Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Systematic Review Article

Metabolic Changes of Active Components of Important Medicinal Plants on the basis of Traditional Chinese Medicine under Different Environmental Stresses

Author(s): Mohamad Hesam Shahrajabian, Yue Kuang, Haoran Cui, Lan Fu* and Wenli Sun*

Volume 27, Issue 9, 2023

Published on: 18 August, 2023

Page: [782 - 806] Pages: 25

DOI: 10.2174/1385272827666230807150910

Abstract

Traditional Chinese medicine is an ancient system of wellness and health that has been used in almost all countries of the world, specially in Asia for thousands of years.

The growth, development, final yield and chemical compounds of medicinal plants can be negatively influenced by different kinds of biotic and abiotic stresses. Abiotic stress signals are chemical stress (Mineral salts, heavy metal, aerosols, gaseous toxins, pesticides, and pollutants), salinity (salt), temperature (Heat, cold), radiation (Ionisation radiation, light and UV), water (Flooding, drought) and mechanical stress (Submergence, wind, soil movement). Relevant literature has been obtained using the keywords “Traditional Chinese Medicine”, “Abiotic Stress”, “Biotic Stress”, “Ginseng”, “Ginger”, “Goji berry”, “Astragalus”, “Ginkgo”, “Artemisia annua L.”, “LC-MS”, “GC-MS”, and “NMR” in scientific information, namely “Web of Science”, “PubMed”, “SciFinder”, and “Elsevier”. Some of the plants’ secondary metabolites under different growth conditions are Camptothecin (Camptotheca acuminata), Capsaicin (Capsicum sp.), Rosmarinic acid (Salvia miltiorrhiza), Codeine (Papaver somniferum), Resveratrol (Grapes, groundnut), Artemisinin (Artemesia annua), Allicin (Allium sativum), Rohitukine (Dysoxylum binectariferum), Stevioside (Stevia rebaudiana), Andrographolide (Andrographis paniculata), Saikosaponins (Bupleurum chinense), Sennosides (Cassia augustifolia), Rutin (Dimorphandra mollis), Valepotriates (Valeria species), Indole alkaloids (Catharanthus roseous), and Furanocoumarins (Bituminaria bituminosa).

The aim of this article is a survey of active chemical compounds and metabolic changes of some of the most important medicinal plants in traditional Chinese medicine (TCM) in both abiotic and biotic stresses.

Future research is needed to evaluate the effects of biotic and abiotic stresses on chemical compounds and active metabolites of medicinal plants specially traditional Chinese medicine, and more surveys on the roles of LC-MS, GC-MS and NMR techniques for a better understanding of chemical components of medicinal plants.

Keywords: Berberine, ginger, ginseng, astragalus, goji berry, abiotic stress, biotic stress.

« Previous
Graphical Abstract
[1]
Marmitt, D.J.; Shahrajabian, M.H. Plant species used in Brazil and Asia regions with toxic properties. Phytother. Res., 2021, 35(9), 4703-4726.
[http://dx.doi.org/10.1002/ptr.7100] [PMID: 33793002]
[2]
Marmitt, D.J.; Shahrajabian, M.H.; Goettert, M.I.; Rempel, C. Clinical trials with plants in diabetes mellitus therapy: A systematic review. Expert Rev. Clin. Pharmacol., 2021, 14(6), 735-747.
[http://dx.doi.org/10.1080/17512433.2021.1917380] [PMID: 33884948]
[3]
Shahrajabian, M.H.; Sun, W.; Soleymani, A.; Cheng, Q. Traditional herbal medicines to overcome stress, anxiety and improve metanl health in outbreaks of human coronaviruses. Phytother. Res., 2020, 2020(1), 1-11.
[http://dx.doi.org/10.1002/ptr.6888] [PMID: 33350538]
[4]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with COVID-19. Nat. Prod. Commun., 2020, 15(8), 1934578X2095143.
[http://dx.doi.org/10.1177/1934578X20951431]
[5]
Shahrajabian, M.H.; Sun, W. Medicinal plants, economical and natural agents with antioxidant activity. Curr. Nutr. Food Sci., 2023, 19(8), 763-784.
[http://dx.doi.org/10.2174/1573401318666221003110058]
[6]
Shahrajabian, M.H.; Sun, W. Importance of thymoquinone, sulforaphane, phloretin, and epigallocatechin and their health benefits. Lett. Drug Des. Discov., 2022, 19, 10816.
[http://dx.doi.org/10.2174/1570180819666220902115521]
[7]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Health benefits of wolfberry (Gou Qi Zi) on the basis of ancient Chinese herbalism and Western modern medicine. Avicenna J. Phytomed., 2021, 11(2), 109-119.
[http://dx.doi.org/10.22038/AJP.2020.17147] [PMID: 33907670]
[8]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Rev. Med. Chem., 2021, 21(6), 724-730.
[http://dx.doi.org/10.2174/18755607MTEx4OTAn5] [PMID: 33245271]
[9]
Shahrajabian, M.H.; Sun, W. Great doctors and scientists from the East: from princes of Persia, to icons of Asian science. Not. Sci. Biol., 2022, 14(3), 11288.
[http://dx.doi.org/10.55779/nsb14311288]
[10]
Shahrajabian, M.H.; Sun, W. Asparagus (Asparagus officinalis L.) and pennyroyal (Mentha pulegium L.), impressive advantages with wondrous health-beneficial phytochemicals. Not. Sci. Biol., 2022, 14(2), 11212.
[http://dx.doi.org/10.55779/nsb14211212]
[11]
Shahrajabian, M.H.; Sun, W.; Shen, H.; Cheng, Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agric. Scand. B Soil Plant Sci., 2020, 70(5), 437-443.
[http://dx.doi.org/10.1080/09064710.2020.1763448]
[12]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses. Isr. J. Plant Sci., 2021, 68(1-2), 61-71.
[http://dx.doi.org/10.1163/22238980-bja10019]
[13]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-COVID-19 era. Appl. Sci., 2021, 11(17), 7889.
[http://dx.doi.org/10.3390/app11177889]
[14]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Ginkgo biloba, a famous living fossil tree and an ancient herbal traditional Chinese medicine. Curr. Nutr. Food Sci., 2022, 18(3), 259-264.
[http://dx.doi.org/10.2174/1573401317666210910120735]
[15]
Ma, D.; Wang, S.; Shi, Y.; Ni, S.; Tang, M.; Xu, A. The development of traditional Chinese medicine. J. Tradit. Chin. Med. Sci, 2021, 8(1), S1-S9.
[http://dx.doi.org/10.1016/j.jtcms.2021.11.002]
[16]
Rahman, M.M.; Bibi, S.; Rahaman, M.S.; Rahman, F.; Islam, F.; Khan, M.S.; Hasan, M.M.; Parvez, A.; Hossain, M.A.; Maeesa, S.K.; Islam, M.R.; Najda, A.; Al-malky, H.S.; Mohamed, H.R.H.; AlGwaiz, H.I.M.; Awaji, A.A.; Germoush, M.O.; Kensara, O.A.; Abdel-Daim, M.M.; Saeed, M.; Kamal, M.A. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed. Pharmacother., 2022, 150, 113041.
[http://dx.doi.org/10.1016/j.biopha.2022.113041] [PMID: 35658211]
[17]
Thakur, M.; Bhattacharya, S.; Khosla, P.K.; Puri, S. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J. Appl. Res. Med. Aromat. Plants, 2019, 12, 1-12.
[http://dx.doi.org/10.1016/j.jarmap.2018.11.004]
[18]
Zuo, Y.; Li, B.; Guan, S.; Jia, J.; Xu, X.; Zhang, Z.; Lu, Z.; Li, X.; Pang, X. EuRBG10 involved in indole alkaloids biosynthesis in Eucommia ulmoides induced by drought and salt stresses. J. Plant Physiol., 2022, 278, 153813.
[http://dx.doi.org/10.1016/j.jplph.2022.153813] [PMID: 36179396]
[19]
Keswani, C.; Singh, H.B.; Hermosa, R.; García-Estrada, C.; Caradus, J.; He, Y.W.; Mezaache-Aichour, S.; Glare, T.R.; Borriss, R.; Vinale, F.; Sansinenea, E. Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Appl. Microbiol. Biotechnol., 2019, 103(23-24), 9287-9303.
[http://dx.doi.org/10.1007/s00253-019-10209-2] [PMID: 31707442]
[20]
Meena, M.; Yadav, G.; Sonigra, P.; Nagda, A.; Mehta, T.; Swapnil, P. Harish; Marwal, A. Role of elicitors to initiate the induction of systemic resistance in plants to biotic stress. Plant Stress, 2022, 5, 100103.
[http://dx.doi.org/10.1016/j.stress.2022.100103]
[21]
Eo, J.; Mo, H-S.; Park, K-C. Abiotic factors influencing growth and ginsenoside content of Panax ginseng roots. Weonye Gwahag Gisulji, 2018, 36(5), 681-690.
[http://dx.doi.org/10.12972/kjhst.20180068]
[22]
Ivane, N.M.A.; Elysé, F.K.R.; Haruna, S.A.; Pride, N.; Richard, E.; Foncha, A.C.; Dandago, M.A. The anti-oxidative potential of ginger extract and its constituent on meat protein isolate under induced Fenton oxidation. J. Proteomics, 2022, 269, 104723.
[http://dx.doi.org/10.1016/j.jprot.2022.104723] [PMID: 36096434]
[23]
Soares, A.P.D.C.; Faria, N.C.D.; Graciano, G.F.; Silva, J.A.D.; Goncalves, V.S.D.S.; Valenzuela, V.D.C.T.; Correira, M.I.T.D.; Anastacio, L.R. Ginger infusion increases diet-induced thermogenesis in healthy individuals: A randomized crossover trial. Food Biosci., 2022, 50, 102005.
[http://dx.doi.org/10.1016/j.fbio.2022.102005]
[24]
Faddladdeen, K.A. The possible protective and therapeutic effects of ginger and cinnamon on the testis and coda epididymis of streptozotocin-induced-diabetic rats: Histological and biochemical studies. Saudi J. Biol. Sci., 2022, 29(12), 103452.
[http://dx.doi.org/10.1016/j.sjbs.2022.103452] [PMID: 36164289]
[25]
Gurung, A.; Khatiwada, B.; Kayastha, B.; Parsekar, S.; Mistry, S.K.; Yadav, U.N. Effectiveness of Zingiber officinale (ginger) compared with non-steroidal anti-inflammatory drugs and complementary therapy in primary dysmenorrhoea: A systematic review. Clin. Epidemiol. Glob. Health, 2022, 18, 101152.
[http://dx.doi.org/10.1016/j.cegh.2022.101152]
[26]
Jayathilake, A.L.; Jayasinghe, M.A.; Walpita, J. Development of ginger, turmeric oleoresins and pomegranate peel extracts incorporated pasteurized milk with pharmacologically important active compounds. Applied Food Research, 2022, 2(1), 100063.
[http://dx.doi.org/10.1016/j.afres.2022.100063]
[27]
Sihombing, A.T.; Prabharani, D.; Lukman, K.; Sudjud, R.W. The effectiveness of ginger extract addition in calorified drinks during perioperative period to nausea severity, vomitus, post-operative anxiety, and metabolic disorder: A randomized control trial. Ann. Med. Surg., 2022, 84, 104865.
[http://dx.doi.org/10.1016/j.amsu.2022.104865] [PMID: 36536711]
[28]
Tian, C.; Chang, Y.; Liu, X.; Zhang, Z.; Guo, Y.; Lan, Z.; Zhang, P.; Liu, M. Anti-inflammatory activity in vitro, extractive process and HPLC-MS characterization of total saponins extract from Tribulus terrestris L. fruits. Ind. Crops Prod., 2020, 150, 112343.
[http://dx.doi.org/10.1016/j.indcrop.2020.112343]
[29]
Beccaria, M.; Cabooter, D. Current developments in LC-MS for pharmaceutical analysis. Analyst, 2020, 145(4), 1129-1157.
[http://dx.doi.org/10.1039/C9AN02145K]
[30]
Mohammad Al-Taweel, A.; Perveen, S.; Ibrahim Alqasoumi, S.; Orfali, R.; Aati, H.Y. Shahnaz; Nasser Alsultan, E.; Alghanem, B.; Shaibah, H. New flavane gallates from the aerial part of an African/Arabian medicinal plant Plicosepalus curviflorus by LC-MS and NMR based molecular characterization. J. King Saud Univ. Sci., 2021, 33(2), 101289.
[http://dx.doi.org/10.1016/j.jksus.2020.101289]
[31]
Bezerra, K.S.; Antoniosi Filho, N.R. Characterization and quantification by gas chromatography of free steroids in unsaponifiable matter of vegetable oils. J. Braz. Chem. Soc., 2013, 25, 238-245.
[http://dx.doi.org/10.5935/0103-5053.20130288]
[32]
Chiu, H.H.; Kuo, C.H. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples. Yao Wu Shi Pin Fen Xi, 2020, 28(1), 60-73.
[http://dx.doi.org/10.38212/2224-6614.1221] [PMID: 31883609]
[33]
Farag, M.A.; Huhman, D.V.; Lei, Z.; Sumner, L.W. Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC–UV–ESI–MS and GC–MS. Phytochemistry, 2007, 68(3), 342-354.
[http://dx.doi.org/10.1016/j.phytochem.2006.10.023] [PMID: 17156801]
[34]
Shukla, V.; Singh, P. kumar, D.; Konwar, R.; Singh, B.; Kumar, B. Phytochemical analysis of high value medicinal plant Valeriana jatamansi using LC-MS and it’s in-vitro anti-proliferative screening. Phytomed. Plus, 2021, 1(2), 100025.
[http://dx.doi.org/10.1016/j.phyplu.2021.100025]
[35]
Han, J.Y.; Lee, S.; Yang, J.H.; Kim, S.; Sim, J.; Kim, M.G.; Jeong, T.C.; Ku, S.K.; Cho, I.J.; Ki, S.H. Korean Red Ginseng attenuates ethanol-induced steatosis and oxidative stress via AMPK/Sirt1 activation. J. Ginseng Res., 2015, 39(2), 105-115.
[http://dx.doi.org/10.1016/j.jgr.2014.09.001] [PMID: 26045683]
[36]
Li, J.; Feng, W.; Dai, R.; Li, B. Recent progress on the identification of phenanthrene derivatives in traditional Chinese medicine and their biological activities. Pharmacol. Res. - Mod. Chin. Med, 2022, 3, 100078.
[http://dx.doi.org/10.1016/j.prmcm.2022.100078]
[37]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol., 2019, 5(1), 1673688.
[http://dx.doi.org/10.1080/23312025.2019.1673688]
[38]
Jin, Y.; Zhu, F.; Li, J.; Ma, L. TCMFVis: A visual analytics system toward bridging together traditional Chinese medicine and modern medicine. Vis. Inform., 2023, 7(1), 41-55.
[http://dx.doi.org/10.1016/j.visinf.2022.11.001]
[39]
Wu, T.; Yu, G.Y.; Xiao, J.; Yan, C.; Kurihara, H.; Li, Y.F.; So, K.F.; He, R.R. Fostering efficacy and toxicity evaluation of traditional Chinese medicine and natural products: Chick embryo as a high throughput model bridging in vitro and in vivo studies. Pharmacol. Res., 2018, 133, 21-34.
[http://dx.doi.org/10.1016/j.phrs.2018.04.011] [PMID: 29679640]
[40]
Li, X.; Zhao, M.; Guo, L.; Huang, L. Effect of cadmium on photosynthetic pigments, lipid peroxidation, antioxidants, and artemisinin in hydroponically grown Artemisia annua. J. Environ. Sci., 2012, 24(8), 1511-1518.
[http://dx.doi.org/10.1016/S1001-0742(11)60920-0] [PMID: 23513695]
[41]
Ji, L.; Li, Q.; He, Y.; Zhang, X.; Zhou, Z.; Gao, Y.; Fang, M.; Yu, Z.; Rodrigues, R.M.; Gao, Y.; Li, M. Therapeutic potential of traditional Chinese medicine for the treatment of NAFLD: A promising drug Potentilla discolor Bunge. Acta Pharm. Sin. B, 2022, 12(9), 3529-3547.
[http://dx.doi.org/10.1016/j.apsb.2022.05.001] [PMID: 36176915]
[42]
Li, L.; Zheng, R.; Sun, R. Multicomponent self-assembly based on bioactive molecules of traditional Chinese medicine (TCM). Pharmacol. Res. - Mod. Chin. Med, 2022, 4, 100158.
[http://dx.doi.org/10.1016/j.prmcm.2022.100158]
[43]
Song, H.P.; Zhang, H.; Hu, R.; Xiao, H.H.; Guo, H.; Yuan, W.H.; Han, X.T.; Xu, X.Y.; Zhang, X.; Ding, Z.X.; Zhao, M.Y.; Kang, T.G.; Sun, H.Y.; Chang, A.; Chen, Y.H.; Xie, M. A strategy to discover lead chemome from traditional Chinese medicines based on natural chromatogram-effect correlation (NCEC) and natural structure-effect correlation (NSEC): Mahonia bealei and Mahonia fortunei as a case study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1181, 122922.
[http://dx.doi.org/10.1016/j.jchromb.2021.122922] [PMID: 34500403]
[44]
Wei, Z.; Chen, J.; Zuo, F.; Guo, J.; Sun, X.; Liu, D.; Liu, C. Traditional chinese medicine has great potential as candidate drugs for lung cancer: A review. J. Ethnopharmacol., 2023, 300, 115748.
[http://dx.doi.org/10.1016/j.jep.2022.115748] [PMID: 36162545]
[45]
Hou, Y.; Chen, M.; Ruan, H.; Sun, Z.; Wu, H.; Xu, X.; Yang, J.; Ma, G.; Zhou, X. A new supramolecular natural product gel based on self-assembled pomolic acid from traditional Chinese medicine. Colloid Interface Sci. Commun., 2022, 46, 100583.
[http://dx.doi.org/10.1016/j.colcom.2021.100583]
[46]
Britza, S.M.; Byard, R.W.; Musgrave, I.F. Traditional Chinese medicine-associated nephrotoxicity and the importance of herbal interactions: An overview. Pharmacol. Res. - Mod. Chin. Med, 2022, 3, 100099.
[http://dx.doi.org/10.1016/j.prmcm.2022.100099]
[47]
Li, J.; Li, C.; Peng, X.; Li, S.; Liu, B.; Chu, C. Recent discovery of tyrosinase inhibitors in traditional Chinese medicines and screening methods. J. Ethnopharmacol., 2022, 115951.
[http://dx.doi.org/10.1016/j.kep.2022.115951] [PMID: 36410577]
[48]
Wang, Y.J.; Li, Y.X.; Li, S.; He, W.; Wang, Z.R.; Zhan, T.P.; Lv, C.Y.; Liu, Y.P.; Yang, Y.; Zeng, X.X. Progress in traditional Chinese medicine and natural extracts for the treatment of lupus nephritis. Biomed. Pharmacother., 2022, 149, 112799.
[http://dx.doi.org/10.1016/j.biopha.2022.112799] [PMID: 35279011]
[49]
Nebigil, C.G.; Moog, C.; Vagner, S.; Benkirane-Jessel, N.; Smith, D.R.; Désaubry, L. Flavaglines as natural products targeting eIF4A and prohibitins: From traditional Chinese medicine to antiviral activity against coronaviruses. Eur. J. Med. Chem., 2020, 203, 112653.
[http://dx.doi.org/10.1016/j.ejmech.2020.112653] [PMID: 32693294]
[50]
Wu, X.; Wang, J.; Amanze, C.; Yu, R.; Li, J.; Wu, X.; Shen, L.; Liu, Y.; Yu, Z.; Zeng, W. Exploring the dynamic of microbial community and metabolic function in food waste composting amended with traditional Chinese medicine residues. J. Environ. Manage., 2022, 319, 115765.
[http://dx.doi.org/10.1016/j.jenvman.2022.115765] [PMID: 35982566]
[51]
Shi, X.; Chang, M.; Zhao, M.; Shi, Y.; Zhang, Y. Traditional Chinese medicine compounds ameliorating glomerular diseases via autophagy: A mechanism review. Biomed. Pharmacother., 2022, 156, 113916.
[http://dx.doi.org/10.1016/j.biopha.2022.113916] [PMID: 36411609]
[52]
Yang, M.; Wang, Y.; Yue, Y.; Liang, L.; Peng, M.; Zhao, M.; Chen, Y.; Cao, X.; Li, W.; Li, C.; Zhang, H.; Du, J.; Zhong, R.; Xia, T.; Shu, Z. Traditional Chinese medicines as effective agents against influenza virus-induced pneumonia. Biomed. Pharmacother., 2022, 153, 113523.
[http://dx.doi.org/10.1016/j.biopha.2022.113523] [PMID: 36076605]
[53]
Zhou, X.; Guo, Y.; Yang, K.; Liu, P.; Wang, J. The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing. J. Ethnopharmacol., 2022, 282, 114662.
[http://dx.doi.org/10.1016/j.jep.2021.114662] [PMID: 34555452]
[54]
Wei, C.; Qiu, J.; Wu, Y.; Chen, Z.; Yu, Z.; Huang, Z.; Yang, K.; Hu, H.; Liu, F. Promising traditional Chinese medicine for the treatment of cholestatic liver disease process (cholestasis, hepatitis, liver fibrosis, liver cirrhosis). J. Ethnopharmacol., 2022, 297, 115550.
[http://dx.doi.org/10.1016/j.jep.2022.115550] [PMID: 35863612]
[55]
Liu, L.; Li, H.; Tan, G.; Ma, Z. Traditional Chinese herbal medicine in treating amenorrhea caused by antipsychotic drugs: Meta-analysis and systematic review. J. Ethnopharmacol., 2022, 289, 115044.
[http://dx.doi.org/10.1016/j.jep.2022.115044] [PMID: 35101572]
[56]
Wang, D.; Wang, F.; Kong, X.; Li, Q.; Shi, H.; Zhao, S.; Li, W.; Li, Y.; Meng, J. The role of metabolic reprogramming in cancer metastasis and potential mechanism of traditional Chinese medicine intervention. Biomed. Pharmacother., 2022, 153, 113376.
[http://dx.doi.org/10.1016/j.biopha.2022.113376] [PMID: 36076519]
[57]
Muhammad, F.; Liu, Y.; Zhou, Y.; Yang, H.; Li, H. Antioxidant role of traditional Chinese medicine in Parkinson,s disease. J. Ethnopharmacol., 2022, 285, 114821.
[http://dx.doi.org/10.1016/j.jep.2021.114821] [PMID: 34838943]
[58]
Wang, S.; Yuan, R.; Liu, M.; Zhang, Y.; Jia, B.; Ruan, J.; Shen, J.; Zhang, Y.; Liu, M.; Wang, T. Targeting autophagy in atherosclerosis: Advances and therapeutic potential of natural bioactive compounds from herbal medicines and natural products. Biomed. Pharmacother., 2022, 155, 113712.
[http://dx.doi.org/10.1016/j.biopha.2022.113712] [PMID: 36130420]
[59]
Bu, L.; Dai, O.; Zhou, F.; Liu, F.; Chen, J.F.; Peng, C.; Xiong, L. Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed. Pharmacother., 2020, 132, 110855.
[http://dx.doi.org/10.1016/j.biopha.2020.110855] [PMID: 33059257]
[60]
Wang, Y.; Zhang, Q.; Chen, Y.; Liang, C.L.; Liu, H.; Qiu, F.; Dai, Z. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed. Pharmacother., 2020, 121, 109570.
[http://dx.doi.org/10.1016/j.biopha.2019.109570] [PMID: 31710893]
[61]
Zhu, L.; Xu, L.; Huang, Y.; Xie, C.; Dou, D.; Xu, J. Correlations between ecological factors and the chemical compositions of mountainous forest cultivated ginseng. J. Food Compos. Anal., 2022, 114, 104867.
[http://dx.doi.org/10.1016/j.jfca.2022.104867]
[62]
Chen, J.; Xu, J.; Huang, P.; Luo, Y.; Shi, Y.; Ma, P. The potential applications of traditional Chinese medicine in Parkinson’s disease: A new opportunity. Biomed. Pharmacother., 2022, 149, 112866.
[http://dx.doi.org/10.1016/j.biopha.2022.112866] [PMID: 35367767]
[63]
Dai, R.; Sun, Y.; Su, R.; Gao, H. Anti-Alzheimer’s disease potential of traditional chinese medicinal herbs as inhibitors of BACE1 and AChE enzymes. Biomed. Pharmacother., 2022, 154, 113576.
[http://dx.doi.org/10.1016/j.biopha.2022.113576] [PMID: 36007279]
[64]
Li, X.; Li, L.; Lei, W.; Chua, H.Z.; Li, Z.; Huang, X.; Wang, Q.; Li, N.; Zhang, H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed. Pharmacother., 2021, 142, 111979.
[http://dx.doi.org/10.1016/j.biopha.2021.111979] [PMID: 34358754]
[65]
Mahajan, M.; Kuiry, R.; Pal, P.K. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J. Appl. Res. Med. Aromat. Plants, 2020, 18, 100255.
[http://dx.doi.org/10.1016/j.jarmap.2020.100255]
[66]
Ogbe, A.A.; Finnie, J.F.; Van Staden, J. The role of endophytes in secondary metabolites accumulation in medicinal plants under abiotic stress. S. Afr. J. Bot., 2020, 134, 126-134.
[http://dx.doi.org/10.1016/j.sajb.2020.06.023]
[67]
Aziz, E.E.; Hendawy, S.F. Effect of soil type and irrigation intervals on plant growth, essential oil yield and constituents of Thymus vulgaris plant. Am. Eur. J. Agric. Environ., 2008, 4, 443-450.
[68]
Ibrahim, M.H.; Jaafar, H.Z.E. Impact of elevated carbon dioxide on primary, secondary metabolites and antioxidant responses of Eleais guineensis Jacq. (oil palm) seedlings. Molecules, 2012, 17(5), 5195-5211.
[http://dx.doi.org/10.3390/molecules17055195] [PMID: 22628041]
[69]
Ncube, B.; Finnie, J.F.; Van Staden, J. Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. S. Afr. J. Bot., 2012, 82, 11-20.
[http://dx.doi.org/10.1016/j.sajb.2012.05.009]
[70]
Nowak, M.; Manderscheid, R.; Weigel, H.J.; Kleinwachter, M.; Selmar, D. Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. J. Appl. Bot. Food Qual., 2010, 83, 133-136.
[71]
Saravanan, S.; Karthi, S. Effect of elevated CO2 on growth and biochemical changes in Catharanthus roseus-a valuable medicinal herb. World J. Pharmaceut. Sci., 2014, 3, 411-422.
[72]
Mishra, T. Climate change and production of secondary metabolites in medicinal plants: A review. Int. J. Herb. Med., 2016, 4, 27-30.
[73]
Yuan, Y.; Zuo, J.; Zhang, H.; Zu, M.; Liu, S. The Chinese medicinal plants rhizosphere: Metabolites, microorganisms, and interaction. Rhizosphere, 2022, 22, 100540.
[http://dx.doi.org/10.1016/j.rhisph.2022.100540]
[74]
Moenne, A.; González, A. Chitosan-, alginate- carrageenan-derived oligosaccharides stimulate defense against biotic and abiotic stresses, and growth in plants: A historical perspective. Carbohydr. Res., 2021, 503, 108298.
[http://dx.doi.org/10.1016/j.carres.2021.108298] [PMID: 33831669]
[75]
Silva, R.F.D.; Carneiro, C.N.; Sousa, C.B.D.C.; Gomez, F.J.V.; Espino, M.; Boiteux, J.; Fernandez, M.D.I.A.; Silva, M.F.; Dias, F.D.S. Sustainable extraction bioactive compounds procedures in medicinal plants based on the principles of green analytical chemistry: A review. Microchem. J., 2022, 175, 107184.
[http://dx.doi.org/10.1016/j.microc.2022.107184]
[76]
Guru, A.; Dwivedi, P.; Kaur, P.; Pandey, D.K. Exploring the role of elicitors in enhancing medicinal values of plants under in vitro condition. S. Afr. J. Bot., 2022, 149, 1029-1043.
[http://dx.doi.org/10.1016/j.sajb.2021.10.014]
[77]
Anjitha, K.S.; Sameena, P.P.; Puthur, J.T. Functional aspects of plant secondary metabolites in metal stress tolerance and their importance in pharmacology. Plant Stress, 2021, 2, 100038.
[http://dx.doi.org/10.1016/j.stress.2021.100038]
[78]
Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem., 2020, 148, 80-89.
[http://dx.doi.org/10.1016/j.plaphy.2020.01.006] [PMID: 31951944]
[79]
Kumar, A.; Maurya, V.K.; Susmita, C.; Chuarasiya, U.; Maurya, D.K.; Singh, S.K. Environmental factors and plant-microbes (endophytes) interaction: An overview and future outlook. In: Microbial Endophytes and Plant Growth Beneficial Interactions and Applications; , , 2023; p. pp. 245-257.
[http://dx.doi.org/10.1016/B978-0-323-90620-3.00009-X]
[80]
Yadav, B.; Jogawat, A.; Rahman, M.S.; Narayan, O.P. Secondary metabolites in the drought stress tolerance of crop plants: A review. Gene Rep., 2021, 23, 101040.
[http://dx.doi.org/10.1016/j.genrep.2021.101040]
[81]
Afrin, S.; Huang, J.J.; Luo, Z.Y. JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Sci. Bull., 2015, 60(12), 1062-1072.
[http://dx.doi.org/10.1007/s11434-015-0813-0]
[82]
Vijay, A.; Kumar, A.; Islam, K.; Momo, J.; Ramchiary, N. Functional genomics to understand the tolerance mechanism against biotic and abiotic stresses in Capsicum species. In: Book Transcriptome Profiling, Progress and Prospects; Academic Press, 2023, pp. 305-332.
[http://dx.doi.org/10.1016/B978-0-323-91810-7.00001-7]
[83]
Kostanda, E.; Khatib, S. Biotic stress caused by Tetranychus urticae mites elevates the quantity of secondary metabolites, cannabinoids and terpenes, in Cannabis sativa L. Ind. Crops Prod., 2022, 176, 114331.
[http://dx.doi.org/10.1016/j.indcrop.2021.114331]
[84]
Majid, I.; Kumar, A.; Abbas, N. A basic helix loop helix transcription factor, AaMYC2-Like positively regulates artemisinin biosynthesis in Artemisia annua L. Ind. Crops Prod., 2019, 128, 115-125.
[http://dx.doi.org/10.1016/j.indcrop.2018.10.083]
[85]
Mishra, B.; Chandra, M.; Pant, D. Genome-mining for stress-responsive genes, profiling of antioxidants and radical scavenging metabolism in hyperaccumulator medicinal and aromatic plants. Ind. Crops Prod., 2021, 173, 114107.
[http://dx.doi.org/10.1016/j.indcrop.2021.114107]
[86]
Ghassemi, S.; Delangiz, N.; Asgari Lajayer, B.; Saghafi, D.; Maggi, F. Review and future prospects on the mechanisms related to cold stress resistance and tolerance in medicinal plants. Acta Ecol. Sin., 2021, 41(2), 120-129.
[http://dx.doi.org/10.1016/j.chnaes.2020.09.006]
[87]
Chiappero, J.; Cappellari, L.R.; Palermo, T.B.; Giordano, W.; Khan, N.; Banchio, E. Antioxidant status of medicinal and aromatic plants under the influence of growth-promoting rhizobacteria and osmotic stress. Ind. Crops Prod., 2021, 167, 113541.
[http://dx.doi.org/10.1016/j.indcrop.2021.113541]
[88]
Singh, N.; Kumaria, S. Deciphering the role of stress elicitors on the differential modulation of chalcone synthase gene and subsequent production of secondary metabolites in micropropagated Coelogyne ovalis Lindl., a therapeutically important medicinal orchid. S. Afr. J. Bot., 2021, 140, 336-348.
[http://dx.doi.org/10.1016/j.sajb.2020.06.019]
[89]
Baptista, B.G.; Ribeiro, M.; Cardozo, L.F.M.F.; Leal, V.O.; Regis, B.; Mafra, D. Nutritional benefits of ginger for patients with non-communicable diseases. Clin. Nutr. ESPEN, 2022, 49, 1-16.
[http://dx.doi.org/10.1016/j.clnesp.2022.04.017] [PMID: 35623800]
[90]
Palaniyandi, K.; Jun, W. Low temperature enhanced the podophyllotoxin accumulation vis-a-vis its biosynthetic pathway gene(s) expression in Dysosma versipellis (Hance) M. Cheng – A pharmaceutically important medicinal plant. Process Biochem., 2020, 95, 197-203.
[http://dx.doi.org/10.1016/j.procbio.2020.02.009]
[91]
Assaf, M.; Korkmaz, A. Karaman, &#350.; Kulak, M. Effect of plant growth regulators and salt stress on secondary metabolite composition in Lamiaceae species. S. Afr. J. Bot., 2022, 144, 480-493.
[http://dx.doi.org/10.1016/j.sajb.2021.10.030]
[92]
Ghahremani, A.; Ghasemi Pirbalouti, A.; Mozafari, H.; Habibi, D.; Sani, B. Phytochemical and morpho-physiological traits of mullein as a new medicinal crop under different planting pattern and soil moisture conditions. Ind. Crops Prod., 2020, 145, 111976.
[http://dx.doi.org/10.1016/j.indcrop.2019.111976]
[93]
Nilofer; Srivastava, Y.; Kumar, A.; Khare, P.; Singh, A.K.; Singh, S. Variation in morphophysiological responses and differential expression of sennoside biosynthesis pathway genes under water stress in Cassia angustifolia Vahl. Ind. Crops Prod., 2022, 184, 115047.
[http://dx.doi.org/10.1016/j.indcrop.2022.115047]
[94]
Mir, B.A.; Mir, S.A.; Khazir, J.; Tonfack, L.B.; Cowan, D.A.; Vyas, D.; Koul, S. Cold stress affects antioxidative response and accumulation of medicinally important withanolides in Withania somnifera (L.). Dunal. Ind. Crops Prod., 2015, 74, 1008-1016.
[http://dx.doi.org/10.1016/j.indcrop.2015.06.012]
[95]
Verma, T.; Bhardwaj, S.; Singh, J.; Kapoor, D.; Prasad, R. Triacontanol as a versatile plant growth regulator in overcoming negative effects of salt stress. J. Agr. Food Res., 2022, 10, 100351.
[http://dx.doi.org/10.1016/j.jafr.2022.100351]
[96]
Aslani, Z.; Hassani, A.; Abdollahi Mandoulakani, B.; Barin, M.; Maleki, R. Effect of drought stress and inoculation treatments on nutrient uptake, essential oil and expression of genes related to monoterpenes in sage (Salvia officinalis). Sci. Hortic., 2023, 309, 111610.
[http://dx.doi.org/10.1016/j.scienta.2022.111610]
[97]
Selmar, D.; Kleinwächter, M. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind. Crops Prod., 2013, 42, 558-566.
[http://dx.doi.org/10.1016/j.indcrop.2012.06.020]
[98]
Hadjadj, S.; Sekerifa, B.B.; Khellafi, H.; Krama, K.; Rahmani, S.; Ould El Hadj-Khelil, A. Salinity and type of salt effects on seed germination characteristics of medicinal plant Zygophyllum album L. (Zygophyllaceae) native to the Algerian Sahara. J. Appl. Res. Med. Aromat. Plants, 2022, 31, 100412.
[http://dx.doi.org/10.1016/j.jarmap.2022.100412]
[99]
Rostampour, P.; Hamidian, M.; Movahhedi Dehnavi, M.; Saeidimajd, G.A. Evaluation of osmoregulation and morpho-physiological responses of Borago officinalis under drought and salinity stress with equal osmotic potential. Biochem. Syst. Ecol., 2023, 106, 104567.
[http://dx.doi.org/10.1016/j.bse.2022.104567]
[100]
Babaei, K.; Moghaddam, M.; Farhadi, N.; Ghasemi Pirbalouti, A. Morphological, physiological and phytochemical responses of Mexican marigold (Tagetes minuta L.) to drought stress. Sci. Hortic., 2021, 284, 110116.
[http://dx.doi.org/10.1016/j.scienta.2021.110116]
[101]
Punetha, A.; Kumar, D.; Suryavanshi, P.; Padalia, R.C.; Thimmaiah, V.K. Environmental abiotic stress and secondary metabolites production in medicinal plants: A review. J. Agric. Sci., 2022, 28(3), 351-362.
[http://dx.doi.org/10.15832/ankutbd.999117]
[102]
Hossain, M.A.; Kim, J.H. Possibility as role of ginseng and ginsenosides on inhibiting the heart disease of COVID-19: A systematic review. J. Ginseng Res., 2022, 46(3), 321-330.
[http://dx.doi.org/10.1016/j.jgr.2022.01.003] [PMID: 35068945]
[103]
Oh, H.J.; Jin, H.; Lee, B.Y. The non-saponin fraction of Korean Red Ginseng ameliorates sarcopenia by regulating immune homeostasis in 22–26-month-old C57BL/6J mice. J. Ginseng Res., 2022, 46(6), 809-818.
[http://dx.doi.org/10.1016/j.jgr.2022.05.007] [PMID: 36312735]
[104]
Zhang, L.; Qi, X.; Lu, X.; Cui, C.; Gao, X. Study on hypoglycemic effects of irradiated ginseng adventitious roots. Food Chem. X, 2022, 13, 100234.
[http://dx.doi.org/10.1016/j.fochx.2022.100234] [PMID: 35499036]
[105]
Kim, K.T.; Yoo, K.M.; Lee, J.W.; Eom, S.H.; Hwang, I.K.; Lee, C.Y. Protective effect of steamed American ginseng (Panax quinquefolius L.) on V79-4 cells induced by oxidative stress. J. Ethnopharmacol., 2007, 111(3), 443-450.
[http://dx.doi.org/10.1016/j.jep.2007.01.004] [PMID: 17276636]
[106]
Yoon, D.; Shin, W.C.; Oh, S.M.; Choi, B.R.; Young Lee, D. Integration of multiplatform metabolomics and multivariate analysis for geographical origin discrimination of Panax ginseng. Food Res. Int., 2022, 159, 111610.
[http://dx.doi.org/10.1016/j.foodres.2022.111610] [PMID: 35940805]
[107]
Sun, Z.; Yang, L.; Han, M.; Han, Z.; Yang, L.; Cheng, L.; Yang, X.; Lv, Z. Biological control ginseng grey mold and plant colonization by antagonistic bacteria isolated from rhizospheric soil of Panax ginseng Meyer. Biol. Control, 2019, 138, 104048.
[http://dx.doi.org/10.1016/j.biocontrol.2019.104048]
[108]
Lee, S.; Rhee, D.K. Effects of ginseng on stress-related depression, anxiety, and the hypothalamic–pituitary–adrenal axis. J. Ginseng Res., 2017, 41(4), 589-594.
[http://dx.doi.org/10.1016/j.jgr.2017.01.010] [PMID: 29021708]
[109]
Ran, X.; Dou, D.; Chen, H.; Ren, G. The correlations of adverse effect and tonifying effect of ginseng medicines. J. Ethnopharmacol., 2022, 291, 115113.
[http://dx.doi.org/10.1016/j.jep.2022.115113] [PMID: 35202711]
[110]
Song, J.H.; Kim, K.J.; Choi, S.Y.; Koh, E.J.; Park, J.; Lee, B.Y. Korean ginseng extract ameliorates abnormal immune response through the regulation of inflammatory constituents in Sprague Dawley rat subjected to environmental heat stress. J. Ginseng Res., 2019, 43(2), 252-260.
[http://dx.doi.org/10.1016/j.jgr.2018.02.003] [PMID: 30976163]
[111]
Zhu, L.; Xu, L.; Dou, D.; Huang, L. The distinct of chemical profiles of mountainous forest cultivated ginseng and garden ginseng based on ginsenosides and oligosaccharides. J. Food Compos. Anal., 2021, 104, 104165.
[http://dx.doi.org/10.1016/j.jfca.2021.104165]
[112]
Yu, Y.; Liu, H.; Nie, J.; Tan, J.; Lv, C.; Lu, J. Acidic polysaccharides of Mountain Cultivated Ginseng: The potential source of anti-fatigue nutrients. J. Funct. Foods, 2022, 95, 105198.
[http://dx.doi.org/10.1016/j.jff.2022.105198]
[113]
Zha, W.; Sun, Y.; Gong, W.; Li, L.; Kim, W.; Li, H. Ginseng and ginsenosides: Therapeutic potential for sarcopenia. Biomed. Pharmacother., 2022, 156, 113876.
[http://dx.doi.org/10.1016/j.biopha.2022.113876] [PMID: 36270259]
[114]
Chu, L.L.; Bae, H. Bacterial endophytes from ginseng and their biotechnological application. J. Ginseng Res., 2022, 46(1), 1-10.
[http://dx.doi.org/10.1016/j.jgr.2021.04.004] [PMID: 35035239]
[115]
Dang, H.; Chen, Y.; Liu, X.; Wang, Q.; Wang, L.; Jia, W.; Wang, Y. Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(8), 1417-1424.
[http://dx.doi.org/10.1016/j.pnpbp.2009.07.020] [PMID: 19632285]
[116]
Song, J.H.; Kim, K.J.; Chei, S.; Seo, Y.J.; Lee, K.; Lee, B.Y. Korean Red Ginseng and Korean black ginseng extracts, JP5 and BG1, prevent hepatic oxidative stress and inflammation induced by environmental heat stress. J. Ginseng Res., 2020, 44(2), 267-273.
[http://dx.doi.org/10.1016/j.jgr.2018.12.005] [PMID: 32148408]
[117]
Lee, Y.M.; Yoon, H.; Park, H.M.; Song, B.C.; Yeum, K.J. Implications of red Panax ginseng in oxidative stress associated chronic diseases. J. Ginseng Res., 2017, 41(2), 113-119.
[http://dx.doi.org/10.1016/j.jgr.2016.03.003] [PMID: 28413314]
[118]
Lee, B.; Sur, B.; Lee, H.; Oh, S. Korean Red Ginseng prevents posttraumatic stress disorder–triggered depression-like behaviors in rats via activation of the serotonergic system. J. Ginseng Res., 2020, 44(4), 644-654.
[http://dx.doi.org/10.1016/j.jgr.2019.09.005] [PMID: 32617045]
[119]
Lee, B.; Sur, B.; Oh, S. Neuroprotective effect of Korean Red Ginseng against single prolonged stress-induced memory impairments and inflammation in the rat brain associated with BDNF expression. J. Ginseng Res., 2022, 46(3), 435-443.
[http://dx.doi.org/10.1016/j.jgr.2021.08.002] [PMID: 35600771]
[120]
Park, C.; Cha, H-J.; Song, K-S.; Kim, H-S.; Bang, E.; Lee, H.; Jin, C-Y.; Kim, G-Y.; Choi, Y.H. Nrf2-mediated activation of HO-1 is required in the blocking effect of compound K, a ginseng saponin metabolite, against oxidative stress damage in ARPE-19 human retinal pigment epithelial cells. J. Ginseng Res., 2023, 47(2), 311-318.
[http://dx.doi.org/10.1016/j.jgr.2022.09.007] [PMID: 36926611]
[121]
Peng, X.; Hao, M.; Zhao, Y.; Cai, Y.; Chen, X.; Chen, H.; Zhang, Y.; Dong, L.; Liu, X.; Ding, C.; Liu, W.; Yang, M.; Luo, Y. Red ginseng has stronger anti-aging effects compared to ginseng possibly due to its regulation of oxidative stress and the gut microbiota. Phytomedicine, 2021, 93, 153772.
[http://dx.doi.org/10.1016/j.phymed.2021.153772] [PMID: 34753028]
[122]
Hyun, S.H.; Bhilare, K.D. In, G.; Park, C.K.; Kim, J.H. Effects of Panax ginseng and ginsenosides on oxidative stress and cardiovascular diseases: Pharmacological and therapeutic roles. J. Ginseng Res., 2022, 46(1), 33-38.
[http://dx.doi.org/10.1016/j.jgr.2021.07.007] [PMID: 35058725]
[123]
Wang, S.; Zhao, Y.; Yang, J.; Liu, S.; Ni, W.; Bai, X.; Yang, Z.; Zhao, D.; Liu, M. Ginseng polysaccharide attenuates red blood cells oxidative stress injury by regulating red blood cells glycolysis and liver gluconeogenesis. J. Ethnopharmacol., 2023, 300, 115716.
[http://dx.doi.org/10.1016/j.jep.2022.115716] [PMID: 36122792]
[124]
Shin, Y-J.; Lee, D-Y.; Kim, J.Y.; Heo, K.; Shim, J-J.; Lee, J-L.; Kim, D-H. Effect of fermented red ginseng on gut microbiota dysbiosis- or immobilization stress-induced anxiety, depression, and colitis in mice. J. Ginseng Res., 2022.
[http://dx.doi.org/10.1016/j.jgr.2022.08.004] [PMID: 36926604]
[125]
Baek, J.H.; Heo, J.Y.; Fava, M.; Mischoulon, D.; Choi, K.W.; Na, E.J.; Cho, H.; Jeon, H.J. Effect of Korean Red Ginseng in individuals exposed to high stress levels: A 6-week, double-blind, randomized, placebo-controlled trial. J. Ginseng Res., 2019, 43(3), 402-407.
[http://dx.doi.org/10.1016/j.jgr.2018.03.001] [PMID: 31308812]
[126]
Han, J.; Lee, S.; Kim, H.; Lee, C. MS-based metabolite profiling of aboveground and root components of Zingiber mioga and officinale. Molecules, 2015, 20(9), 16170-16185.
[http://dx.doi.org/10.3390/molecules200916170] [PMID: 26404226]
[127]
Lei, H.; Zhang, H.; Zhang, Z.; Sun, H.; Li, M.; Shao, C.; Liang, H.; Wu, H.; Zhang, Y. Physiological and transcriptomic analyses of roots from Panax ginseng C.A. Meyer under drought stress. Ind. Crops Prod., 2023, 191, 1155858.
[http://dx.doi.org/10.1016/j.indcrop.2022.115858]
[128]
Zhu, Y.; Ouyang, Z.; Du, H.; Wang, M.; Wang, J.; Sun, H.; Kong, L.; Xu, Q.; Ma, H.; Sun, Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm. Sin. B, 2022, 12(11), 4011-4039.
[http://dx.doi.org/10.1016/j.apsb.2022.08.022] [PMID: 36386472]
[129]
Lee, O.R.; Kim, Y.J.; Devi Balusamy, S.R.; Kim, M.K.; Sathiyamoorthy, S.; Yang, D.C. Ginseng γ-thionin is localized to cell wall-bound extracellular spaces and responsive to biotic and abiotic stresses. Physiol. Mol. Plant Pathol., 2011, 76(2), 82-89.
[http://dx.doi.org/10.1016/j.pmpp.2011.05.004]
[130]
Abid, S.; Kaliraj, L.; Rahimi, S.; Kim, Y.J.; Yang, D.C.; Kang, S.C.; Balusamy, S.R. Synthesis and characterization of glycol chitosan coated selenium nanoparticles acts synergistically to alleviate oxidative stress and increase ginsenoside content in Panax ginseng. Carbohydr. Polym., 2021, 267, 118195.
[http://dx.doi.org/10.1016/j.carbpol.2021.118195] [PMID: 34119162]
[131]
Kim, Y.J.; Jang, M.G.; Noh, H.Y.; Lee, H.J.; Sukweenadhi, J.; Kim, J.H.; Kim, S.Y.; Kwon, W.S.; Yang, D.C. Molecular characterization of two glutathione peroxidase genes of Panax ginseng and their expression analysis against environmental stresses. Gene, 2014, 535(1), 33-41.
[http://dx.doi.org/10.1016/j.gene.2013.10.071] [PMID: 24269671]
[132]
Parvin, S.; Lee, O.R.; Sathiyaraj, G.; Khorolragchaa, A.; Kim, Y.J.; Yang, D.C. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene, 2014, 537(1), 70-78.
[http://dx.doi.org/10.1016/j.gene.2013.12.021] [PMID: 24365592]
[133]
Zhang, R.; Zhu, J.; Cao, H.Z.; An, Y.R.; Huang, J.J.; Chen, X.H.; Mohammed, N.; Afrin, S.; Luo, Z.Y. Molecular cloning and expression analysis of PDR1-like gene in ginseng subjected to salt and cold stresses or hormonal treatment. Plant Physiol. Biochem., 2013, 71, 203-211.
[http://dx.doi.org/10.1016/j.plaphy.2013.07.011] [PMID: 23968928]
[134]
Geem, K.R.; Kim, J.; Bae, W.; Jee, M-G.; Yu, J.; Jang, I.; Lee, D-Y.; Hong, C.P.; Shim, D.; Ryu, H. Nitrate enhances the secondary growth of storage roots in Panax ginseng. J. Ginseng Res., 2022.
[http://dx.doi.org/10.1016/j.jgr.2022.05.009] [PMID: 37252286]
[135]
Purev, M.; Kim, Y.J.; Kim, M.K.; Pulla, R.K.; Yang, D.C. Isolation of a novel catalase (Cat1) gene from Panax ginseng and analysis of the response of this gene to various stresses. Plant Physiol. Biochem., 2010, 48(6), 451-460.
[http://dx.doi.org/10.1016/j.plaphy.2010.02.005] [PMID: 20347322]
[136]
Lee, O.R.; Sathiyaraj, G.; Kim, Y.J. In, J-G.; Kwon, W-S.; Kim, J-H.; Yang, D-C. Defense genes induced by pathogens and abiotic stresses in Panax ginseng C.A. In: Meyer. J. Ginseng Res; , 2011; 35, p. (1)1-11.
[http://dx.doi.org/10.5142/jgr.2011.35.1.001]
[137]
Li, J.; Cai, W. A ginseng PgTIP1 gene whose protein biological activity related to Ser128 residue confers faster growth and enhanced salt stress tolerance in Arabidopsis. Plant Sci., 2015, 234, 74-85.
[http://dx.doi.org/10.1016/j.plantsci.2015.02.001] [PMID: 25804811]
[138]
Troitskaya, L.A.; Komov, V.P.; Kirillova, N.V. Peroxidase turnover in ginseng strains under standard conditions and temperature stress. J. Plant Physiol., 1999, 155(2), 281-284.
[http://dx.doi.org/10.1016/S0176-1617(99)80020-0]
[139]
Ali, M.B.; Singh, N.; Shohael, A.M.; Hahn, E.J.; Paek, K.Y. Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci., 2006, 171(1), 147-154.
[http://dx.doi.org/10.1016/j.plantsci.2006.03.005]
[140]
Lim, W.; Mudge, K.W.; Lee, J.W. Effect of water stress on ginsenoside production and growth of American ginseng. Horttechnology, 2006, 16(3), 517-522.
[http://dx.doi.org/10.21273/HORTTECH.16.3.0517]
[141]
Lee, J.; Mudge, K.W. Water deficit affects plant and soil water status, plant growth, and ginsenoside contents in American ginseng. Hortic. Environ. Biotechnol., 2013, 54(6), 475-483.
[http://dx.doi.org/10.1007/s13580-013-0090-2]
[142]
Liao, P.; Liu, D.; Xu, T.R.; Yang, Y.; Cui, X. Soil water stress attenuate the growth and development but enhance the saponin synthesis of Panax notogesing during flowering stage. Ind. Crops Prod., 2017, 108, 95-105.
[http://dx.doi.org/10.1016/j.indcrop.2017.05.052]
[143]
Li, H.; Chen, J.; Zhao, Q.; Han, Y.; Li, L.; Sun, C.; Wang, K.; Wang, Y.; Zhao, M.; Chen, P.; Lei, J.; Wang, Y.; Zhang, M. Basic leucine zipper (bZIP) transcription factor genes and their responses to drought stress in ginseng, Panax ginseng C.A. Meyer. BMC Genomics, 2021, 22(1), 316.
[http://dx.doi.org/10.1186/s12864-021-07624-z] [PMID: 33932982]
[144]
Xiao, D.; Yue, H.; Xiu, Y.; Sun, X.; Wang, Y.; Liu, S. Accumulation characteristics and correlation analysis of five ginsenosides with different cultivation ages from different regions. J. Ginseng Res., 2015, 39(4), 338-344.
[http://dx.doi.org/10.1016/j.jgr.2015.03.004] [PMID: 26869826]
[145]
Liu, Z.; Wang, C.Z.; Zhu, X.Y.; Wan, J.Y.; Zhang, J.; Li, W.; Ruan, C.C.; Yuan, C.S. Dynamic changes in neutral and acidic ginsenosides with different cultivation ages and harvest seasons: Identification of chemical characteristics for Panax ginseng quality control. Molecules, 2017, 22(5), 734.
[http://dx.doi.org/10.3390/molecules22050734] [PMID: 28471389]
[146]
Hao, M.; Zhou, Y.; Zhou, J.; Zhang, M.; Yan, K.; Jiang, S.; Wang, W.; Peng, X.; Zhou, S. Cold-induced ginsenosides accumulation is associated with the alteration in DNA methylation and relative gene expression in perennial American ginseng (Panax quinquefolius L.) along with its plant growth and development process. J. Ginseng Res., 2020, 44(5), 747-755.
[http://dx.doi.org/10.1016/j.jgr.2019.06.006] [PMID: 32913404]
[147]
Zhang, T.; Chen, C.; Chen, Y.; Zhang, Q.; Li, Q.; Qi, W. Changes in the leaf physiological characteristics and tissue-specific distribution of ginsenosides in Panax ginseng during flowering stage under cold stress. Front. Bioeng. Biotechnol., 2021, 9, 637324.
[http://dx.doi.org/10.3389/fbioe.2021.637324] [PMID: 33816450]
[148]
Jung, J.H.; Kim, H.Y.; Kim, H.S.; Jung, S.H. Transcriptome analysis of Panax ginseng response to high light stress. J. Ginseng Res., 2020, 44(2), 312-320.
[http://dx.doi.org/10.1016/j.jgr.2018.12.009] [PMID: 32148414]
[149]
Jayakodi, M.; Lee, S.C.; Yang, T.J. Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars. J. Ginseng Res., 2019, 43(4), 572-579.
[http://dx.doi.org/10.1016/j.jgr.2018.05.007] [PMID: 31700259]
[150]
Kim, S.W.; Gupta, R.; Min, C.W.; Lee, S.H.; Cheon, Y.E.; Meng, Q.F.; Jang, J.W.; Hong, C.E.; Lee, J.Y.; Jo, I.H.; Kim, S.T. Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress. J. Ginseng Res., 2019, 43(1), 143-153.
[http://dx.doi.org/10.1016/j.jgr.2018.09.005] [PMID: 30662303]
[151]
Liu, Q.; Sun, C.; Han, J.; Li, L.; Wang, K.; Wang, Y.; Chen, J.; Zhao, M.; Wang, Y.; Zhang, M. Identification, characterization and functional differentiation of the NAC gene family and its roles in response to cold stress in ginseng, Panax ginseng C.A. Meyer. PLoS One, 2020, 15(6), e0234423.
[http://dx.doi.org/10.1371/journal.pone.0234423] [PMID: 32525906]
[152]
Kim, S.W.; Lee, S.H.; Min, C.W.; Jo, I.H.; Bang, K.H.; Hyun, D.Y.; Agrawal, G.K.; Rakwal, R.; Zargar, S.M.; Gupta, R.; Kim, S.T. Ginseng (Panax sp.) proteomics: An update. Appl. Biol. Chem., 2017, 60(3), 311-320.
[http://dx.doi.org/10.1007/s13765-017-0283-y]
[153]
Islam, M.J.; Ryu, B.R.; Azad, M.O.K.; Rahman, M.H.; Rana, M.S.; Lim, J.D.; Lim, Y.S. Exogenous putrescine enhances salt tolerance and ginsenosides content in Korean Ginseng (Panax ginseng Meyer) sprouts. Plants, 2021, 10(7), 1313.
[http://dx.doi.org/10.3390/plants10071313] [PMID: 34203403]
[154]
Farh, M.E.A.; Kim, Y.J.; Sukweenadhi, J.; Singh, P.; Yang, D.C. Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against aluminium stress. Microbiol. Res., 2017, 200, 45-52.
[http://dx.doi.org/10.1016/j.micres.2017.04.004] [PMID: 28527763]
[155]
Jang, S.; Sadiq, N.B.; Hamayun, M.; Jung, J.; Lee, T.; Yang, J.S.; Lee, B.; Kim, H.Y. Silicon foliage spraying improves growth characteristics, morphological traits, and root quality of Panax ginseng C.A. Mey. Ind. Crops Prod., 2020, 156, 112848.
[http://dx.doi.org/10.1016/j.indcrop.2020.112848]
[156]
Wang, Q.; Jin, Q.; Ma, Y.; Zhang, S.; Zhang, L.; Liu, Z.; Zhang, Y. Iron toxicity-induced regulation of key secondary metabolic processes associated with the quality and resistance of Panax ginseng and Panax quinquefolius. Ecotoxicol. Environ. Saf., 2021, 224, 112648.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112648] [PMID: 34450425]
[157]
Huo, Y.; Kang, J.P.; Ahn, J.C.; Kim, Y.J.; Piao, C.H.; Yang, D.U.; Yang, D.C. Siderophore-producing rhizobacteria reduce heavy metal-induced oxidative stress in Panax ginseng Meyer. J. Ginseng Res., 2021, 45(2), 218-227.
[http://dx.doi.org/10.1016/j.jgr.2019.12.008] [PMID: 33841002]
[158]
Yu, J.; Suh, S.J.; Jang, I.B.; Jang, I.B.; Moon, J.W.; Kwon, K.B.; Lee, S.W. Influence of sodium concentrations on gtowth, physiological disorder symptons, and bed soil chemical properties of 2-year-old ginseng. Hanguk Yakyong Changmul Hakhoe Chi, 2018, 26(3), 240-247.
[http://dx.doi.org/10.7783/KJMCS.2018.26.3.240]
[159]
Kang, J.P.; Huo, Y.; Yang, D.U.; Yang, D.C. Influence of the plant growth promoting Rhizobium panacihumi on aluminum resistance in Panax ginseng. J. Ginseng Res., 2021, 45(3), 442-449.
[http://dx.doi.org/10.1016/j.jgr.2020.01.001] [PMID: 34025137]
[160]
Park, Y.H.; Chung, J.Y.; Ahn, D.J.; Kwon, T.R.; Lee, S.K.; Bae, I.; Yun, H.K.; Bae, H. Screening and characterization of endophytic fungi of Panax ginseng Meyer for biocontrol activity against ginseng pathogens. Biol. Control, 2015, 91, 71-81.
[http://dx.doi.org/10.1016/j.biocontrol.2015.07.012]
[161]
Jin, Q.; Zhang, Y.; Ma, Y.; Sun, H.; Guan, Y.; Liu, Z.; Ye, Q.; Zhang, Y.; Shao, C.; Mu, P.; Wang, Q. The composition and function of the soil microbial community and its driving factors before and after cultivation of Panax ginseng in farmland of different ages. Ecol. Indic., 2022, 145, 109748.
[http://dx.doi.org/10.1016/j.ecolind.2022.109748]
[162]
Park, Y.H.; Chandra Mishra, R.; Yoon, S.; Kim, H.; Park, C.; Seo, S.T.; Bae, H. Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. J. Ginseng Res., 2019, 43(3), 408-420.
[http://dx.doi.org/10.1016/j.jgr.2018.03.002] [PMID: 31308813]
[163]
Qi, Y.; Liu, H.; Zhang, B.; Geng, M.; Cai, X.; Wang, J.; Wang, Y. Investigating the effect of microbial inoculants Frankia F1 on growth-promotion, rhizosphere soil physicochemical properties, and bacterial community of ginseng. Appl. Soil Ecol., 2022, 172, 104369.
[http://dx.doi.org/10.1016/j.apsoil.2021.104369]
[164]
Eo, J.; Park, K.C. Effects of manure composts on soil biota and root-rot disease incidence of ginseng (Panax ginseng). Appl. Soil Ecol., 2013, 71, 58-64.
[http://dx.doi.org/10.1016/j.apsoil.2013.05.005]
[165]
Wang, L.; Gao, F.; Xu, K.; Li, X. Natural occurrence of mixploid ginger (Zingiber officinale Rosc.) in China and its morphological variations. Sci. Hortic., 2014, 172, 54-60.
[http://dx.doi.org/10.1016/j.scienta.2014.03.043]
[166]
Ibtisham, F.; Nawab, A.; Niu, Y.; Wang, Z.; Wu, J.; Xiao, M.; An, L. The effect of ginger powder and Chinese herbal medicine on production performance, serum metabolites and antioxidant status of laying hens under heat-stress condition. J. Therm. Biol., 2019, 81, 20-24.
[http://dx.doi.org/10.1016/j.jtherbio.2019.02.002] [PMID: 30975419]
[167]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Pharmacological uses and health benefits of ginger (Zingiber officinale) in traditional Asian and ancient Chinese medicine, and modern practice. Not. Sci. Biol., 2019, 11(3), 309-319.
[http://dx.doi.org/10.15835/nsb11310419]
[168]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric. Scand. B Soil Plant Sci., 2019, 69(6), 546-556.
[http://dx.doi.org/10.1080/09064710.2019.1606930]
[169]
Aryaeian, N.; Shahram, F.; Mahmoudi, M.; Tavakoli, H.; Yousefi, B.; Arablou, T.; Jafari Karegar, S. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active Rheumatoid Arthritis. Gene, 2019, 698, 179-185.
[http://dx.doi.org/10.1016/j.gene.2019.01.048] [PMID: 30844477]
[170]
Funk, J.L.; Frye, J.B.; Oyarzo, J.N.; Chen, J.; Zhang, H.; Timmermann, B.N. Anti-inflammatory effects of the essential oils of ginger (Zingiber officinale Roscoe) in experimental rheumatoid arthritis. PharmaNutrition, 2016, 4(3), 123-131.
[http://dx.doi.org/10.1016/j.phanu.2016.02.004] [PMID: 27872812]
[171]
Adegbola, P.I.; Fadahunsi, O.S.; Ajilore, B.S.; Akintola, A.O.; Olorunnisola, O.S. Combined ginger and garlic extract improves serum lipid profile, oxidative stress markers and reduced IL-6 in diet induced obese rats. Obes. Med., 2021, 23, 100336.
[http://dx.doi.org/10.1016/j.obmed.2021.100336]
[172]
Lee, G.H.; Peng, C.; Jeong, S.Y.; Park, S.A.; Lee, H.Y.; Hoang, T.H.; Kim, J.; Chae, H.J. Ginger extract controls mTOR-SREBP1-ER stress-mitochondria dysfunction through AMPK activation in obesity model. J. Funct. Foods, 2021, 87, 104628.
[http://dx.doi.org/10.1016/j.jff.2021.104628]
[173]
Mohammad, A.; Falahi, E.; Mohd Yusof, B.N.; Hanipah, Z.N.; Sabran, M.R.; Mohamad Yusof, L.; Gheitasvand, M. The effects of the ginger supplements on inflammatory parameters in type 2 diabetes patients: A systematic review and meta-analysis of randomised controlled trials. Clin. Nutr. ESPEN, 2021, 46, 66-72.
[http://dx.doi.org/10.1016/j.clnesp.2021.10.013] [PMID: 34857250]
[174]
Song, N.; Zhao, Y.; Xu, H.; Wang, J.; Lai, Z.; Yu, X.; Wu, Y. Clinical observation of cancer-related fatigue treated with ginger-isolated moxibustion in the patients with gastric cancer. World J. Acupunct. Moxibustion, 2021, 31(1), 1-5.
[http://dx.doi.org/10.1016/j.wjam.2020.11.014]
[175]
Ebrahimzadeh, A.; Ebrahimzadeh, A.; Mirghazanfari, S.M.; Hazrati, E.; Hadi, S.; Milajerdi, A. The effect of ginger supplementation on metabolic profiles in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med., 2022, 65, 102802.
[http://dx.doi.org/10.1016/j.ctim.2022.102802] [PMID: 35031435]
[176]
Elebiyo, T.C.; Olori, O.O.; Rotimi, D.E.; Al-Megrin, W.A.I.; De Waard, M.; Alkhuriji, A.F.; Batiha, G.E.S.; Adeyanju, A.A.; Adeyemi, O.S. Chemical fingerprinting, comparative in vitro antioxidant properties, and biochemical effects of ginger and bitterleaf infusion. Biomed. Pharmacother., 2022, 155, 113788.
[http://dx.doi.org/10.1016/j.biopha.2022.113788] [PMID: 36271566]
[177]
Vahapoglu, B.; Kilicoglu, O.; Cebi, N.; Ayseli, M.T.; Kara, U.; Sagdic, O.; Capanoglu, E. Investigating the effect of gamma-ray interaction on the stability and physicochemical properties of turmeric and ginger using Monte Carlo simulation. Radiat. Phys. Chem., 2022, 201, 110413.
[http://dx.doi.org/10.1016/j.radphyschem.2022.110413]
[178]
Rasool, N.; Saeed, Z.; Pervaiz, M.; Ali, F.; Younas, U.; Bashir, R.; Bukhari, S.M. Mahmood khan, R.R.; Jelani, S.; Sikandar, R. Evaluation of essential oil extracted from ginger, cinnamon and lemon for therapeutic and biological activities. Biocatal. Agric. Biotechnol., 2022, 44, 102470.
[http://dx.doi.org/10.1016/j.bcab.2022.102470]
[179]
Li, Y.; Chi, L.; Mao, L.; Yan, D.; Wu, Z.; Ma, T.; Guo, M.; Wang, Q.; Ouyang, C.; Cao, A. Control of soilborne pathogens of Zingiber officinale by methyl iodide and chloropicrin in China. Plant Dis., 2014, 98(3), 384-388.
[http://dx.doi.org/10.1094/PDIS-06-13-0623-RE] [PMID: 30708449]
[180]
Lv, Y.; Li, Y.; Liu, X.; Xu, K. Photochemistry and proteomics of ginger (Zingiber officinale Roscoe) under drought and shading. Plant Physiol. Biochem., 2020, 151, 188-196.
[http://dx.doi.org/10.1016/j.plaphy.2020.03.021] [PMID: 32224390]
[181]
Gatabazi, A.; Marais, D.; Steyn, M.; Araya, H.; du Plooy, C.; Ncube, B.; Mokgehle, S. Effect of water regimes and harvest times on yield and phytochemical accumulation of two ginger species. Sci. Hortic., 2022, 304, 111353.
[http://dx.doi.org/10.1016/j.scienta.2022.111353]
[182]
Li, H.; Wu, L.; Tang, N.; Liu, R.; Jin, Z.; Liu, Y.; Li, Z. Analysis of transcriptome and phytohormone profiles reveal novel insight into ginger (Zingiber officinale Rose) in response to postharvest dehydration stress. Postharvest Biol. Technol., 2020, 161, 111087.
[http://dx.doi.org/10.1016/j.postharvbio.2019.111087]
[183]
Cao, B.; Lv, X.; Chen, Z.; Xu, K. Supplementing green light under strong sunlight improves growth and functional ingredients of ginger (Zingiber officinale Rosc.) in summer. Ind. Crops Prod., 2021, 167, 113527.
[http://dx.doi.org/10.1016/j.indcrop.2021.113527]
[184]
Yin, F.; Zhang, S.; Cao, B.; Xu, K. Low pH alleviated salinity stress of ginger seedlings by enhancing photosynthesis, fluorescence, and mineral element contents. PeerJ, 2021, 9, e10832.
[http://dx.doi.org/10.7717/peerj.10832] [PMID: 33614287]
[185]
Getaneh, A.; Guadie, A.; Tefera, M. Levels of heavy metals in ginger (Zingiber officinale Roscoe) from selected districts of Central Gondar Zone, Ethiopia and associated health risk. Heliyon, 2021, 7(4), e06924.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06924] [PMID: 33997425]
[186]
Jabborova, D.; Sayyed, R.Z.; Azimov, A.; Jabbarov, Z.; Matchanov, A.; Enakiev, Y.; Baazeem, A.E.L.; Sabagh, A.; Danish, S.; Datta, R. Impact of mineral fertilizers on mineral nutrients in the ginger rhizome and on soil enzymes activities and soil properties. Saudi J. Biol. Sci., 2021, 28(9), 5268-5274.
[http://dx.doi.org/10.1016/j.sjbs.2021.05.037] [PMID: 34466105]
[187]
Xu, X.; Wang, J.; Wu, H.; Lu, R.; Cui, J. Bioaccessibility and bioavailability evaluation of heavy metal(loid)s in ginger in vitro: Relevance to human health risk assessment. Sci. Total Environ., 2023, 857(Pt 2), 159582.
[http://dx.doi.org/10.1016/j.scitotenv.2022.159582] [PMID: 36272485]
[188]
Xu, J.; Zhang, J.; Lv, Y.; Xu, K.; Lu, S.; Liu, X.; Yang, Y. Effect of soil mercury pollution on ginger (Zingiber officinale Roscoe): Growth, product quality, health risks and silicon mitigation. Ecotoxicol. Environ. Saf., 2020, 195, 110472.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110472] [PMID: 32199219]
[189]
Chen, Z.; Xu, J.; Xu, Y.; Wang, K.; Cao, B.; Xu, K. Alleviating effects of silicate, selenium, and microorganism fertilization on lead toxicity in ginger (Zingiber officinale Roscoe). Plant Physiol. Biochem., 2019, 145, 153-163.
[http://dx.doi.org/10.1016/j.plaphy.2019.10.027] [PMID: 31693975]
[190]
Hundare, A.; Joshi, V.; Joshi, N. Salicylic acid attenuates salinity-induced growth inhibition in in vitro raised ginger (Zingiber officinale Roscoe) plantlets by regulating ionic balance and antioxidative system. Plant Stress, 2022, 4, 100070.
[http://dx.doi.org/10.1016/j.stress.2022.100070]
[191]
R, K.; D, P.; M, A. Transcriptome-wide identification and characterization of resistant gene analogs (RGAs) of ginger (Zingiber officinale Rosc.) and mango ginger (Curcuma amada Roxb.) under stress induced by pathogen. Sci. Hortic., 2019, 248, 81-88.
[http://dx.doi.org/10.1016/j.scienta.2019.01.003]
[192]
Behera, S.; Sial, P.; Biswal, G.; Pradhan, K. Ralstonia solanacearum the causal agent of ginger bacterial wilt- A review. Int. J. Curr. Microbiol. Appl. Sci., 2020, 9(12), 2709-2715.
[http://dx.doi.org/10.20546/ijcmas.2020.912.321]
[193]
Mohandas, S.; Venugopal, V.; Duraisamy, P. Understanding the expression of signalling pathway marker genes associated with bacterial wilt in susceptible and resistant ginger sps. Physiol. Mol. Plant Pathol., 2021, 115, 101666.
[http://dx.doi.org/10.1016/j.pmpp.2021.101666]
[194]
Ma, Y.; Wang, Z.; Li, Y.; Feng, X.; Song, L.; Gao, H.; Cao, B. Fruit morphological and nutritional quality features of goji berry (Lycium barbarum L.) during fruit development. Sci. Hortic., 2023, 308, 111555.
[http://dx.doi.org/10.1016/j.scienta.2022.111555]
[195]
Cong, K.P.; Li, T.T.; Wu, C.E.; Zeng, K.F.; Zhang, J.H.; Fan, G.J.; Pan, Y.; Wang, J.H.; Suo, A.D. Effects of plasma-activated water on overall quality of fresh goji berries during storage. Sci. Hortic., 2022, 293, 110650.
[http://dx.doi.org/10.1016/j.scienta.2021.110650]
[196]
Xiaohui, F.; Kai, G.; Ce, Y.; Jinsong, L.; Huanyu, C.; Xiaojing, L. Growth and fruit production of tomato grafted onto wolfberry (Lycium chinense) rootstock in saline soil. Sci. Hortic., 2019, 255, 298-305.
[http://dx.doi.org/10.1016/j.scienta.2019.05.028]
[197]
Zhang, H.; Liu, F.; Wang, J.; Yang, Q.; Wang, P.; Zhao, H.; Wang, J.; Wang, C.; Xu, X. Salicylic acid inhibits the postharvest decay of goji berry (Lycium barbarum L.) by modulating the antioxidant system and phenylpropanoid metabolites. Postharvest Biol. Technol., 2021, 178, 111558.
[http://dx.doi.org/10.1016/j.postharvbio.2021.111558]
[198]
Liu, Y.; Fang, H.; Liu, H.; Cheng, H.; Pan, L.; Hu, M.; Li, X. Goji berry juice fermented by probiotics attenuates dextran sodium sulfate-induced ulcerative colitis in mice. J. Funct. Foods, 2021, 83, 104491.
[http://dx.doi.org/10.1016/j.jff.2021.104491]
[199]
Pedro, A.C.; Sánchez-Mata, M.C.; Pérez-Rodríguez, M.L.; Cámara, M.; López-Colón, J.L.; Bach, F.; Bellettini, M.; Haminiuk, C.W.I. Qualitative and nutritional comparison of goji berry fruits produced in organic and conventional systems. Sci. Hortic., 2019, 257, 108660.
[http://dx.doi.org/10.1016/j.scienta.2019.108660]
[200]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. A review of goji berry (Lycium barbarum) in traditional Chinese medicine as a promising organic superfood and superfruit in modern industry. Acad. J. Med. Plants, 2018, 6(12), 437-445.
[http://dx.doi.org/10.15413/ajmp.2018.0186]
[201]
Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; Granato, D. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci., 2021, 42, 167-186.
[http://dx.doi.org/10.1016/j.cofs.2021.06.003]
[202]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Therapeutic roles of goji berry and ginseng in traditional Chinese. J. Nutr. Food Secur., 2019, 4(4), 293-305.
[http://dx.doi.org/10.18502/jnfs.v4i4.1727]
[203]
Zhou, Y.; Gao, X.; Wang, J.; Robinson, B.H.; Zhao, X. Water-use patterns of Chinese wolfberry (Lycium barbarum L.) on the Tibetan Plateau. Agric. Water Manage., 2021, 255, 107010.
[http://dx.doi.org/10.1016/j.agwat.2021.107010]
[204]
Na, X.; Ma, S.; Ma, C.; Liu, Z.; Xu, P.; Zhu, H.; Liang, W.; Kardol, P. Lycium barbarum L. (goji berry) monocropping causes microbial diversity loss and induces Fusarium spp. enrichment at distinct soil layers. Appl. Soil Ecol., 2021, 168, 104107.
[http://dx.doi.org/10.1016/j.apsoil.2021.104107]
[205]
Poggioni, L.; Romi, M.; Guarnieri, M.; Cai, G.; Cantini, C. Nutraceutical profile of goji (Lycium barbarum L.) berries in relation to environmental conditions and harvesting period. Food Biosci., 2022, 49, 101954.
[http://dx.doi.org/10.1016/j.fbio.2022.101954]
[206]
Yajun, W.; Xiaojie, L.; Sujuan, G.; Yuekun, L.; Bo, Z.; Yue, Y.; Wei, A.; Youlong, C.; Jianhua, Z. Evaluation of nutrients and related environmental factors for wolfberry (Lycium barbarum) fruits grown in the different areas of China. Biochem. Syst. Ecol., 2019, 86, 103916.
[http://dx.doi.org/10.1016/j.bse.2019.103916]
[207]
Liang, X.; Wang, Y.; Li, Y.; An, W.; He, X.; Chen, Y.; Shi, Z.; He, J.; Wan, R. Widely-targeted metabolic profiling in Lycium barbarum fruits under salt-alkaline stress uncovers mechanism of salinity tolerance. Molecules, 2022, 27(5), 1564.
[http://dx.doi.org/10.3390/molecules27051564] [PMID: 35268665]
[208]
Zhang, Z.; He, K.; Zhang, T.; Tang, D.; Li, R.; Jia, S. Physiological responses of Goji berry (Lycium barbarum L.) to saline-alkaline soil from Qinghai region, China. Sci. Rep., 2019, 9(1), 12057.
[http://dx.doi.org/10.1038/s41598-019-48514-5] [PMID: 31427658]
[209]
Gai, Q.Y.; Jiao, J.; Luo, M.; Wang, W.; Zhao, C.J.; Fu, Y.J.; Ma, W. UV elicitation for promoting astragaloside production in Astragalus membranaceus hairy root cultures with transcriptional expression of biosynthetic genes. Ind. Crops Prod., 2016, 84, 350-357.
[http://dx.doi.org/10.1016/j.indcrop.2016.02.010]
[210]
Gai, Q.Y.; Jiao, J.; Luo, M.; Wang, W.; Gu, C.B.; Fu, Y.J.; Ma, W. Tremendous enhancements of isoflavonoid biosynthesis, associated gene expression and antioxidant capacity in Astragalus membranaceus hairy root cultures elicited by methyl jasmonate. Process Biochem., 2016, 51(5), 642-649.
[http://dx.doi.org/10.1016/j.procbio.2016.01.012]
[211]
Yang, N.; Jiang, W.; Jiang, B.; Liu, J.; Liu, Y.; Wang, H.; Guo, X.; Tang, Z. Cotyledon loss of Astragalus membranaceus hindered seedling establishment through mineral element reallocation and carbohydrate depletion. Plant Physiol. Biochem., 2021, 167, 481-491.
[http://dx.doi.org/10.1016/j.plaphy.2021.08.027] [PMID: 34425393]
[212]
Tian, J.; Xie, S.; Zhang, P.; Wang, Q.; Li, J.; Xu, X. Attenuation of postharvest peel browning and chilling injury of banana fruit by Astragalus polysaccharides. Postharvest Biol. Technol., 2022, 184, 111783.
[http://dx.doi.org/10.1016/j.postharvbio.2021.111783]
[213]
Tang, L.; Liu, Y.; Wang, Y.; Long, C. Phytochemical analysis of an antiviral fraction of Radix astragali using HPLC–DAD–ESI–MS/MS. J. Nat. Med., 2010, 64(2), 182-186.
[http://dx.doi.org/10.1007/s11418-009-0381-1] [PMID: 20037801]
[214]
Chen, Y.; Fang, T.; Su, H.; Duan, S.; Ma, R.; Wang, P.; Wu, L.; Sun, W.; Hu, Q.; Zhao, M.; Sun, L.; Dong, X. A reference-grade genome assembly for Astragalus mongholicus and insights into the biosynthesis and high accumulation of triterpenoids and flavonoids in its roots. Plant Commun., 2022, 100469.
[http://dx.doi.org/10.1016/j.xplc.2022.100469] [PMID: 36307985]
[215]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. A review of astragalus species as foodstuffs, dietary supplements, a traditional Chinese medicine and a part of modern pharmaceutical science. Appl. Ecol. Environ. Res., 2019, 17(6), 13371-13382.
[http://dx.doi.org/10.15666/aeer/1706_1337113382]
[216]
Wang, R.; Lin, F.; Ye, C.; Aihemaitijiang, S.; Halimulati, M.; Huang, X.; Jiang, Z.; Li, L.; Zhang, Z. Multi-omics analysis reveals therapeutic effects of Bacillus subtilis-fermented Astragalus membranaceus in hyperuricemia via modulation of gut microbiota. Food Chem., 2023, 399, 133993.
[http://dx.doi.org/10.1016/j.foodchem.2022.133993] [PMID: 36029678]
[217]
Li, B.; Zhang, Q.; Liu, Z.; Su, Y.; Mu, Y.; Sun, S.; Chen, G. Root-associated microbiomes are influenced by multiple factors and regulate the growth and quality of Astragalus membranaceus (fisch) Bge. var. mongholicus (Bge.) Hsiao. Rhizosphere, 2022, 24, 100609.
[http://dx.doi.org/10.1016/j.rhisph.2022.100609]
[218]
Liu, Y.; Liu, J.; Wang, H.Z.; Wu, K.X.; Guo, X.R.; Mu, L.Q.; Tang, Z.H. Comparison of the global metabolic responses to UV-B radiation between two medicinal Astragalus species: An integrated metabolomics strategy. Environ. Exp. Bot., 2020, 176, 104094.
[http://dx.doi.org/10.1016/j.envexpbot.2020.104094]
[219]
Jia, X.; Sun, C.; Li, G.; Li, G.; Chen, G. Effects of progressive drought stress on the physiology, antioxidative enzymes and secondary metabolites of Radix Astragali. Acta Physiol. Plant., 2015, 37(12), 262.
[http://dx.doi.org/10.1007/s11738-015-2015-4]
[220]
Baskin, C.C.; Baskin, J.M. Responses of Astragalus tennesseensis to drought. Oecologia, 1974, 17(1), 11-16.
[http://dx.doi.org/10.1007/BF00345091] [PMID: 28308636]
[221]
Boughalleb, F.; Abdellaoui, R.; Ben-Brahim, N.; Neffati, M. Anatomical adaptations of Astragalus gombiformis Pomel. under drought stress. Open Life Sci., 2014, 9(12), 1215-1225.
[http://dx.doi.org/10.2478/s11535-014-0353-7]
[222]
Pan, H.; Li, X.; Cheng, X.; Wang, X.; Fang, C.; Zhou, T.; Chen, J. Evidence of calycosin-7-O-β-d-glucoside’s role as a major antioxidant molecule of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao plants under freezing stress. Environ. Exp. Bot., 2015, 109, 1-11.
[http://dx.doi.org/10.1016/j.envexpbot.2014.07.013]
[223]
Sun, H.; Kong, L.; Du, H.; Chai, Z.; Gao, J.; Cao, Q. Benefits of Pseudomonas poae s61 on Astragalus mongholicus growth and bioactive compound accumulation under drought stress. J. Plant Interact., 2019, 14(1), 205-212.
[http://dx.doi.org/10.1080/17429145.2019.1611958]
[224]
Li, M.; Ren, Y.; He, C.; Yao, J.; Wei, M.; He, X. Complementary effects of dark septate endophytes and Trichoderma strains on growth and active ingredient accumulation of Astragalus mongholicus under drought stress. J. Fungi, 2022, 8(9), 920.
[http://dx.doi.org/10.3390/jof8090920] [PMID: 36135646]
[225]
He, B.; Liu, H.; Han, X.; Cui, P.; Xu, L. Multi-omics analysis of Ginkgo biloba preliminarily reveals the co-regulatory mechanism between stilbenes and flavonoids. Ind. Crops Prod., 2021, 167, 113434.
[http://dx.doi.org/10.1016/j.indcrop.2021.113434]
[226]
Kang, M.K.; Nargis, S.; Kim, S.M.; Kim, S.U. Distinct expression patterns of two Ginkgo biloba 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase/isopentenyl diphospahte synthase (HDR/IDS) promoters in Arabidopsis model. Plant Physiol. Biochem., 2013, 62, 47-53.
[http://dx.doi.org/10.1016/j.plaphy.2012.10.011] [PMID: 23178484]
[227]
Liu, S.; Meng, Z.; Zhang, H.; Chu, Y.; Qiu, Y.; Jin, B. Identification and characterization of thirteen gene families involved in flavonoid biosynthesis in Ginkgo biloba. nd. Crops Prod., 2022, 188(Part A), 115576.
[http://dx.doi.org/10.1016/j.indcrop.2022.115576]
[228]
Liu, X.G.; Lu, X.; Gao, W.; Li, P.; Yang, H. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Nat. Prod. Rep., 2022, 39(3), 474-511.
[http://dx.doi.org/10.1039/D1NP00026H] [PMID: 34581387]
[229]
Boateng, I.D.; Yang, X.M. Ginkgo biloba L. seed; A comprehensive review of bioactives, toxicants, and processing effects. Ind. Crops Prod., 2022, 176, 114281.
[http://dx.doi.org/10.1016/j.indcrop.2021.114281]
[230]
Wahby, M.M.; Abdallah, Z.M.; Abdou, H.M.; Yousef, M.I.; Newairy, A.S.A. Mitigating potential of Ginkgo biloba extract and melatonin against hepatic and nephrotoxicity induced by Bisphenol A in male rats. Egyptian J. Basic Appl. Sci., 2017, 4(4), 350-357.
[http://dx.doi.org/10.1016/j.ejbas.2017.04.004]
[231]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev. Org. Chem., 2022, 19(3), 293-318.
[http://dx.doi.org/10.2174/1570178618666210707161025]
[232]
Ye, J.; Zhang, X.; Tan, J.; Xu, F.; Cheng, S.; Chen, Z.; Zhang, W.; Liao, Y. Global identification of Ginkgo biloba microRNAs and insight into their role in metabolism regulatory network of terpene trilactones by high-throughput sequencing and degradome analysis. Ind. Crops Prod., 2020, 148, 112289.
[http://dx.doi.org/10.1016/j.indcrop.2020.112289]
[233]
Wu, Y.; Ma, X.; Zhou, Q.; Xu, L.A.; Wang, T. Selection of crown type provides a potential to improve the content of isorhamnetin in Ginkgo biloba. Ind. Crops Prod., 2020, 143, 111943.
[http://dx.doi.org/10.1016/j.indcrop.2019.111943]
[234]
Sati, P.; Pandey, A.; Rawat, S.; Rani, A. Phytochemicals and antioxidants in leaf extracts of Ginkgo biloba with reference to location, seasonal variation and solvent system. J. Pharm. Res., 2013, 7(9), 804-809.
[http://dx.doi.org/10.1016/j.jopr.2013.09.001]
[235]
Guo, J.; Wu, Y.; Guo, F.; Wang, G. Proteomic and metabolomic analyses reveal stage- and tissue-specific flavonoid accumulation in Ginkgo biloba. Lebensm. Wiss. Technol., 2022, 171, 114111.
[http://dx.doi.org/10.1016/j.lwt.2022.114111]
[236]
Guo, Y.; Gao, C.; Wang, M.; Fu, F.; El-Kassaby, Y.A.; Wang, T.; Wang, G. Metabolome and transcriptome analyses reveal flavonoids biosynthesis differences in Ginkgo biloba associated with environmental conditions. Ind. Crops Prod., 2020, 158, 112963.
[http://dx.doi.org/10.1016/j.indcrop.2020.112963]
[237]
Guo, J.; Zhou, X.; Wang, T.; Wang, G.; Cao, F. Regulation of flavonoid metabolism in ginkgo leaves in response to different day-night temperature combinations. Plant Physiol. Biochem., 2020, 147, 133-140.
[http://dx.doi.org/10.1016/j.plaphy.2019.12.009] [PMID: 31862579]
[238]
Zhao, B.; Wang, L.; Pang, S.; Jia, Z.; Wang, L.; Li, W.; Jin, B. UV-B promotes flavonoid synthesis in Ginkgo biloba leaves. Ind. Crops Prod., 2020, 151, 112483.
[http://dx.doi.org/10.1016/j.indcrop.2020.112483]
[239]
Sun, M.; Gu, X.; Fu, H.; Zhang, L.; Chen, R.; Cui, L.; Zheng, L.; Zhang, D.; Tian, J. Change of secondary metabolites in leaves of Ginkgo biloba L. in response to UV-B induction. Innov. Food Sci. Emerg. Technol., 2010, 11(4), 672-676.
[http://dx.doi.org/10.1016/j.ifset.2010.08.006]
[240]
Dmuchowski, W. Brągoszewska, P.; Gozdowski, D.; Baczewska-Dabrowska, A.B.; Chojnacki, T.; Jozwiak, A.; Swiezewska, E.; Gworek, B.; Suwara, I. Strategy of Ginkgo biloba L. in the mitigation of salt stress in the urban environment. Urban For. Urban Green., 2019, 38, 223-231.
[http://dx.doi.org/10.1016/j.ufug.2019.01.003]
[241]
Shen, G.; Pang, Y.; Wu, W.; Deng, Z.; Liu, X.; Lin, J.; Zhao, L.; Sun, X.; Tang, K. Molecular cloning, characterization and expression of a novel Asr gene from Ginkgo biloba. Plant Physiol. Biochem., 2005, 43(9), 836-843.
[http://dx.doi.org/10.1016/j.plaphy.2005.06.010] [PMID: 16289880]
[242]
Xu, H.; Fan, Y.; Xia, X.; Liu, Z.; Yang, S. Effect of Ginkgo biloba leaves on the removal efficiency of Cr(VI) in soil and its underlying mechanism. Environ. Res., 2023, 216(Pt 1), 114431.
[http://dx.doi.org/10.1016/j.envres.2022.114431] [PMID: 36167113]
[243]
Liao, Y.; Xu, F.; Huang, X.; Zhang, W.; Cheng, H.; Li, L.; Cheng, S.; Shen, Y. Promoter analysis and transcriptional profiling of Ginkgo biloba 3-Hydroxy-3-Methylglutaryl coenzyme A reductase (GbHMGR) gene in abiotic stress responses. Not. Bot. Horti Agrobot. Cluj-Napoca, 2015, 43(1), 25-34.
[http://dx.doi.org/10.15835/nbha4319416]
[244]
Yu, W.; Liu, H.; Luo, J.; Zhang, S.; Xiang, P.; Wang, W.; Cai, J.; Lu, Z.; Zhou, Z.; Hu, J.; Lu, Y. Partial root-zone simulated drought induces greater flavonoid accumulation than full root-zone simulated water deficiency in the leaves of Ginkgo biloba. Environ. Exp. Bot., 2022, 201, 104998.
[http://dx.doi.org/10.1016/j.envexpbot.2022.104998]
[245]
He, M.; Shi, D.; Wei, X.; Hu, Y.; Wang, T.; Xie, Y. Gender-related differences in adaptability to drought stress in the dioecious tree Ginkgo biloba. Acta Physiol. Plant., 2016, 38(5), 124.
[http://dx.doi.org/10.1007/s11738-016-2148-0]
[246]
Guo, J.; Wu, Y.; Wang, G.; Wang, T.; Cao, F. Integrated analysis of the transcriptome and metabolome in young and mature leaves of Ginkgo biloba L. Ind. Crops Prod., 2020, 143, 111906.
[http://dx.doi.org/10.1016/j.indcrop.2019.111906]
[247]
Xu, N.; Liu, S.; Lu, Z.; Pang, S.; Wang, L.; Wang, L.; Li, W. Gene expression profiles and flavonoid accumulation during salt stress in Ginkgo biloba seedlings. Plants, 2020, 9(9), 1162.
[http://dx.doi.org/10.3390/plants9091162] [PMID: 32911855]
[248]
Chang, B.; Ma, K.; Lu, Z.; Lu, J.; Cui, J.; Wang, L.; Jin, B. Physiological, transcriptomic, and metabolic responses of Ginkgo biloba L. to drought, salt, and heat stresses. Biomolecules, 2020, 10(12), 1635.
[http://dx.doi.org/10.3390/biom10121635] [PMID: 33287405]
[249]
Larson, T.R.; Branigan, C.; Harvey, D.; Penfield, T.; Bowles, D.; Graham, I.A. A survey of artemisinic and dihydroartemisinic acid contents in glasshouse and global field-grown populations of the artemisinin-producing plant Artemisia annua L. Ind. Crops Prod., 2013, 45, 1-6.
[http://dx.doi.org/10.1016/j.indcrop.2012.12.004]
[250]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science. Not. Bot. Horti Agrobot. Cluj-Napoca, 2020, 48(4), 1719-1741.
[http://dx.doi.org/10.15835/nbha48412002]
[251]
Tripathi, A.; Awasthi, A.; Singh, S.; Sah, K.; Maji, D.; Patel, V.K.; Verma, R.K.; Kalra, A. Enhancing artemisinin yields through an ecologically functional community of endophytes in Artemisia annua. Ind. Crops Prod., 2020, 150, 112375.
[http://dx.doi.org/10.1016/j.indcrop.2020.112375]
[252]
Husseiny, S.; Dishisha, T.; Soliman, H.A.; Adeleke, R.; Raslan, M. Characterization of growth promoting bacterial endophytes isolated from Artemisia annua L. S. Afr. J. Bot., 2021, 143, 238-247.
[http://dx.doi.org/10.1016/j.sajb.2021.07.042]
[253]
Brisibe, E.A.; Udensi, O.; Chukwurah, P.N.; de Magalhäes, P.M.; Figueira, G.M.; Ferreira, J.F.S. Adaptation and agronomic performance of Artemisia annua L. under lowland humid tropical conditions. Ind. Crops Prod., 2012, 39, 190-197.
[http://dx.doi.org/10.1016/j.indcrop.2012.02.018]
[254]
Xia, J.; Ma, Y.J.; Wang, Y.; Wang, J.W. Deciphering transcriptome profiles of tetraploid Artemisia annua plants with high artemisinin content. Plant Physiol. Biochem., 2018, 130, 112-126.
[http://dx.doi.org/10.1016/j.plaphy.2018.06.018] [PMID: 29982168]
[255]
Kane, N.F.; Kyama, M.C.; Nganga, J.K.; Hassanali, A.; Diallo, M.; Kimani, F.T. Comparison of phytochemical profiles and antimalarial activities of Artemisia afra plant collected from five countries in Africa. S. Afr. J. Bot., 2019, 125, 126-133.
[http://dx.doi.org/10.1016/j.sajb.2019.07.001]
[256]
Zehra, A.; Choudhary, S.; Wani, K.I.; Naeem, M.; Khan, M.M.A.; Aftab, T. Silicon-mediated cellular resilience mechanisms against copper toxicity and glandular trichomes protection for augmented artemisinin biosynthesis in Artemisia annua. Ind. Crops Prod., 2020, 155, 112843.
[http://dx.doi.org/10.1016/j.indcrop.2020.112843]
[257]
Paul, S.; Shakya, K. Arsenic, chromium and NaCl induced artemisinin biosynthesis in Artemisia annua L.: A valuable antimalarial plant. Ecotoxicol. Environ. Saf., 2013, 98, 59-65.
[http://dx.doi.org/10.1016/j.ecoenv.2013.09.025] [PMID: 24367814]
[258]
Kumari, A.; Pandey-Rai, S. Enhanced arsenic tolerance and secondary metabolism by modulation of gene expression and proteome profile in Artemisia annua L. after application of exogenous salicylic acid. Plant Physiol. Biochem., 2018, 132, 590-602.
[http://dx.doi.org/10.1016/j.plaphy.2018.10.010] [PMID: 30326438]
[259]
Naeem, M.; Sadiq, Y.; Jahan, A.; Nabi, A.; Aftab, T.; Khan, M.M.A. Salicylic acid restrains arsenic induced oxidative burst in two varieties of Artemisia annua L. by modulating antioxidant defence system and artemisinin production. Ecotoxicol. Environ. Saf., 2020, 202, 110851.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110851] [PMID: 32673966]
[260]
Aftab, T.; Khan, M.M.A.; Naeem, M.; Idrees, M. Moinuddin; Teixeira da Silva, J.A.; Ram, M. Exogenous nitric oxide donor protects Artemisia annua from oxidative stress generated by boron and aluminium toxicity. Ecotoxicol. Environ. Saf., 2012, 80, 60-68.
[http://dx.doi.org/10.1016/j.ecoenv.2012.02.007] [PMID: 22421454]
[261]
Corrêa-Ferreira, M.L.; Viudes, E.B.; de Magalhães, P.M.; Paixão de Santana Filho, A.; Sassaki, G.L.; Pacheco, A.C.; de Oliveira Petkowicz, C.L. Changes in the composition and structure of cell wall polysaccharides from Artemisia annua in response to salt stress. Carbohydr. Res., 2019, 483, 107753.
[http://dx.doi.org/10.1016/j.carres.2019.107753] [PMID: 31362136]
[262]
Qureshi, M.I.; Abdin, M.Z.; Ahmad, J.; Iqbal, M. Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of Sweet Annie (Artemisia annua L.). Phytochemistry, 2013, 95, 215-223.
[http://dx.doi.org/10.1016/j.phytochem.2013.06.026] [PMID: 23871298]
[263]
Yadav, R.K.; Sangwan, R.S.; Sabir, F.; Srivastava, A.K.; Sangwan, N.S. Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant Physiol. Biochem., 2014, 74, 70-83.
[http://dx.doi.org/10.1016/j.plaphy.2013.10.023] [PMID: 24269871]
[264]
Pan, W.S.; Zheng, L.P.; Tian, H.; Li, W.Y.; Wang, J.W. Transcriptome responses involved in artemisinin production in Artemisia annua L. under UV-B radiation. J. Photochem. Photobiol. B, 2014, 140, 292-300.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.08.013] [PMID: 25194528]
[265]
Tariq, U.; Ali, M.; Abbasi, B.H. Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L. J. Photochem. Photobiol. B, 2014, 130, 264-271.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.11.026] [PMID: 24362323]
[266]
Rahman, S.; Khalid, M.; Kayani, S.I.; Tang, K. The ameliorative effects of exogenous inoculation of Piriformospora indica on molecular, biochemical and physiological parameters of Artemisia annua L. under arsenic stress condition. Ecotoxicol. Environ. Saf., 2020, 206, 111202.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111202] [PMID: 32889311]
[267]
Vashisth, D.; Kumar, R.; Rastogi, S.; Patel, V.K.; Kalra, A.; Gupta, M.M.; Gupta, A.K.; Shasany, A.K. Transcriptome changes induced by abiotic stresses in Artemisia annua. Sci. Rep., 2018, 8(1), 3423.
[http://dx.doi.org/10.1038/s41598-018-21598-1] [PMID: 29467423]
[268]
Shu, G.; Tang, Y.; Yuan, M.; Wei, N.; Zhang, F.; Yang, C.; Lan, X.; Chen, M.; Tang, K.; Xiang, L.; Liao, Z. Molecular insights into AabZIP1-mediated regulation on artemisinin biosynthesis and drought tolerance in Artemisia annua. Acta Pharm. Sin. B, 2022, 12(3), 1500-1513.
[http://dx.doi.org/10.1016/j.apsb.2021.09.026] [PMID: 35530156]
[269]
Marchese, J.A.; Ferreira, J.F.S.; Rehder, V.L.G.; Rodrigues, O. Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae). Braz. J. Plant Physiol., 2010, 22(1), 1-9.
[http://dx.doi.org/10.1590/S1677-04202010000100001]
[270]
Nair, P.; Shasany, A.K.; Khan, F.; Shukla, A.K. Differentially expressed peroxidases from Artemisia annua and their responses to various abiotic stresses. Plant Mol. Biol. Report., 2018, 36(2), 295-309.
[http://dx.doi.org/10.1007/s11105-018-1078-y]
[271]
Lu, X.; Jiang, W.; Zhang, L.; Zhang, F.; Zhang, F.; Shen, Q.; Wang, G.; Tang, K. AaERF1 positively regulates the resistance to Botrytis cinerea in Artemisia annua. PLoS One, 2013, 8(2), e57657.
[http://dx.doi.org/10.1371/journal.pone.0057657] [PMID: 23469042]
[272]
Prasad, A.; Kumar, D.; Anwar, M.; Singh, D.V.; Jain, D.C. Response of Artemisia annua L. to soil salinity. J. Herbs Spices Med. Plants, 1998, 5(2), 49-55.
[http://dx.doi.org/10.1300/J044v05n02_07]
[273]
Cho, H.D.; Suh, J.H.; Feng, S.; Eom, T.; Kim, J.; Hyun, S.M.; Kim, J.; Wang, Y.; Han, S.B. Comprehensive analysis of multi-class mycotoxins in twenty different species of functional and medicinal herbs using liquid chromatography–tandem mass spectrometry. Food Control, 2019, 96, 517-526.
[http://dx.doi.org/10.1016/j.foodcont.2018.10.007]
[274]
Shang, Z.; Tian, Y.; Yi, Y.; Li, K.; Qiao, X.; Ye, M. Comparative bioactivity evaluation and chemical profiling of different parts of the medicinal plant Glycyrrhiza uralensis. J. Pharm. Biomed. Anal., 2022, 215, 114793.
[http://dx.doi.org/10.1016/j.jpba.2022.114793] [PMID: 35489249]
[275]
Yilmaz, M.A. Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation. Ind. Crops Prod., 2020, 149, 112347.
[http://dx.doi.org/10.1016/j.indcrop.2020.112347]
[276]
Sarkar, R.; Shinde, R.; Dhanshetty, M.; Banerjee, K. Multi-mycotoxin analysis method using liquid chromatography with tandem mass spectrometry and fluorescence detection in Indian medicinal herbs: Development and validation. J. Chromatogr. A, 2022, 1677, 463310.
[http://dx.doi.org/10.1016/j.chroma.2022.463310] [PMID: 35853424]
[277]
Sedrpoushan, A.; Haghi, H.; Sohrabi, M. A new secondary metabolite profiling of the lichen Diploschistes diacapsis using liquid chromatography electrospray ionization tandem mass spectrometry. Inorg. Chem. Commun., 2022, 145, 110006.
[http://dx.doi.org/10.1016/j.inoche.2022.110006]
[278]
Simirgiotis, M.J.; Silva, M.; Becerra, J.; Schmeda-Hirschmann, G. Direct characterisation of phenolic antioxidants in infusions from four Mapuche medicinal plants by liquid chromatography with diode array detection (HPLC-DAD) and electrospray ionisation tandem mass spectrometry (HPLC-ESI–MS). Food Chem., 2012, 131(1), 318-327.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.118]
[279]
Scheunemann, A.; Elsner, K.; Germerott, T.; Hess, C.; Röhrich, J. Simultaneous quantification of 18 different phytocannabinoids in serum using a highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1173, 122685.
[http://dx.doi.org/10.1016/j.jchromb.2021.122685] [PMID: 33882447]
[280]
Shojaee AliAbadi. M.H.; Karami-Osboo, R.; Kobarfard, F.; Jahani, R.; Nabi, M.; Yazdanpanah, H.; Mahboubi, A.; Nasiri, A.; Faizi, M. Detection of lime juice adulteration by simultaneous determination of main organic acids using liquid chromatography-tandem mass spectrometry. J. Food Compos. Anal., 2022, 105, 104223.
[http://dx.doi.org/10.1016/j.jfca.2021.104223]
[281]
Meena, A.K.; Ilavarasan, R.; Perumal, A.; Singh, R.; Ojha, V.; Srikanth, N.; Dhiman, K.S. Evaluation for substitution of stem bark with small branches of Cassia fistula Linn for traditional medicinal uses: A comparative chemical profiling studies by HPLC, LC-MS, GC-MS. Heliyon, 2022, 8(8), e10251.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10251] [PMID: 36033318]
[282]
Agüero, M.B.; Svetaz, L.; Sánchez, M.; Luna, L.; Lima, B.; López, M.L.; Zacchino, S.; Palermo, J.; Wunderlin, D.; Feresin, G.E.; Tapia, A. Argentinean Andean propolis associated with the medicinal plant Larrea nitida Cav. (Zygophyllaceae). HPLC–MS and GC–MS characterization and antifungal activity. Food Chem. Toxicol., 2011, 49(9), 1970-1978.
[http://dx.doi.org/10.1016/j.fct.2011.05.008] [PMID: 21600954]
[283]
Devkota, H.P.; Watanabe, T.; Malla, K.J.; Nishiba, Y.; Yahara, S. Studies on medicinal plant resources of the Himalayas: GC-MS analysis of seed fat of Chyuri (Diploknema butyracea) from Nepal. Pharmacogn. J., 2012, 4(27), 42-44.
[http://dx.doi.org/10.5530/pj.2012.27.7]
[284]
Tang, Y.; Li, Q.; Yuan, C.; Chen, S.; Luo, S.; Guo, J.; Zhang, H.; Chen, T. Profiling complex volatile components by HS-GC-MS and entropy minimization software: An example on Ligusticum chuanxiong Hort. J. Pharm. Biomed. Anal., 2022, 218, 114854.
[http://dx.doi.org/10.1016/j.jpba.2022.114854] [PMID: 35660874]
[285]
Jin, C.; Sun, D.; Wei, C.; Guo, Z.; Yang, C.; Li, F. Gas chromatography-mass spectrometry analysis of natural products in Gypsophila paniculata. HortScience, 2021, 56(10), 1195-1198.
[http://dx.doi.org/10.21273/HORTSCI16000-21]
[286]
Pantharos, P.; Sukcharoen, P.; Phadungrakwittaya, R.; Akarasereenont, P.; Booranasubkajorn, S.; Lumlerdkij, N. Utilization of UPLC-PDA and GC–MS/MS coupled with metabolomics analysis to identify bioactive metabolites in medicinal turmeric at different ages for the quality assurance. Phytomedicine, 2022, 102, 154157.
[http://dx.doi.org/10.1016/j.phymed.2022.154157] [PMID: 35550222]
[287]
Mukkamula, N.; Nagabhushanam, B.; Mir, M.I.; Sreekanth, D.; Kumar, B.K. GC-MS analysis of bioactive compounds in methanolic leaf extract of Maerua oblongifolia (Forssk.) A. Rich. Mater. Today Proc., 2022.
[http://dx.doi.org/10.1016/j.matpr.2022.08.063]
[288]
Mlozi, S.H.; Mmongoyo, J.A.; Chacha, M. GC-MS analysis of bioactive phytochemicals from methanolic leaf and root extracts of Tephrosia vogelii. Sci. Am., 2022, 16, e01255.
[http://dx.doi.org/10.1016/j.sciaf.2022.e01255]
[289]
Rodrigues Carvalho, K.; Julião Zocolo, G.; Sousa de Brito, E.; Rocha Silveira, E.; Marques Canuto, K. Chemotyping the medicinal herb Egletes viscosa through SPME-GC MS. Microchem. J., 2021, 168, 106434.
[http://dx.doi.org/10.1016/j.microc.2021.106434]
[290]
Mir Najib Ullah, S.N.; Qadir, A.; Ali, A.M.A.; Khan, N.; Jahan, S.; Warsi, M.H. Detection of phytoconstituents present in Azadirachta indica L. seeds extract by GC-MS analysis. J. Indian Chem. Soc., 2022, 99(11), 100765.
[http://dx.doi.org/10.1016/j.jics.2022.100765]
[291]
Jiang, M.; Lan, S.; Wang, Z.; Pu, X.; Zhuang, L. Analysis of the volatile components in different parts of three Ferula species via combined DHSA-GC-MS and multivariate statistical analysis. Lebensm. Wiss. Technol., 2022, 167, 113846.
[http://dx.doi.org/10.1016/j.lwt.2022.113846]
[292]
Kumar, V.; Singh, S.; Kondalkar, S.A.; Srivastava, B.; Sisodia, B.S.; Barthi, B.; Singh, R.; Prakash, O. High resolution GC/MS analysis of the Holoptelea integrifoli’s leaves and their medicinal qualities. Biocatal. Agric. Biotechnol., 2019, 22, 101405.
[http://dx.doi.org/10.1016/j.bcab.2019.101405]
[293]
Narayanan, M.; Chanthini, A.; Devarajan, N.; Saravanan, M.; Sabour, A.; Alshiekheid, M.; Chi, N.T.L.; Brindhadevi, K. Antibacterial and antioxidant efficacy of ethyl acetate extract of Cymodocea serrulata and assess the major bioactive components in the extract using GC-MS analysis. Process Biochem., 2023, 124, 24-32.
[http://dx.doi.org/10.1016/j.procbio.2022.10.036]
[294]
Qadir, A.; Khan, N.; Arif, M.; Warsi, M.H.; Ullah, S.N.M.N.; Yusuf, M. GC–MS analysis of phytoconstituents present in Trigonella foenumgraecum L. seeds extract and its antioxidant activity. J. Indian Chem. Soc., 2022, 99(6), 100503.
[http://dx.doi.org/10.1016/j.jics.2022.100503]
[295]
Akar, Z. Chemical compositions by using LC–MS/MS and GC–MS and antioxidant activities of methanolic extracts from leaf and flower parts of Scabiosa columbaria subsp. columbaria var. columbaria L. Saudi J. Biol. Sci., 2021, 28(11), 6639-6644.
[http://dx.doi.org/10.1016/j.sjbs.2021.07.039] [PMID: 34764779]
[296]
Olivia, N.U.; Goodness, U.C.; Obinna, O.M. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future J. Pharm. Sci., 2021, 7(1), 59.
[http://dx.doi.org/10.1186/s43094-021-00208-4]
[297]
Kumar, D. Nuclar magnetic resonance (NMR) spectroscopy for metabolic profiling of medicinal plants and their products. Crit. Rev. Anal. Chem., 2016, 46(5), 400-412.
[http://dx.doi.org/10.1080/10408347.2015.1106932] [PMID: 26575437]
[298]
Jayasundar, R.; Ghatak, S.; Makhdoomi, M.A.; Luthra, K.; Singh, A.; Velpandian, T. Challenges in integrating component level technology and system level information from Ayurveda: Insights from NMR phytometabolomics and anti-HIV potential of select Ayurvedic medicinal plants. J. Ayurveda Integr. Med., 2019, 10(2), 94-101.
[http://dx.doi.org/10.1016/j.jaim.2017.06.002] [PMID: 29306573]
[299]
Schripsema, J.; dos Santos Merlim, R.; Gonçalves Parvan, L.; Sant’Ana dos Santos Ribeiro, H.; Dagnino Schripsema, L.; Aleixo, S.; Becht, A.; Holzgrabe, U.; Dagnino, D. Towards a holistic view of tablet quality, an extensive study on paracetamol tablets with nuclear magnetic resonance using similarity calculations, differential NMR and hierarchical cluster analysis. J. Pharm. Biomed. Anal., 2022, 215, 114773.
[http://dx.doi.org/10.1016/j.jpba.2022.114773] [PMID: 35489248]
[300]
Ward, J.L.; Baker, J.M.; Beale, M.H. Recent applications of NMR spectroscopy in plant metabolomics. FEBS J., 2007, 274(5), 1126-1131.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05675.x] [PMID: 17298436]
[301]
Zielińska-Pisklak, M.A.; Kaliszewska, D.; Stolarczyk, M.; Kiss, A.K. Activity-guided isolation, identification and quantification of biologically active isomeric compounds from folk medicinal plant Desmodium adscendens using high performance liquid chromatography with diode array detector, mass spectrometry and multidimentional nuclear magnetic resonance spectroscopy. J. Pharm. Biomed. Anal., 2015, 102, 54-63.
[http://dx.doi.org/10.1016/j.jpba.2014.08.033] [PMID: 25240729]
[302]
Kustiati, U.; Wihadmadyatami, H.; Kusindarta, D.L. Dataset of Phytochemical and secondary metabolite profiling of holy basil leaf (Ocimum sanctum Linn) ethanolic extract using spectrophotometry, thin layer chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance. Data Brief, 2022, 40, 107774.
[http://dx.doi.org/10.1016/j.dib.2021.107774] [PMID: 35036482]
[303]
Li, Y.; He, Q.; Du, S.; Guo, S.; Geng, Z.; Deng, Z. Study of methanol extracts from different parts of Peganum harmala L. using 1H-NMR plant metabolomics. J. Anal. Methods Chem., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/6532789] [PMID: 30581649]
[304]
Munz, E.; Jakob, P.M.; Borisjuk, L. The potential of nuclear magnetic resonance to track lipids in planta. Biochimie, 2016, 130, 97-108.
[http://dx.doi.org/10.1016/j.biochi.2016.07.014] [PMID: 27473184]
[305]
Son, H.S.; Kim, K.M.; van den Berg, F.; Hwang, G.S.; Park, W.M.; Lee, C.H.; Hong, Y.S. 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and production areas. J. Agric. Food Chem., 2008, 56(17), 8007-8016.
[http://dx.doi.org/10.1021/jf801424u] [PMID: 18707121]
[306]
Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules, 2023, 28(4), 1845.
[http://dx.doi.org/10.3390/molecules28041845] [PMID: 36838831]
[307]
Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influence of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae, 2023, 9(2), 193.
[http://dx.doi.org/10.3390/horticulturae9020193]
[308]
Sun, W.; Shahrajabian, M.H. Survey on multi-omics, and multi-omics data analysis, integration and application. Curr. Pharm. Anal., 2023, 19(4), 267-281.
[http://dx.doi.org/10.2174/1573412919666230406100948]
[309]
Sun, W.; Shahrajabian, M.H. Various techniques for molecular and rapid detection of infectious and epidemic diseases. Lett. Org. Chem., 2023, 20(9), 779-801.
[http://dx.doi.org/10.2174/1570178620666230331095720]
[310]
Shahrajabian, M.H.; Sun, W. The importance of salicylic acid, humic acid and fulvic acid on crop production. Lett. Drug Des. Discov., 2023, 20, 1-16.
[http://dx.doi.org/10.2174/1570180820666230411102209]
[311]
Shahrajabian, M.H.; Sun, W.; Cui, H.; Kuang, Y.; Zhang, H. Heterologous expression and function of cholesterol oxidase: A review. Protein Pept. Lett., 2023, 30.
[http://dx.doi.org/10.2174/0929866530666230525162545] [PMID: 37231716]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy