and neck cancer cell lines. Cancer Chemother Pharmacol 2005; 55(3): 301-5.
[http://dx.doi.org/10.1007/s00280-004-0847-5] [PMID: 15619139]
[85]
Lorusso PM. Oxaliplatin in tumors other than colorectal cancer. Oncology 2000; 14(12 (S11)): 33-7.
[PMID: 11204661]
[86]
Ngan CY, Yamamoto H, Takagi A, et al. Oxaliplatin induces mitotic catastrophe and apoptosis in esophageal cancer cells. Cancer Sci 2008; 99(1): 129-39.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00637.x] [PMID: 17949450]
[87]
Tozawa K, Oshima T, Kobayashi T, et al. Oxaliplatin in treatment of the cisplatin-resistant MKN45 cell line of gastric cancer. Anticancer Res 2008; 28(4B): 2087-92.
[PMID: 18751380]
[88]
Marzo T, Ferraro G, Cucci LM, et al. Oxaliplatin inhibits angiogenin proliferative and cell migration effects in prostate cancer cells. J Inorg Biochem 2022; 226(1): 111657.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111657] [PMID: 34784565]
[89]
Yang YC, Chao KSC, Lin CP, Chen YY, Wang KL, Chen YJ. Oxaliplatin regulates DNA repair responding to ionizing radiation and enhances radiosensitivity of human cervical cancer cells. Int J Gynecol Cancer 2009; 19(4): 782-6.
[http://dx.doi.org/10.1111/IGC.0b013e3181a44618] [PMID: 19509588]
[90]
Rixe O, Ortuzar W, Alvarez M, et al. Oxaliplatin, tetraplatin, cisplatin, and carboplatin: Spectrum of activity in drug-resistant cell lines and in the cell lines of the national cancer institute’s anticancer drug screen panel. Biochem Pharmacol 1996; 52(12): 1855-65.
[http://dx.doi.org/10.1016/S0006-2952(97)81490-6] [PMID: 8951344]
[91]
Wu X, Huang PY, Peng PJ, et al. Long-term follow-up of a phase III study comparing radiotherapy with or without weekly oxaliplatin for locoregionally advanced nasopharyngeal carcinoma. Ann Oncol 2013; 24(8): 2131-6.
[http://dx.doi.org/10.1093/annonc/mdt163] [PMID: 23661293]
[92]
Hill EJ, Nicolay NH, Middleton MR, Sharma RA. Oxaliplatin as a radiosensitiser for upper and lower gastrointestinal tract malignancies: What have we learned from a decade of translational research? Crit Rev Oncol Hematol 2012; 83(3): 353-87.
[http://dx.doi.org/10.1016/j.critrevonc.2011.12.007] [PMID: 22309673]
[93]
Raez LE, Kobina S, Santos ES. Oxaliplatin in first-line therapy for advanced non-small-cell lung cancer. Clin Lung Cancer 2010; 11(1): 18-24.
[http://dx.doi.org/10.3816/CLC.2010.n.003] [PMID: 20085863]
[94]
Gebremedhn EG, Shortland PJ, Mahns DA. The incidence of acute oxaliplatin-induced neuropathy and its impact on treatment in the first cycle: A systematic review. BMC Cancer 2018; 18(1): 410.
[http://dx.doi.org/10.1186/s12885-018-4185-0] [PMID: 29649985]
[95]
Dietrich J, Prust M, Kaiser J. Chemotherapy, cognitive impairment and hippocampal toxicity. Neuroscience 2015; 309: 224-32.
[http://dx.doi.org/10.1016/j.neuroscience.2015.06.016] [PMID: 26086545]
[96]
Branca JJV, Maresca M, Morucci G, et al. Oxaliplatin-induced blood brain barrier loosening: A new point of view on chemotherapy-induced neurotoxicity. Oncotarget 2018; 9(34): 23426-38.
[http://dx.doi.org/10.18632/oncotarget.25193] [PMID: 29805744]
[97]
Shimada M, Itamochi H, Kigawa J. Nedaplatin: A cisplatin derivative in cancer chemotherapy. Cancer Manag Res 2013; 5(1): 67-76.
[http://dx.doi.org/10.2147/CMAR.S35785] [PMID: 23696716]
[98]
Liang Z, Wang S, Lin Z, et al. Phase I trial of nedaplatin chemotherapy concurrent with radiotherapy for untreated locoregionally advanced nasopharyngeal carcinoma. Cancer Chemother Pharmacol 2016; 77(3): 643-51.
[http://dx.doi.org/10.1007/s00280-016-2971-4] [PMID: 26831498]
[99]
Shan J, Xiong Y, Wang D, et al. Nedaplatin- versus cisplatin-based chemotherapy in the survival time of patients with non-small cell lung cancer. Mol Clin Oncol 2015; 3(3): 543-9.
[http://dx.doi.org/10.3892/mco.2015.504] [PMID: 26137264]
[100]
Wu Y, Spicer J. Nedaplatin: A new platinum for squamous lung cancer? Lancet Oncol 2015; 16(16): 1573-4.
[http://dx.doi.org/10.1016/S1470-2045(15)00400-3] [PMID: 26522336]
[101]
Hirata S, Yatsuyanagi E, Yamazaki H, et al. [Neoadjuvant chemotherapy for esophageal cancer by administration of nedaplatin alone] Gan To Kagaku Ryoho 2000; 27(2): 221-6.
[PMID: 10700891]
[102]
Koshiyama M, Kinezaki M, Uchida T, Sumitomo M. Chemosensitivity testing of a novel platinum analog, nedaplatin (254-S), in human gynecological carcinomas: A comparison with cisplatin. Anticancer Res 2005; 25(6C): 4499-502.
[PMID: 16334133]
[103]
Wu Q, Zhu C, Zhang S, Zhou Y, Zhong Y. Hematological toxicities of concurrent chemoradiotherapies in head and neck cancers: Comparison among cisplatin, nedaplatin, lobaplatin, and nimotuzumab. Front Oncol 2021; 11(1): 762366.
[http://dx.doi.org/10.3389/fonc.2021.762366] [PMID: 34746003]
[104]
Ahn JH, Kang YK, Kim TW, et al. Nephrotoxicity of heptaplatin: A randomized comparison with cisplatin in advanced gastric cancer. Cancer Chemother Pharmacol 2002; 50(2): 104-10.
[http://dx.doi.org/10.1007/s00280-002-0483-x] [PMID: 12172973]
[105]
McKeage MJ. Lobaplatin: A new antitumour platinum drug. Expert Opin Investig Drugs 2001; 10(1): 119-28.
[http://dx.doi.org/10.1517/13543784.10.1.119] [PMID: 11116285]
[106]
Degardin M, Armand JP, Chevallier B, et al. A Clinical Screening Cooperative Group phase II evaluation of lobaplatin (ASTA D-19466) in advanced head and neck cancer. Invest New Drugs 1995; 13(3): 253-5.
[http://dx.doi.org/10.1007/BF00873809] [PMID: 8729955]
[107]
Wu X, Tang P, Li S, et al. A randomized and open-label phase II trial reports the efficacy of neoadjuvant lobaplatin in breast cancer. Nat Commun 2018; 9(1): 832.
[http://dx.doi.org/10.1038/s41467-018-03210-2] [PMID: 29483583]
[108]
Fiebig HH, Henß H, von Pawel I, et al. Phase II clinical trial of lobaplatin (D-19466) in pretreated patients with small cell lung cancer. Onkologie 1996; 19(4): 328-32.
[109]
Li Y, Yang G, Li M, Tong X. Nursing observation on the clinical efficacy and toxicity of lobaplatin compared with cisplatin in the treatment of locally advanced hypopharyngeal carcinoma based on intelligent CT imaging. J Healthc Eng 2021; 2021(1): 1-11.
[http://dx.doi.org/10.1155/2021/9982888] [PMID: 34306603]
[110]
Harstrick A, Bokemeyer C, Scharnofkse M, Hapke G, Reile D, Schmoll HJ. Preclinical activity of a new platinum analogue, lobaplatin, in cisplatin-sensitive and -resistant human testicular, ovarian, and gastric carcinoma cell lines. Cancer Chemother Pharmacol 1993; 33(1): 43-7.
[http://dx.doi.org/10.1007/BF00686021] [PMID: 8269588]
[111]
Sun X, Lou LG, Sui DH, Wu XH. Preclinical activity of lobaplatin as a single agent and in combination with taxanes for ovarian carcinoma cells. Asian Pac J Cancer Prev 2014; 15(22): 9939-43.
[http://dx.doi.org/10.7314/APJCP.2014.15.22.9939] [PMID: 25520132]
[112]
Xie CY, Xu YP, Jin W, Lou LG. Antitumor activity of lobaplatin alone or in combination with antitubulin agents in non-small-cell lung cancer. Anticancer Drugs 2012; 23(7): 698-705.
[http://dx.doi.org/10.1097/CAD.0b013e328352cc10] [PMID: 22441567]
[113]
Chen B, Zhang H, Chen R, et al. Lobaplatin for the treatment of SK-MES-1 lung squamous cell line in vitro and in vivo. OncoTargets Ther 2016; 9(1): 4215-24.
[http://dx.doi.org/10.2147/OTT.S108032] [PMID: 27471396]
[114]
Tian W, Hao S, Gao B, et al. Lobaplatin inhibits breast cancer progression, cell proliferation while induces cell apoptosis by downregulating MTDH expression. Drug Des Devel Ther 2018; 12(1): 3563-71.
[http://dx.doi.org/10.2147/DDDT.S163157] [PMID: 30464390]
[115]
Du L, Fei Z, Song S, Wei N. Antitumor activity of Lobaplatin against esophageal squamous cell carcinoma through caspase-dependent apoptosis and increasing the Bax/Bcl-2 ratio. Biomed Pharmacother 2017; 95(1): 447-52.
[http://dx.doi.org/10.1016/j.biopha.2017.08.119] [PMID: 28865364]
[116]
Li Y, Liu B, Yang F, et al. Lobaplatin induces BGC-823 human gastric carcinoma cell apoptosis via ROS- mitochondrial apoptotic pathway and impairs cell migration and invasion. Biomed Pharmacother 2016; 83(1): 1239-46.
[http://dx.doi.org/10.1016/j.biopha.2016.08.053] [PMID: 27565846]
[117]
Dai H, Liu L, Qin S, He X, Li S. Lobaplatin suppresses proliferation and induces apoptosis in the human colorectal carcinoma cell Line LOVO in vitro. Biomed Pharmacother 2011; 65(3): 137-41.
[http://dx.doi.org/10.1016/j.biopha.2010.12.001] [PMID: 21612887]
[118]
Wu Q, Qin SK, Teng FM, Chen CJ, Wang R. Lobaplatin arrests cell cycle progression in human hepatocellular carcinoma cells. J Hematol Oncol 2010; 3(1): 43.
[http://dx.doi.org/10.1186/1756-8722-3-43] [PMID: 21034513]
[119]
Wang Z, Tang X, Zhang Y, et al. Lobaplatin induces apoptosis and arrests cell cycle progression in human cholangiocarcinoma cell line RBE. Biomed Pharmacother 2012; 66(3): 161-6.
[http://dx.doi.org/10.1016/j.biopha.2011.09.008] [PMID: 22425181]
[120]
Li X, Ran L, Fang W, Wang D. Lobaplatin arrests cell cycle progression, induces apoptosis and alters the proteome in human cervical cancer cell line CaSki. Biomed Pharmacother 2014; 68(3): 291-7.
[http://dx.doi.org/10.1016/j.biopha.2013.10.004] [PMID: 24239273]
[121]
He J, Zhang H. The antitumor effect of lobaplatin against Ishikawa endometrial cancer cells in vitro and in vivo. Biomed Pharmacother 2019; 114(1): 108762.
[http://dx.doi.org/10.1016/j.biopha.2019.108762] [PMID: 30925454]
[122]
Cao H, Feng Y, Chen L, Yu C. Lobaplatin inhibits prostate cancer proliferation and migration through regulation of BCL2 and BAX. Dose Response 2019; 17(2): 1559325819850981.
[http://dx.doi.org/10.1177/1559325819850981] [PMID: 31217754]
[123]
Zhou Z, Jiang H, Xia J, Zhang J. Comparison of the therapeutic effects of lobaplatin and carboplatin on retinoblastoma in vitro and in vivo. Int J Oncol 2020; 57(3): 697-706.
[http://dx.doi.org/10.3892/ijo.2020.5085] [PMID: 32582992]
[124]
Wang H, Li B, Yan K, et al. Protein and signaling pathway responses to rhIL-6 intervention before lobaplatin treatment in osteosarcoma cells. Front Oncol 2021; 11(1): 602712.
[http://dx.doi.org/10.3389/fonc.2021.602712] [PMID: 33791202]
[125]
Yang F, Yu Y, Lei Q, et al. Lobaplatin arrests cell cycle progression, induces apoptosis and impairs migration and invasion in B16-F10 melanoma cell line in vitro. Biomed Pharmacother 2015; 69(1): 402-8.
[http://dx.doi.org/10.1016/j.biopha.2014.12.011] [PMID: 25661389]
[126]
Tanaka K, Kunimatsu T, Shimakura J, Hanada M. Development of miriplatin, a novel antitumor platinum for hepatocellular carcinoma. Sumitomo Sci 2011; 1(1): 1-12.
[127]
Okusaka T, Kasugai H, Ishii H, et al. A randomized phase II trial of intra-arterial chemotherapy using SM-11355 (Miriplatin) for hepatocellular carcinoma. Invest New Drugs 2012; 30(5): 2015-25.
[http://dx.doi.org/10.1007/s10637-011-9776-4] [PMID: 22187203]
[128]
Tawada A, Chiba T, Ooka Y, et al. Transarterial chemoembolization with miriplatin plus epirubicin in patients with hepatocellular carcinoma. Anticancer Res 2015; 35(1): 549-54.
[PMID: 25550601]
[129]
Ikai I, Kudo M, Arii S, et al. Report of the 18th follow-up survey of primary liver cancer in Japan. Hepatol Res 2010; 40(11): 1043-59.
[http://dx.doi.org/10.1111/j.1872-034X.2010.00731.x] [PMID: 34818831]
[130]
Yukisawa S, Ishii H, Kasuga A, et al. A transcatheter arterial chemotherapy using a novel lipophilic platinum derivative (miriplatin) for patients with small and multiple hepatocellular carcinomas. Eur J Gastroenterol Hepatol 2012; 24(5): 583-8.
[http://dx.doi.org/10.1097/MEG.0b013e3283513488] [PMID: 22330234]
[131]
Kishimoto S, Ohtani A, Fukuda H, Fukushima S, Takeuchi Y. Relation between intracellular accumulation and cytotoxic activity of cis-[((1R,2R)-1,2-cyclohexane-diamine-N,N′)bis(myristato)]platinum(II) suspended in Lipiodol. Biol Pharm Bull 2003; 26(5): 683-6.
[http://dx.doi.org/10.1248/bpb.26.683] [PMID: 12736512]
[132]
Oguro S, Hashimoto S, Tanaka T, et al. Short-term therapeutic effects of transcatheter arterial chemoembolization using miriplatin-lipiodol suspension for hepatocellular carcinoma. Jpn J Radiol 2012; 30(9): 735-42.
[http://dx.doi.org/10.1007/s11604-012-0116-1] [PMID: 22923183]
[133]
Seko Y, Ikeda K, Kawamura Y, et al. Antitumor efficacy of transcatheter arterial chemoembolization with warmed miriplatin in hepatocellular carcinoma. Hepatol Res 2013; 43(9): 942-9.
[http://dx.doi.org/10.1111/hepr.12041] [PMID: 23301851]
[134]
Okimoto K, Ogasawara S, Chiba T, et al. Efficacy of transcatheter arterial chemoembolization with miriplatin-lipiodol water-soluble contrast agent emulsion in patients with hepatocellular carcinoma. Anticancer Res 2013; 33(12): 5603-9.
[PMID: 24324105]
[135]
Yasui D, Yamane A, Itoh H, Kobayashi M, Kumita S. In vivo evaluation of a monodisperse solid-in-oil-in-water miriplatin/lipiodol emulsion in transcatheter arterial chemoembolization using a rabbit VX2 tumor model. PLoS One 2020; 15(8): e0222553.
[http://dx.doi.org/10.1371/journal.pone.0222553] [PMID: 32756561]
[136]
Ikeda M, Kudo M, Aikata H, et al. Transarterial chemoembolization with miriplatin vs. epirubicin for unresectable hepatocellular carcinoma: A phase III randomized trial. J Gastroenterol 2018; 53(2): 281-90.
[http://dx.doi.org/10.1007/s00535-017-1374-6] [PMID: 28766016]
[137]
Golfieri R, Bezzi M, Verset G, et al. Balloon-occluded transarterial chemoembolization: In which size range does it perform best? A comparison of its efficacy versus conventional transarterial chemoembolization, using propensity score matching. Liver Cancer 2021; 10(5): 522-34.
[http://dx.doi.org/10.1159/000516613] [PMID: 34721513]
[138]
Ogawa M, Takayasu K, Hirayama M, et al. Efficacy of a microballoon catheter in transarterial chemoembolization of hepatocellular carcinoma using miriplatin, a lipophilic anticancer drug: Short-term results. Hepatol Res 2016; 46(3): E60-9.
[http://dx.doi.org/10.1111/hepr.12527] [PMID: 25974615]
[139]
Arai H, Abe T, Takayama H, et al. Safety and efficacy of balloon-occluded transcatheter arterial chemoembolization using miriplatin for hepatocellular carcinoma. Hepatol Res 2015; 45(6): 663-6.
[http://dx.doi.org/10.1111/hepr.12403] [PMID: 25132539]
[140]
Otsuji K, Takai K, Nishigaki Y, et al. Efficacy and safety of cisplatin versus miriplatin in transcatheter arterial chemoembolization and transarterial infusion chemotherapy for hepatocellular carcinoma: A randomized controlled trial. Hepatol Res 2015; 45(5): 514-22.
[http://dx.doi.org/10.1111/hepr.12376] [PMID: 24961745]
[141]
Ishikawa T, Abe S, Watanabe T, et al. Improved survival with double platinum therapy transcatheter arterial infusion using cisplatin and transcatheter arterial chemoembolization using miriplatin for BCLC-B hepatocellular carcinoma. Mol Clin Oncol 2016; 5(5): 511-6.
[http://dx.doi.org/10.3892/mco.2016.998] [PMID: 27882236]
[142]
Doshi G, Sonpavde G, Sternberg CN. Clinical and pharmacokinetic evaluation of satraplatin. Expert Opin Drug Metab Toxicol 2012; 8(1): 103-11.
[http://dx.doi.org/10.1517/17425255.2012.636352] [PMID: 22098065]
[143]
Bhargava A, Vaishampayan UN. Satraplatin: Leading the new generation of oral platinum agents. Expert Opin Investig Drugs 2009; 18(11): 1787-97.
[http://dx.doi.org/10.1517/13543780903362437] [PMID: 19888874]
[144]
Nagyal L, Kumar A, Sharma R, Yadav R, Chaudhary P, Singh R. Bioinorganic chemistry of platinum(IV) complexes as platforms for anticancer agents. Curr Bioact Compd 2020; 16(6): 726-37.
[http://dx.doi.org/10.2174/1573407215666190409105351]
[145]
Brown A, Kumar S, Tchounwou PB. Cisplatin-based chemotherapy of human cancers. J Cancer Sci Ther 2019; 11(4): 97.
[PMID: 32148661]
[146]
Avan A, Postma TJ, Ceresa C, et al. Platinum-induced neurotoxicity and preventive strategies: Past, present, and future. Oncologist 2015; 20(4): 411-32.
[http://dx.doi.org/10.1634/theoncologist.2014-0044] [PMID: 25765877]
[147]
McSweeney KR, Gadanec LK, Qaradakhi T, Ali BA, Zulli A, Apostolopoulos V. Mechanisms of cisplatin-Induced acute kidney injury: Pathological mechanisms. Pharmacological interventions, and genetic mitigations. Cancers 2021; 13(7): 1572.
[http://dx.doi.org/10.3390/cancers13071572] [PMID: 33805488]
[148]
Qi L, Luo Q, Zhang Y, Jia F, Zhao Y, Wang F. Advances in toxicological research of the anticancer drug cisplatin. Chem Res Toxicol 2019; 32(8): 1469-86.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00204] [PMID: 31353895]
[149]
Waissbluth S, Daniel SJ. Cisplatin-induced ototoxicity: Transporters playing a role in cisplatin toxicity. Hear Res 2013; 299: 37-45.
[http://dx.doi.org/10.1016/j.heares.2013.02.002] [PMID: 23467171]
[150]
Schmitt A, Gladieff L, Laffont CM, et al. Factors for hematopoietic toxicity of carboplatin: Refining the targeting of carboplatin systemic exposure. J Clin Oncol 2010; 28(30): 4568-74.
[http://dx.doi.org/10.1200/JCO.2010.29.3597] [PMID: 20855828]
[151]
Wei G, Gu Z, Gu J, et al. Platinum accumulation in oxaliplatin‐induced peripheral neuropathy. J Peripher Nerv Syst 2021; 26(1): 35-42.
[http://dx.doi.org/10.1111/jns.12432] [PMID: 33462873]
[152]
Argyriou AA, Polychronopoulos P, Iconomou G, Chroni E, Kalofonos HP. A review on oxaliplatin-induced peripheral nerve damage. Cancer Treat Rev 2008; 34(4): 368-77.
[http://dx.doi.org/10.1016/j.ctrv.2008.01.003] [PMID: 18281158]
[153]
Eckardt JR, Bentsion DL, Lipatov ON, et al. Phase II study of picoplatin as second-line therapy for patients with small-cell lung cancer. J Clin Oncol 2009; 27(12): 2046-51.
[http://dx.doi.org/10.1200/JCO.2008.19.3235] [PMID: 19289620]
[154]
Ciuleanu T, Samarzjia M, Demidchik Y, et al. Randomized phase III study (SPEAR) of picoplatin plus best supportive care (BSC) or BSC alone in patients (pts) with SCLC refractory or progressive within 6 months after first-line platinum-based chemotherapy. J Clin Oncol 2010; 28(15, Suppl. 1): 7002.
[http://dx.doi.org/10.1200/jco.2010.28.15_supp.7002]
[155]
Hamilton G, Olszewski U. Picoplatin pharmacokinetics and chemotherapy of non-small cell lung cancer. Expert Opin Drug Metab Toxicol 2013; 9(10): 1381-90.
[http://dx.doi.org/10.1517/17425255.2013.815724] [PMID: 23829480]
[156]
Gladkov O Jr, Manikhas G, Biakhov M, Tjulandin S, Karlin D. Phase 1 study of picoplatin (pico) in combination with 5-fluorouracil (FU) and leucovorin (LV) as initial therapy in subjects with metastatic colorectal cancer (CRC). J Clin Oncol 2007; 25(18_suppl): 14510.
[http://dx.doi.org/10.1200/jco.2007.25.18_suppl.14510]
[157]
Nersesyan A, Perrone E, Roggieri P, Bolognesi C. Genotoxic action of cycloplatam, a new platinum antitumor drug, on mammalian cells in vivo and in vitro. Chemotherapy 2003; 49(3): 132-7.
[http://dx.doi.org/10.1159/000070619] [PMID: 12815206]
[158]
Kudelka AP, Siddik ZH, Tresukosol D, et al. A phase II and pharmacokinetic study of enloplatin in patients with platinum refractory advanced ovarian carcinoma. Anticancer Drugs 1997; 8(7): 649-56.
[http://dx.doi.org/10.1097/00001813-199708000-00001] [PMID: 9311439]
[159]
Facchetti G, Rimoldi I. Anticancer platinum(II) complexes bearing N-heterocycle rings. Bioorg Med Chem Lett 2019; 29(11): 1257-63.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.045] [PMID: 30935797]
[160]
Elliott WL, Roberts BJ, Howard CT, Leopold WR III. Chemotherapy with [SP-4-3-(R)]-[1,1-cyclobutanedicarboxylato(2-)](2- methyl-1,4-butanediamine-N,N′)platinum (CI-973, NK121) in combination with standard agents against murine tumors in vivo. Cancer Res 1994; 54(16): 4412-8.
[PMID: 8044790]
[161]
Aamdal S, Bruntsch U, Kerger J, et al. Zeniplatin in advanced malignant melanoma and renal cancer: Phase II studies with unexpected nephrotoxicity. Cancer Chemother Pharmacol 1997; 40(5): 439-43.
[http://dx.doi.org/10.1007/s002800050683] [PMID: 9272122]
[162]
Dodion PF, de Valeriola D, Crespeigne N, et al. Phase I clinical and pharmacokinetic study of zeniplatin, a new platinum complex. Ann Oncol 1991; 2(8): 589-96.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a058026] [PMID: 1793726]
[163]
Bagrova SG. Results of phase II clinical trial of cycloplatam in refractory solid tumors. Vopr Onkol 2001; 47(6): 752-6.
[PMID: 11826504]
[164]
Drees M, Dengler WM, Hendriks HR, Kelland LR, Fiebig HH. Cycloplatam: A novel platinum compound exhibiting a different spectrum of anti-tumour activity to cisplatin. Eur J Cancer 1995; 31(3): 356-61.
[http://dx.doi.org/10.1016/0959-8049(94)00513-5] [PMID: 7786602]
[165]
Tanis BC, Vermorken JB, ten Bokkel Huinink WW, et al. Multicenter phase II study of spiroplatin. Oncology 1992; 49(2): 99-103.
[http://dx.doi.org/10.1159/000227020] [PMID: 1574259]
[166]
Mi Q, Shu S, Yang C, et al. Current status for oral platinum(IV) anticancer drug development. Int J Med Phys Clin Eng Radiat Oncol 2018; 7(2): 231-47.
[http://dx.doi.org/10.4236/ijmpcero.2018.72020]
[167]
Castleberry RP, Cantor AB, Green AA, et al. Phase II investigational window using carboplatin, iproplatin, ifosfamide, and epirubicin in children with untreated disseminated neuroblastoma: A pediatric oncology group study. J Clin Oncol 1994; 12(8): 1616-20.
[http://dx.doi.org/10.1200/JCO.1994.12.8.1616] [PMID: 8040674]
[168]
Chawla SP, Yap BS, Tenney DM, Bodey GP, Benjamin RS. Phase I study of weekly-administered iproplatin [cis-dichloro-trans-dihydroxy-bis-isopropylamine platin (chip, JM9)]. Invest New Drugs 1988; 6(4): 311-7.
[http://dx.doi.org/10.1007/BF00173650] [PMID: 3229943]
[169]
Casper ES, Smart TC, Hakes TB, Ochoa M Jr, Kaufman RJ. Clinical trial of iproplatin (cis-dichloro-trans-dihydroxy-bis-isopropylamine platinum IV, CHIP) in patients with advanced breast cancer. Invest New Drugs 1988; 6(2): 87-91.
[http://dx.doi.org/10.1007/BF00195365] [PMID: 3049433]
[170]
Paolozzi FP, Gaver R, Poiesz BJ, et al. Phase I - Preliminary phase II trial of iproplatin, a cisplatin analogue. Invest New Drugs 1988; 6(3): 199-206.
[http://dx.doi.org/10.1007/BF00175398] [PMID: 3192385]
[171]
Sessa C, Vermorken J, Renard J, et al. Phase II study of iproplatin in advanced ovarian carcinoma. J Clin Oncol 1988; 6(1): 98-105.
[http://dx.doi.org/10.1200/JCO.1988.6.1.98] [PMID: 3335895]
[172]
de Wit R, Tesselaar M, Kok TC, et al. Randomised phase II trial of carboplatin and iproplatin in advanced urothelial cancer. Eur J Cancer Clin Oncol 1991; 27(11): 1383-5.
[http://dx.doi.org/10.1016/0277-5379(91)90015-6] [PMID: 1835851]
[173]
McGuire WP III, Arseneau J, Blessing JA, et al. A randomized comparative trial of carboplatin and iproplatin in advanced squamous carcinoma of the uterine cervix: A Gynecologic Oncology Group study. J Clin Oncol 1989; 7(10): 1462-8.
[http://dx.doi.org/10.1200/JCO.1989.7.10.1462] [PMID: 2674333]
[174]
Šebesta F, Baxová K, Burda JV. Redox potentials for tetraplatin, satraplatin, its derivatives, and ascorbic acid: A computational study. Inorg Chem 2018; 57(3): 951-62.
[http://dx.doi.org/10.1021/acs.inorgchem.7b01894] [PMID: 29363964]
[175]
Rischin D, Ling V. Ormaplatin resistance is associated with decreased accumulation of its platinum (II) analogue, dichloro(D,L-trans)1,2-diaminocyclohexaneplatinum (II). Br J Cancer 1996; 74(4): 590-6.
[http://dx.doi.org/10.1038/bjc.1996.406] [PMID: 8761375]
[176]
Petros WP, Chaney SG, Smith DC, et al. Pharmacokinetic and biotransformation studies of ormaplatin in conjunction with a phase I clinical trial. Cancer Chemother Pharmacol 1994; 33(4): 347-54.
[http://dx.doi.org/10.1007/BF00685911] [PMID: 8281629]
[177]
Tan MX, Wang ZF, Qin QP, Zou BQ, Liang H. Complexes of oxoplatin with rhein and ferulic acid ligands as platinum(IV) prodrugs with high anti-tumor activity. Dalton Trans 2020; 49(5): 1613-9.
[http://dx.doi.org/10.1039/C9DT04594E] [PMID: 31942585]
[178]
Dhar S, Lippard SJ. Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc Natl Acad Sci 2009; 106(52): 22199-204.
[http://dx.doi.org/10.1073/pnas.0912276106] [PMID: 20007777]
[179]
Bai L, Gao C, Liu Q, et al. Research progress in modern structure of platinum complexes. Eur J Med Chem 2017; 140: 349-82.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.034] [PMID: 28985575]
[180]
Malina J, Farrell NP, Brabec V. DNA condensing effects and sequence selectivity of DNA binding of antitumor noncovalent polynuclear platinum complexes. Inorg Chem 2014; 53(3): 1662-71.
[http://dx.doi.org/10.1021/ic402796k] [PMID: 24428232]
[181]
Alexander C, Prajith NU, Priyanka PV, Nithyakumar A, Arockia Samy N. Dinuclear platinum(II) complexes of imidazophenanthroline-based bridging ligands as potential anticancer agents: Synthesis, characterization, and in vitro cytotoxicity studies. J Biol Inorg Chem 2019; 24(3): 405-18.
[http://dx.doi.org/10.1007/s00775-019-01656-3] [PMID: 30945024]
[182]
Franich AA, Živković MD, Ilić-Tomić T, et al. New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities. J Biol Inorg Chem 2020; 25(3): 395-409.
[http://dx.doi.org/10.1007/s00775-020-01770-7] [PMID: 32162071]
[183]
Zhang Z, Wang X, Luo C, et al. Dinuclear platinum(II) complexes with bone-targeting groups as potential anti-osteosarcoma agents. Chem Asian J 2017; 12(13): 1659-67.
[http://dx.doi.org/10.1002/asia.201700577] [PMID: 28556606]
[184]
Li C, Zhao X, Liu W, et al. DNA structural distortions induced by a monofunctional trinuclear platinum complex with various cross-links using molecular dynamics simulation. J Chem Inf Model 2020; 60(3): 1700-8.
[http://dx.doi.org/10.1021/acs.jcim.0c00002] [PMID: 32096984]
[185]
Xu CX, Liu LY, Lv B, et al. Two novel fan-shaped trinuclear Pt(ii) complexes act as G-quadruplex binders and telomerase inhibitors. Dalton Trans 2020; 49(27): 9322-9.
[http://dx.doi.org/10.1039/D0DT01767A] [PMID: 32579629]
[186]
Farrell NP. Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets. Chem Soc Rev 2015; 44(24): 8773-85.
[http://dx.doi.org/10.1039/C5CS00201J] [PMID: 25951946]
[187]
Wang K, Gao E. Recent advances in multinuclear complexes as potential anticancer and DNA binding agents. Anticancer Agents Med Chem 2014; 14(1): 147-69.
[http://dx.doi.org/10.2174/18715206113139990313] [PMID: 23869783]
[188]
Harris AL, Ryan JJ, Farrell N. Biological consequences of trinuclear platinum complexes: Comparison of {[trans-PtCl(NH3)2]2((trans-Pt(NH3)(H2N(CH2)6 (NH2)2)}4+ (BBR3464) with its noncovalent congeners. Mol Pharmacol 2005; 69(2): 666-72.
[http://dx.doi.org/10.1124/mol.105.018762] [PMID: 16275707]
[189]
Kjellström J, Oredsson SM, Wennerberg J. Increased toxicity of a trinuclear Pt-compound in a human squamous carcinoma cell line by polyamine depletion. Cancer Cell Int 2012; 12(1): 20.
[http://dx.doi.org/10.1186/1475-2867-12-20] [PMID: 22640800]
[190]
Gibson D. Platinum(iv) anticancer prodrugs - hypotheses and facts. Dalton Trans 2016; 45(33): 12983-91.
[http://dx.doi.org/10.1039/C6DT01414C] [PMID: 27214873]
[191]
Petruzzella E, Sirota R, Solazzo I, Gandin V, Gibson D. Triple action Pt(iv) derivatives of cisplatin: A new class of potent anticancer agents that overcome resistance. Chem Sci 2018; 9(18): 4299-307.
[http://dx.doi.org/10.1039/C8SC00428E] [PMID: 29780561]
[192]
Baudino T. Targeted cancer therapy: The next generation of cancer treatment. Curr Drug Discov Technol 2015; 12(1): 3-20.
[http://dx.doi.org/10.2174/1570163812666150602144310] [PMID: 26033233]
[193]
Butler JS, Sadler PJ. Targeted delivery of platinum-based anticancer complexes. Curr Opin Chem Biol 2013; 17(2): 175-88.
[http://dx.doi.org/10.1016/j.cbpa.2013.01.004] [PMID: 23395452]
[194]
Wang X, Guo Z. Targeting and delivery of platinum-based anticancer drugs. Chem Soc Rev 2013; 42(1): 202-24.
[http://dx.doi.org/10.1039/C2CS35259A] [PMID: 23042411]
[195]
Iafisco M, Margiotta N. Silica xerogels and hydroxyapatite nanocrystals for the local delivery of platinum-bisphosphonate complexes in the treatment of bone tumors: A mini-review. J Inorg Biochem 2012; 117(1): 237-47.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.06.004] [PMID: 22824154]
[196]
Hartinger C, Nazarov A, Ashraf S, Dyson P, Keppler B. Carbohydrate-metal complexes and their potential as anticancer agents. Curr Med Chem 2008; 15(25): 2574-91.
[http://dx.doi.org/10.2174/092986708785908978] [PMID: 18855680]
[197]
Yano S, Ohi H, Ashizaki M, et al. Syntheses, characterization, and antitumor activities of platinum(II) and palladium(II) complexes with sugar-conjugated triazole ligands. Chem Biodivers 2012; 9(9): 1903-15.
[http://dx.doi.org/10.1002/cbdv.201100426] [PMID: 22976979]
[198]
Möker J, Thiem J. Synthesis and hydrolysis studies of novel glyco-functionalized platinum complexes. Carbohydr Res 2012; 348(1): 14-26.
[http://dx.doi.org/10.1016/j.carres.2011.08.024] [PMID: 22196927]
[199]
Patra M, Johnstone TC, Suntharalingam K, Lippard SJ. A potent glucose-platinum conjugate exploits glucose transporters and preferentially accumulates in cancer cells. Angew Chem Int Ed 2016; 55(7): 2550-4.
[http://dx.doi.org/10.1002/anie.201510551] [PMID: 26749149]
[200]
Mi Q, Ma Y, Gao X, et al. 2-Deoxyglucose conjugated platinum (II) complexes for targeted therapy: Design, synthesis, and antitumor activity. J Biomol Struct Dyn 2016; 34(11): 2339-50.
[http://dx.doi.org/10.1080/07391102.2015.1114972] [PMID: 26524393]
[201]
Saha P, Descôteaux C, Brasseur K, et al. Synthesis, antiproliferative activity and estrogen receptor α affinity of novel estradiol-linked platinum(II) complex analogs to carboplatin and oxaliplatin. Potential vector complexes to target estrogen-dependent tissues. Eur J Med Chem 2012; 48(1): 385-90.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.017] [PMID: 22209414]
[202]
Fortin S, Brasseur K, Morin N, Asselin É, Bérubé G. New platinum(II) complexes conjugated at position 7α of 17β-acetyl-estosterone as new combi-molecules against prostate cancer: Design, synthesis, structure-activity relationships and biological evaluation. Eur J Med Chem 2013; 68: 433-43.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.011] [PMID: 23994871]
[203]
Duan X, He C, Kron SJ, Lin W. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(5): 776-91.
[http://dx.doi.org/10.1002/wnan.1390] [PMID: 26848041]
[204]
Guo S, Wang Y, Miao L, et al. Lipid-coated Cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS Nano 2013; 7(11): 9896-904.
[http://dx.doi.org/10.1021/nn403606m] [PMID: 24083505]
[205]
Zamboni WC, Gervais AC, Egorin MJ, et al. Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumor model of melanoma. Cancer Chemother Pharmacol 2004; 53(4): 329-36.
[http://dx.doi.org/10.1007/s00280-003-0719-4] [PMID: 14673619]
[206]
de Jonge MJ, Slingerland M, Loos WJ, et al. Early cessation of the clinical development of LiPlaCis, a liposomal cisplatin formulation. Eur J Cancer 2010; 46(16): 3016-21.
[http://dx.doi.org/10.1016/j.ejca.2010.07.015] [PMID: 20801016]
[207]
Ravaioli A, Papi M, Pasquini E, et al. Lipoplatin monotherapy: A phase II trial of second-line treatment of metastatic non-small-cell lung cancer. J Chemother 2009; 21(1): 86-90.
[http://dx.doi.org/10.1179/joc.2009.21.1.86] [PMID: 19297279]
[208]
Rademaker-Lakhai JM, Terret C, Howell SB, et al. A Phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin Cancer Res 2004; 10(10): 3386-95.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0315] [PMID: 15161693]
[209]
Plummer R, Wilson RH, Calvert H, et al. A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 2011; 104(4): 593-8.
[http://dx.doi.org/10.1038/bjc.2011.6] [PMID: 21285987]
[210]
Kirkpatrick GJ, Plumb JA, Sutcliffe OB, Flint DJ, Wheate NJ. Evaluation of anionic half generation 3.5-6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J Inorg Biochem 2011; 105(9): 1115-22.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.05.017] [PMID: 21704583]
[211]
Wagstaff AJ, Brown SD, Holden MR, et al. Cisplatin drug delivery using gold-coated iron oxide nanoparticles for enhanced tumour targeting with external magnetic fields. Inorg Chim Acta 2012; 393(1): 328-33.
[http://dx.doi.org/10.1016/j.ica.2012.05.012]
[212]
Gu J, Su S, Li Y, He Q, Zhong J, Shi J. Surface modification-complexation strategy for cisplatin loading in mesoporous nanoparticles. J Phys Chem Lett 2010; 1(24): 3446-50.
[http://dx.doi.org/10.1021/jz101483u]
[213]
Rocca JD, Werner ME, Kramer SA, et al. Polysilsesquioxane nanoparticles for triggered release of cisplatin and effective cancer chemoradiotherapy. Nanomedicine 2015; 11(1): 31-8.
[http://dx.doi.org/10.1016/j.nano.2014.07.004] [PMID: 25038495]
[214]
Kanaani L, Javadi I, Ebrahimifar M, Shahmabadi EH, Khiyav AA, Mehrdiba T. Effects of cisplatin-loaded niosomal nanoparticles on BT-20 human breast carcinoma cells. Asian Pac J Cancer Prev 2017; 18(2): 365-8.
[http://dx.doi.org/10.22034/APJCP.2017.18.2.365] [PMID: 28345332]
[215]
Hirai M, Minematsu H, Hiramatsu Y, et al. Novel and simple loading procedure of cisplatin into liposomes and targeting tumor endothelial cells. Int J Pharm 2010; 391(1-2): 274-83.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.030] [PMID: 20211714]
[216]
Doun BSK, Alavi SE, Esfahani KMM, Shahmabadi EH, Alavi F, Hamzei S. Efficacy of Cisplatin-loaded poly butyl cyanoacrylate nanoparticles on the ovarian cancer: An in vitro study. Tumour Biol 2014; 35(8): 7491-7.
[http://dx.doi.org/10.1007/s13277-014-1996-8] [PMID: 24789433]
[217]
Hou G, Qian J, Guo M, et al. Hydrazided hyaluronan/cisplatin/indocyanine green coordination nanoprodrug for photodynamic chemotherapy in liver cancer. Carbohydr Polym 2022; 276(1): 118810.
[http://dx.doi.org/10.1016/j.carbpol.2021.118810] [PMID: 34823812]
[218]
Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem 2013; 2013(1): 1-18.
[http://dx.doi.org/10.1155/2013/238428] [PMID: 25937958]
[219]
Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 2012; 64(7): 701-5.
[http://dx.doi.org/10.1016/j.addr.2011.12.006] [PMID: 22210134]
[220]
Lin Y, Pan Y, Shi Y, Huang X, Jia N, Jiang J. Delivery of large molecules via poly(butyl cyanoacrylate) nanoparticles into the injured rat brain. Nanotechnology 2012; 23(16): 165101.
[http://dx.doi.org/10.1088/0957-4484/23/16/165101] [PMID: 22460562]
[221]
Mohamadi N, Kazemi SM, Mohammadian M, et al. Toxicity of cisplatin-loaded poly butyl cyanoacrylate nanoparticles in a brain cancer cell line: Anionic polymerization results. Asian Pac J Cancer Prev 2017; 18(3): 629-32.
[http://dx.doi.org/10.22034/APJCP.2017.18.3.629] [PMID: 28440967]
[222]
Chiani M, Toofani Milani A, Nemati M, et al. Anticancer effect of cisplatin-loaded poly(butylcyanoacrylate) nanoparticles on A172 brain cancer cells line. Asian Pac J Cancer Prev 2019; 20(1): 303-9.
[http://dx.doi.org/10.31557/APJCP.2019.20.1.303] [PMID: 30678454]
[223]
Izadi M, Shahemabadi EH, Kanaani L, et al. Investigation of characteristics of loaded carboplatin on the liposomal nanoparticles on the cell carcinoma of the human brain c6. Adv Biomed Res 2016; 7(1): 113-8.
[224]
Ebrahimifar M, Nili-Ahmadabadi A, Akbarzadeh A, et al. Preparation, characterization and cytotoxic effects of pegylated nanoliposomal containing carboplatin on ovarian cancer cell lines. Indian J Clin Biochem 2017; 32(2): 230-4.
[http://dx.doi.org/10.1007/s12291-016-0596-3]
[225]
Kanaani L, Ebrahimi Far M, Kazemi SM, et al. General characteristics and cytotoxic effects of nano-poly (butyl cyanoacrylate) containing carboplatin on ovarian cancer cells. Asian Pac J Cancer Prev 2017; 18(1): 87-91.
[http://dx.doi.org/10.22034/APJCP.2017.18.1.87] [PMID: 28240014]
[226]
Dragovich T, Mendelson D, Kurtin S, Richardson K, Von Hoff D, Hoos A. A Phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemother Pharmacol 2006; 58(6): 759-64.
[http://dx.doi.org/10.1007/s00280-006-0235-4] [PMID: 16847673]
[227]
Stathopoulos GP, Boulikas T, Kourvetaris A, Stathopoulos J. Liposomal oxaliplatin in the treatment of advanced cancer: A phase I study. Anticancer Res 2006; 26(2B): 1489-93.
[PMID: 16619562]
[228]
Nowotnik DP, Cvitkovic E. ProLindac™ (AP5346): A review of the development of an HPMA DACH platinum polymer therapeutic. Adv Drug Deliv Rev 2009; 61(13): 1214-9.
[http://dx.doi.org/10.1016/j.addr.2009.06.004] [PMID: 19671439]
[229]
Boulikas T. Clinical overview on Lipoplatin™: A successful liposomal formulation of cisplatin. Expert Opin Investig Drugs 2009; 18(8): 1197-218.
[http://dx.doi.org/10.1517/13543780903114168] [PMID: 19604121]
[230]
Mylonakis N, Athanasiou A, Ziras N, et al. Phase II study of liposomal cisplatin (Lipoplatin™) plus gemcitabine versus cisplatin plus gemcitabine as first line treatment in inoperable (stage IIIB/IV) non-small cell lung cancer. Lung Cancer 2010; 68(2): 240-7.
[http://dx.doi.org/10.1016/j.lungcan.2009.06.017] [PMID: 19628292]
[231]
Froudarakis ME, Pataka A, Pappas P, et al. Phase 1 trial of lipoplatin and gemcitabine as a second-line chemotherapy in patients with nonsmall cell lung carcinoma. Cancer 2008; 113(10): 2752-60.
[http://dx.doi.org/10.1002/cncr.23921] [PMID: 18823054]
[232]
Koukourakis MI, Giatromanolaki A, Pitiakoudis M, et al. Concurrent liposomal cisplatin (Lipoplatin), 5-fluorouracil and radiotherapy for the treatment of locally advanced gastric cancer: A phase I/II study. Int J Radiat Oncol Biol Phys 2010; 78(1): 150-5.
[http://dx.doi.org/10.1016/j.ijrobp.2009.07.1733] [PMID: 20138443]
[233]
Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 1999; 99(9): 2467-98.
[http://dx.doi.org/10.1021/cr980421n] [PMID: 11749487]
[234]
Czarnomysy R, Radomska D, Szewczyk OK, Roszczenko P, Bielawski K. Platinum and palladium complexes as promising sources for antitumor treatments. Int J Mol Sci 2021; 22(15): 8271.
[http://dx.doi.org/10.3390/ijms22158271] [PMID: 34361037]
[235]
Tsvetkova D, Ivanova S. Application of approved cisplatin derivatives in combination therapy against different cancer diseases. Molecules 2022; 27(8): 2466.
[http://dx.doi.org/10.3390/molecules27082466] [PMID: 35458666]
[236]
Akitsu T. Inorganic Chemistry Lecture Note. (2nd ed.), Gendaitosho 2019.
[237]
Uemura M, Komeda S. The present and the future of platinum-based anticancer drugs. Biomed Res Trace Elements 2015; 26(4): 157-65.
[http://dx.doi.org/10.11299/brte.26.157]
[238]
Maeda M. Synthetic studies on cisplatin analogs. J Synth Org Chem Jpn 1991; 49(11): 1021-31.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.49.1021]
[239]
Kotani A. Platinum compounds involving new anti-cancer mechanism. 2011. Available from: https://www.jstage.jst.go.jp/article/brte/22/1/22_22/_
[240]
Chikuma M, Sato T, Komeda S. Current status and future perspectives of platinum antitumor drugs. Pharma Mag 2008; 128(3): 307-16.
[http://dx.doi.org/10.1248/yakushi.128.307] [PMID: 18311048]
[241]
Egashira N, Kawashiri T, Oishi R. Evidence from basic studies on mechanisms and treatment drugs for oxaliplatin-induced peripheral neuropathy. Japanese Pharmacol J 2013; 141(2): 66-70.
[http://dx.doi.org/10.1254/fpj.141.66] [PMID: 23391544]
[242]
Kodaka M, Dohta Y, Rekonen P, Okada T, Okuno H. Physicochemical factors for cytotoxic activity in platinum dinuclear complexes with pyrimidine and imide ligands. Biophys Chem 1998; 75(3): 259-70.
[http://dx.doi.org/10.1016/S0301-4622(98)00213-0] [PMID: 9894342]
[243]
Dans PD, Crespo A, Estrin DA, Coitiño EL. Structural and energetic study of cisplatin and derivatives: Comparison of the performance of density funtional theory implementations. J Chem Theory Comput 2008; 4(5): 740-50.
[http://dx.doi.org/10.1021/ct7002385] [PMID: 26621089]
[244]
Juhász M, Takahashi S, Arulmozhiraja S, Fujii T. Bond energies (Pt-NH3, Pt-Cl) and proton affinity of cisplatin: A density functional theory approach. J Struct Chem 2012; 53(3): 436-42.
[http://dx.doi.org/10.1134/S0022476612030043]
[245]
Carloni P, Andreoni W, Hutter J, Curioni A, Giannozzi P, Parrinello M. Structure and bonding in cisplatin and other Pt(II) complexes. Chem Phys Lett 1995; 234(1-3): 50-6.
[http://dx.doi.org/10.1016/0009-2614(94)01488-H]
[246]
Dans PD, Coitiño EL. Density functional theory characterization and descriptive analysis of cisplatin and related compounds. J Chem Inf Model 2009; 49(6): 1407-19.
[http://dx.doi.org/10.1021/ci800421w] [PMID: 19463014]
[247]
Wysokiński R, Hernik K, Szostak R, Michalsk D. Electronic structure and vibrational spectra of cis-diammine(orotato)platinum(II), a potential cisplatin analogue: DFT and experimental study. Chem Phys 2007; 333(1): 37-48.
[http://dx.doi.org/10.1016/j.chemphys.2007.01.002]
[248]
Giese B, McNaughton D. Interaction of anticancer drug cisplatin with guanine: Density functional theory and surface-enhanced Raman spectroscopy study. Biopolymers 2003; 72(6): 472-89.
[http://dx.doi.org/10.1002/bip.10480] [PMID: 14587070]
[249]
Dodoff NI A. A DFT/ECP-small basis set modelling of cisplatin: Molecular structure and vibrational spectrum. Comput Mol Biosci 2012; 2(2): 35-44.
[http://dx.doi.org/10.4236/cmb.2012.22004]
[250]
Malik M, Michalska D. Assessment of new DFT methods for predicting vibrational spectra and structure of cisplatin: Which density functional should we choose for studying platinum(II) complexes? Spectrochim Acta A Mol Biomol Spectrosc 2014; 125(1): 431-9.
[http://dx.doi.org/10.1016/j.saa.2014.01.107] [PMID: 24583852]
[251]
Wang Y, Liu Q, Qiu L, et al. Molecular structure, IR spectra, and chemical reactivity of cisplatin and transplatin: DFT studies, basis set effect and solvent effect. Spectrochim Acta A Mol Biomol Spectrosc 2015; 150(1): 902-8.
[http://dx.doi.org/10.1016/j.saa.2015.06.027] [PMID: 26119356]
[252]
Georgieva I, Trendafilova N, Dodoff N, Kovacheva D. DFT study of the molecular and crystal structure and vibrational analysis of cisplatin. Spectrochim Acta A Mol Biomol Spectrosc 2017; 176(1): 58-66.
[http://dx.doi.org/10.1016/j.saa.2017.01.008] [PMID: 28073067]
[253]
Kozelka J, Chottard JC. How does cisplatin alter DNA structure? Biophys Chem 1990; 35(2-3): 165-78.
[http://dx.doi.org/10.1016/0301-4622(90)80006-S] [PMID: 2397271]
[254]
Sarmah A, Roy RK. A density functional reactivity theory (DFRT) based approach to understand the interaction of cisplatin analogues with protecting agents. J Comput Aided Mol Des 2014; 28(12): 1153-73.
[http://dx.doi.org/10.1007/s10822-014-9790-7] [PMID: 25182163]
[255]
Chen HY, Chen HF, Kao CL, Yang PY, Hsu SCN. Interaction of electrons with cisplatin and the subsequent effect on DNA damage: A density functional theory study. Phys Chem Chem Phys 2014; 16(36): 19290-7.
[http://dx.doi.org/10.1039/C4CP02306D] [PMID: 25098629]
[256]
Maixner M, Dos Santos HF, Burda JV. Formation of chelate structure between His-Met dipeptide and diaqua-cisplatin complex; DFT/PCM computational study. J Biol Inorg Chem 2018; 23(3): 363-76.
[http://dx.doi.org/10.1007/s00775-018-1536-x] [PMID: 29423565]
[257]
Pushkarchuk AL, Bezyazychnaya TV, Potkin VI, et al. DFT simulation of geometry and electronic structure of Fullerenol-Cisplatin conjugate as agent of cancer therapy. Nonlinear Phenom Complex Syst 2022; 25(1): 99-103.
[http://dx.doi.org/10.33581/1561-4085-2022-25-1-99-103]
[258]
Zhang Y, Guo Z, You XZ. Hydrolysis theory for cisplatin and its analogues based on density functional studies. J Am Chem Soc 2001; 123(38): 9378-87.
[http://dx.doi.org/10.1021/ja0023938] [PMID: 11562220]
[259]
Song T, Hu P. Insight into the solvent effect: A density functional theory study of cisplatin hydrolysis. J Chem Phys 2006; 125(9): 091101.
[http://dx.doi.org/10.1063/1.2336425] [PMID: 16965063]
[260]
Norouzi P, Ghiasi R, Fazaeli R. Effects of external electric field on the hydrolysis of cisplatin: A density functional theory approach. Russ J Inorg Chem 2020; 65(14): 2053-61.
[http://dx.doi.org/10.1134/S0036023620140041]
[261]
Paschoal D, Marcial BL, Lopes JF, De Almeida WB, Dos Santos HF. The role of the basis set and the level of quantum mechanical theory in the prediction of the structure and reactivity of cisplatin. J Comput Chem 2012; 33(29): 2292-302.
[http://dx.doi.org/10.1002/jcc.23061] [PMID: 22782838]
[262]
Alvarado-Soto L, Ramirez-Tagle R. Relativistic structure-activity relationship of Cisplatin (II) complexes. J Struct Chem 2020; 61(5): 688-93.
[http://dx.doi.org/10.1134/S0022476620050030]
[263]
Cheng X, Ye Y-L, Zhang L, Zheng K-W, Li X-H, Sun W-M. A theoretical study of the mono-substituent effect of superhalogens on the geometric structure, electronic properties, and hydrolysis of Cisplatin. Chem Phys 2012; 555(2012): 111447.
[http://dx.doi.org/10.1016/j.chemphys.2022.111447]
[264]
Karbownik A, Szałek E, Urjasz H, Głęboka A, Mierzwa E, Grześkowiak E. The physical and chemical stability of cisplatin (Teva) in concentrate and diluted in sodium chloride 0.9%. Contemp Oncol 2012; 5(5): 435-9.
[http://dx.doi.org/10.5114/wo.2012.31775] [PMID: 23788924]
[265]
Navarro JAR, Salas JM, Romero MA, Vilaplana R, Gonzalez-Vílchez F, Faure R. cis-[PtCl2(4,7-H-5-methyl-7-oxo[1,2, 4]triazolo[1,5-a]pyrimidine)2]: A sterically restrictive new cisplatin analogue. Reaction kinetics with model nucleobases, DNA interaction studies, antitumor activity, and structure-activity relationships. J Med Chem 1998; 41(3): 332-8.
[http://dx.doi.org/10.1021/jm970358e] [PMID: 9464364]
[266]
Trovo G, Bandoli G, Casellato U, Corain B, Nicolini M, Longato B. Phosphine analogs of cisplatin. Synthesis and x-ray structure of bis(.mu.-hydroxo)bis(bis(trimethylphosphine) platinum(II) dinitrate and its reactivity with 1-methylcytosine. X-ray structure of bis(.mu.-1-methylcytosinato-N3,N4)bis(bis(trimethylphosphine)platinum(II) dinitrate. Inorg Chem 1990; 29(23): 4616-21.
[http://dx.doi.org/10.1021/ic00348a008]
[267]
Schröder G, Kozelka J, Sabat M, Fouchet MH, Beyerle-Pfnür R, Lippert B. Model of the second most abundant Cisplatin-DNA cross-link: X-ray crystal structure and conformational analysis of cis-[(NH3)2Pt(9-MeA-N7)(9-EtGH-N7)](NO3)•2H2O (9-MeA = 9-methyladenine; 9-EtGH = 9-ethylguanine). Inorg Chem 1996; 35(6): 1647-52.
[http://dx.doi.org/10.1021/ic950754s] [PMID: 11666386]
[268]
Mukhopadhyay U, Thurston J, Whitmire KH, Siddik ZH, Khokhar AR. Preparation, characterization, and antitumor activity of new cisplatin analogues with 1-methyl-4-(methylamino)piperidine: Crystal structure of [PtII(1-methyl-4-(methylamino) piperidine) (oxalate)]. J Inorg Biochem 2003; 94(1-2): 179-85.
[http://dx.doi.org/10.1016/S0162-0134(02)00614-1] [PMID: 12620689]
[269]
Schöllhorn H, Thewalt U, Lippert B. X-ray structure of a mono(1-methylthyminato) complex of cisplatin, chloro-(1-methylthy-minato-N3)-cis-diammineplatinum(II) monohydrate. Inorg Chim Acta 1985; 106(4): 177-80.
[http://dx.doi.org/10.1016/S0020-1693(00)82265-3]
[270]
Iakovidis A, Hadjiliadis N, Britten JF, Butler IS, Schwarz F, Lippert B. Ternary complexes of cisplatin with amino acids and nucleobases. The crystal structure of cis-[(NH3)2Pt(1-MeC-N3)(Gly-N)](NO3)•2H2O. Inorg Chim Acta 1991; 184(2): 209-20.
[http://dx.doi.org/10.1016/S0020-1693(00)85073-2]
[271]
Alston DR, Stoddart JF, Williams DJ. The isolation and X-ray crystal structure of an adduct formed between 18-crown-6 and cisplatin. J Chem Soc Chem Commun 1985; 9(9): 532-3.
[http://dx.doi.org/10.1039/c39850000532]
[272]
Fakih S, Tung WC, Eierhoff D, Mock C, Krebs B. Dunuclear and mononuclear platinum(II) and palladium(II) complexes with modified 2,2′-dipyridylamine ligands featuring a cisplatin analogus structure motif. Z Anorg Allg Chem 2005; 631(8): 1397-402.
[http://dx.doi.org/10.1002/zaac.200500011]
[273]
Ali MS, Whitmire KH, Toyomasu T, Siddik ZH, Khokhar AR. Preparation, characterization, and antitumor activity of new cisplatin analogs with homopiperazines: Crystal structure of [PtII(1-methylhomopiperazine)(methylmalonato)]•2H2O. J Inorg Biochem 1999; 77(3-4): 231-8.
[http://dx.doi.org/10.1016/S0162-0134(99)00208-1] [PMID: 10643661]
[274]
Shamsuddin S, van Hal JW, Stark JL, Whitmire KH, Khokhar AR. Synthesis and characterization of novel axial dichloroplatinum (IV) cisplatin analogues: Crystal structure of an axial dichloro complex [Pt(cis-1,4-DACH)(trans-Cl(2))(CBDCA) (1)/(2)MeOH. Inorg Chem 1997; 36(25): 5969-71.
[http://dx.doi.org/10.1021/ic970416m] [PMID: 11670225]
[275]
Kratochwil NA, Zabel M, Range KJ, Bednarski PJ. Synthesis and X-ray crystal structure of trans,cis-[Pt(OAc)2I2(en)]: A novel type of cisplatin analog that can be photolyzed by visible light to DNA-binding and cytotoxic species in vitro. J Med Chem 1996; 39(13): 2499-507.
[http://dx.doi.org/10.1021/jm9509105] [PMID: 8691447]
[276]
Sherman SE, Gibson D, Wang AH-J, Lippard SJ. X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: Cis-[Pt(NH3)2{d(pGpG)}]. Science 1985; 230(4724): 412-7.
[http://dx.doi.org/10.1126/science.4048939]
[277]
Takahara PM, Frederick CA, Lippard SJ. Crystal structure of the anticancer drug cisplatin bound to duplex DNA. J Am Chem Soc 1996; 118(49): 12309-21.
[http://dx.doi.org/10.1021/ja9625079]
[278]
Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 1995; 377(6550): 649-52.
[http://dx.doi.org/10.1038/377649a0] [PMID: 7566180]
[279]
Coste F, Malinge JM, Serre L, et al. Crystal structure of a double-stranded DNA containing a cisplatin interstrand cross-link at 1.63 A resolution: Hydration at the platinated site. Nucleic Acids Res 1999; 27(8): 1837-46.
[http://dx.doi.org/10.1093/nar/27.8.1837] [PMID: 10101191]
[280]
Reißner T, Schneider S, Schorr S, Carell T. Crystal structure of a cisplatin-(1,3-GTG) cross-link within DNA polymerase η. Angew Chem Int Ed Engl 2010; 49(17): 3077-80.
[http://dx.doi.org/10.1002/anie.201000414] [PMID: 20333640]
[281]
Rijal K, Chow CS. A new role for cisplatin: Probing ribosomal RNA structure. Chem Commun 2008; 107-9(1): 107-9.
[http://dx.doi.org/10.1039/B816633A] [PMID: 19082014]
[282]
Melnikov SV, Söll D, Steitz TA, Polikanov YS. Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome. Nucleic Acids Res 2016; 44(10): 4978-87.
[http://dx.doi.org/10.1093/nar/gkw246] [PMID: 27079977]
[283]
Todd RC, Lippard SJ. Consequences of cisplatin binding on nucleosome structure and dynamics. Chem Biol 2010; 17(12): 1334-43.
[http://dx.doi.org/10.1016/j.chembiol.2010.10.018] [PMID: 21168769]
[284]
Neault JF, Tajmir-Riahi HA. Interaction of cisplatin with human serum albumin. Drug binding mode and protein secondary structure. Biochim Biophys Acta Protein Struct Mol Enzymol 1998; 1384(1): 153-9.
[http://dx.doi.org/10.1016/S0167-4838(98)00011-9] [PMID: 9602104]
[285]
Ferraro G, Messori L, Merlino A. The X-ray structure of the primary adducts formed in the reaction between cisplatin and cytochrome c. Chem Commun 2015; 51(13): 2559-61.
[http://dx.doi.org/10.1039/C4CC09056J] [PMID: 25567806]
[286]
Messori L, Merlino A. Cisplatin binding to proteins: Molecular structure of the ribonuclease a adduct. Inorg Chem 2014; 53(8): 3929-31.
[http://dx.doi.org/10.1021/ic500360f] [PMID: 24694179]
[287]
Melo-Hanchuk TD, Slepicka PF, Meirelles GV, et al. NEK1 kinase domain structure and its dynamic protein after exposure to cisplatin. Sci Rep 2017; 7(1): 5445.
[http://dx.doi.org/10.1038/s41598-017-05325-w] [PMID: 28710492]
[288]
Helliwell JR, Tanley SWM. The crystal structure analysis of the relative binding of cisplatin and carboplatin in a mixture with histidine in a protein studied at 100 and 300 K with repeated X-ray irradiation. Acta Crystallogr D Biol Crystallogr 2013; 69(1): 121-5.
[http://dx.doi.org/10.1107/S090744491204423X] [PMID: 23275170]
[289]
Abouelhag HA, Sivakumar SM, Bagul US, Eltyep EM, Safhi MM. Preparation and physical characterization of cisplatin chitosan nanoparticles by zeta nanosizer “Prime step for formulation and development”. Int J Pharm Sci Res 2017; 8(10): 4245-9.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.8(10).4245-49]
[290]
Huang H, Zhu L, Reid BR, Drobny GP, Hopkins PB. Solution structure of a cisplatin-induced DNA interstrand cross-link. Science 1995; 270(5243): 1842-5.
[http://dx.doi.org/10.1126/science.270.5243.1842] [PMID: 8525382]
[291]
Yang D, van Boom SSGE, Reedijk J, van Boom JH, Wang AHJ. Structure and isomerization of an intrastrand cisplatin-cross-linked octamer DNA duplex by NMR analysis. Biochemistry 1995; 34(39): 12912-20.
[http://dx.doi.org/10.1021/bi00039a054] [PMID: 7548048]
[292]
Gelasco A, Lippard SJ. NMR solution structure of a DNA dodecamer duplex containing a cis-diammineplatinum(II) d(GpG) intrastrand cross-link, the major adduct of the anticancer drug cisplatin. Biochemistry 1998; 37(26): 9230-9.
[http://dx.doi.org/10.1021/bi973176v] [PMID: 9649303]
[293]
Tsankov D, Kalisch B, van de Sande H, Wieser H. Cisplatin-DNA adducts by vibrational circular dichroism spectroscopy: Structure and isomerization of d(CCTG*G*TCC)‚ d(GGACCAGG) intrastrand cross-linked by Cisplatin. J Phys Chem B 2003; 107(26): 6479-85.
[http://dx.doi.org/10.1021/jp034246c]
[294]
Katsuda Y, Yoshikawa Y, Sato T, et al. Cisplatin and its analogues induce a significant change in the higher-order structure of long duplex DNA. Chem Phys Lett 2009; 473(1-3): 155-9.
[http://dx.doi.org/10.1016/j.cplett.2009.03.026]
[295]
Wu B, Yuan Y, Han X, et al. Structure of LINC00511-siRNA-conjugated nanobubbles and improvement of cisplatin sensitivity on triple negative breast cancer. FASEB J 2020; 34(7): 9713-26.
[http://dx.doi.org/10.1096/fj.202000481R] [PMID: 32497336]
[296]
Venkatasamy A, Guerin E, Blanchet A, et al. Ultrasound and transcriptomics identify a differential impact of cisplatin and histone deacetylation on tumor structure and microenvironment in a patient-derived in vivo model of gastric cancer. Pharmaceutics 2021; 13(9): 1485.
[http://dx.doi.org/10.3390/pharmaceutics13091485] [PMID: 34575561]
[297]
Neault J, Benkirane A, Malonga H, Tajmir-Riahi HA. Interaction of cisplatin drug with Na, K-ATPase: Drug binding mode and protein secondary structure. J Inorg Biochem 2001; 86(2-3): 603-9.
[http://dx.doi.org/10.1016/S0162-0134(01)00300-2] [PMID: 11566333]
[298]
Liu RX, Wu YS, Liu YC, et al. New anthrahydrazone derivatives and their cisplatin-like complexes: Synthesis, antitumor activity and structure-activity relationship. New J Chem 2019; 43(47): 18685-94.
[http://dx.doi.org/10.1039/C9NJ02965F]
[299]
Paraskar AS, Soni S, Chin KT, et al. Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy. Proc Natl Acad Sci 2010; 107(28): 12435-40.
[http://dx.doi.org/10.1073/pnas.1007026107] [PMID: 20616005]
[300]
Miatmoko A. Physical characterization and biodistribution of cisplatin loaded in surfactant modified-hybrid nanoparticles using polyethylene oxide-b-polymethacrylic acid. Adv Pharm Bull 2020; 11(4): 765-71.
[http://dx.doi.org/10.34172/apb.2021.086] [PMID: 34888224]
[301]
Kobayashi S, Furukawa M, Dohi C, Hamashima H, Arai T, Tanaka A. Topology effect for DNA structure of cisplatin: Topological transformation of cisplatin-closed circular DNA adducts by DNA topoisomerase I. Chem Pharm Bull 1999; 47(6): 783-90.
[http://dx.doi.org/10.1248/cpb.47.783] [PMID: 10399836]
[302]
Galea AM, Murray V. The influence of chromatin structure on DNA damage induced by nitrogen mustard and cisplatin analogues. Chem Biol Drug Des 2010; 75(6): 578-89.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00969.x] [PMID: 20565475]
[303]
Davies NP, Hardman LC, Murray V. The effect of chromatin structure on cisplatin damage in intact human cells. Nucleic Acids Res 2000; 28(15): 2954-8.
[http://dx.doi.org/10.1093/nar/28.15.2954] [PMID: 10908359]
[304]
Skvortsov AN, Zatulovskiy EA, Puchkova LV. Structure-functional organization of eukaryotic high-affinity copper importer CTR1 determines its ability to transport copper, silver, and cisplatin. Mol Biol 2012; 46(2): 304-15.
[http://dx.doi.org/10.1134/S0026893312010219]
[305]
Fabijańska M, Orzechowska M, Rybarczyk-Pirek AJ, et al. Simple trans-platinum complex bearing 3-amino-flavone ligand ould be a useful drug: Structure-activity relationcship of platinum complex in comparison with cisplatin. Int J Mol Sci 2020; 21(6): 2116.
[http://dx.doi.org/10.3390/ijms21062116] [PMID: 32204470]
[306]
Kishimoto T, Yoshikawa Y, Yoshikawa K, Komeda S. Different effects of cisplatin and transplatin on the higher-order structure of DNA and gene expression. Int J Mol Sci 2019; 21(1): 34.
[http://dx.doi.org/10.3390/ijms21010034] [PMID: 31861648]
[307]
Kato K, Nomoto M, Izumi H, et al. Structure and functional analysis of the human STAT3 gene promoter: Alteration of chromatin structure as a possible mechanism for the upregulation in cisplatin-resistant cells. Biochim Biophys Acta Gene Struct Expr 2000; 1493(1-2): 91-100.
[http://dx.doi.org/10.1016/S0167-4781(00)00168-8] [PMID: 10978511]
[308]
Hu J, Wu TM, Li HZ, Zuo ZP, Zhao YL, Yang L. The synthesis, structure-toxicity relationship of cisplatin derivatives for the mechanism research of cisplatin-induced nephrotoxicity. Bioorg Med Chem Lett 2017; 27(15): 3591-4.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.077] [PMID: 28579329]
[309]
Estrela GR, Wasinski F, Batista R, et al. Caloric restriction is more efficient than physical exercise to protect from cisplatin nephrotoxicity via PPAR-alpha activation. Front Physiol 2017; 8: 116.
[http://dx.doi.org/10.3389/fphys.2017.00116] [PMID: 28303105]
[310]
Nosaka K, Nakada J, Endou H. Cisplatin-induced alterations in renal structure, ammoniagenesis and gluconeogenesis of rats. Kidney Int 1992; 41(1): 73-9.
[http://dx.doi.org/10.1038/ki.1992.10] [PMID: 1593864]
[311]
Al-Bader M, Kilarkaje N. Effects of bleomycin, etoposide and cisplatin treatment on Leydig cell structure and transcription of steroidogenic enzymes in rat testis. Eur J Pharmacol 2015; 747(1): 150-9.
[http://dx.doi.org/10.1016/j.ejphar.2014.12.006] [PMID: 25523482]
[312]
Erfani Majd N, Shahraki R, Tabandeh MR, Hosseinifar S. Protective effects of Aloe vera gel on cisplatin-induced oxidative stress, apoptosis and neurons structure in rat hippocampus. Vet Res Forum 2022; 13(1): 111-9.
[http://dx.doi.org/10.30466/vrf.2020.119876.2835] [PMID: 35601785]
[313]
Wu CH, Ko JL, Liao JM, et al. D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation. Ther Adv Med Oncol 2019; 11(1)
[http://dx.doi.org/10.1177/1758835918821021] [PMID: 30792823]
[314]
Zamay TN, Kolovskaya OS, Zamay GS, Borodina NA. Effects of cisplatin on lymphocyte structure and functions in mice with ehrlich ascitic carcinoma. Bull Exp Biol Med 2011; 151(1): 62-5.
[http://dx.doi.org/10.1007/s10517-011-1260-9] [PMID: 22442804]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy