Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

A Review on Nanosponges: An Idiosyncratic Approach for Delivery of Proactive Molecules

Author(s): Meenakshi Attri, Asha Raghav, Komal Rao, Parijat Pandey and Neha Minocha*

Volume 9, Issue 3, 2024

Published on: 01 November, 2023

Page: [193 - 208] Pages: 16

DOI: 10.2174/2405461508666230726163944

Price: $65

Open Access Journals Promotions 2
Abstract

Background: A lot of work has been done by many researchers to develop a system that is targeted at a specific site. Nanosponges are one of the systems that serve this purpose and have several advantages over other methods.

Objective: The article’s strategy is to provide access to data regarding the nanosponges system, including its preparation, evaluation, and advantages in various fields, such as the transportation of proteins, vaccines, biocatalysts, and drugs with enhanced bioavailability. Nanosponges also contribute significantly to the treatment of breast cancer, lung cancer, fungal infection, water treatment, and topical application than other approaches.

Method: Nanosponges contain a solid, porous system in which hydrophilic or lipophilic drugs are loaded at their core in the nanocavity. All the information provided in this article was collected after analysing various reports on nanosponges available on Google Scholar, PubMed, Scopus, Web of Science, and Science Direct. It is concluded that the nanosponges have excellent aqueous solubility properties. Therefore, they can be used as carriers for drugs with poor water solubility. Moreover, greater bioavailability can be achieved by using the nanosponge approach.

Conclusion: Nanosponges possess various outstanding properties that form the unique system of this approach. Nanosponges provide an effective carrier system for enzymes, proteins, vaccines, and therapeutic fields. This review provides a broad overview of the development of nanosponges, their evaluation, and the uses of nanosponges based on cyclodextrin for drug delivery.

Keywords: Nanosponges, cyclodextrin, target drug delivery, nanotechnology, nanocavity, bioavailability.

Graphical Abstract
[1]
Patil TS, Nalawade NA, Kakade VK, Kale SN. Nanosponges: A novel targeted drug delivery for cancer treatment. Int J Adv Res Develop 2017; 2: 4.
[2]
Minocha N, Sharma N, Verma R, Kaushik D, Pandey P. Solid lipid nanoparticles: Peculiar strategy to deliver bio-proactive molecules. Recent Pat Nanotechnol 2022.
[http://dx.doi.org/10.2174/1872210516666220317143351] [PMID: 35301957]
[3]
Nanosponges RD. an overview about the emerging novel class of drug delivery system. World J Pharm Res 2019; 8: 957-73.
[4]
Neetu PJ, Anu NB. Formulation development and evaluation of floating tablet of ranitidine hydrochloride for the treatment of duodenal ulcer. Int J pharma Prof Res 2013; 4(3): 872.
[5]
Minocha N, Saini S, Pandey P. Nutritional prospects of wheatgrass (Triticum aestivum) and its effects in treatment and chemoprevention. Explor Med 2022; 3: 432-42.
[http://dx.doi.org/10.37349/emed.2022.00104]
[6]
Harilal S, Jose J, Parambi DGT, et al. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J Pharm Pharmacol 2019; 71(9): 1370-83.
[http://dx.doi.org/10.1111/jphp.13132] [PMID: 31304982]
[7]
Prajnamitra RP, Chen HC, Lin CJ, Chen LL, Hsieh PCH. Nanotechnology approaches in tackling cardiovascular diseases. Molecules 2019; 24(10): 2017.
[http://dx.doi.org/10.3390/molecules24102017] [PMID: 31137787]
[8]
Mihai MM, Dima MB, Dima B, Holban AM. Nanomaterials for wound healing and infection control. Materials 2019; 12(13): 2176.
[http://dx.doi.org/10.3390/ma12132176] [PMID: 31284587]
[9]
Minocha N, Kumar V. Nanostructure system: Liposome – A bioactive carrier in drug delivery systems. Mater Today Proc 2022; 69: 614-9.
[http://dx.doi.org/10.1016/j.matpr.2022.09.494]
[10]
Purohit D, Sharma S, Lamba AK, et al. Nanocrystals: A deep insight into formulation aspects, stabilization strategies and biomedical applications. Recent Pat Nanotechnol 2022; 17(4): 307-26.
[PMID: 35616680]
[11]
Kumar V, Minocha N, Garg V, Dureja H. Nanostructured materials used in drug delivery. Mater Today Proc 2022; 69: 174-80.
[http://dx.doi.org/10.1016/j.matpr.2022.08.306]
[12]
Williams B, Deleers M, Pathak Y. Letter from the Editor. Drug Dev Ind Pharm 2008; 34(1): 1-31.
[http://dx.doi.org/10.1080/03639040701526732]
[13]
Siwach R, Pandey P, Chawla V, Dureja H. Role of nanotechnology in diabetic management. Recent Pat Nanotechnol 2019; 13(1): 28-37.
[http://dx.doi.org/10.2174/1872210513666190104122032] [PMID: 30608045]
[14]
Silva P, Bonifácio B, Ramos M, Negri K, Maria Bauab T, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 2013; 9: 1-15.
[http://dx.doi.org/10.2147/IJN.S52634] [PMID: 24363556]
[15]
Parijat Pandey, Neha Minocha, Neelam Vashist, et al. Emulgel: An emerging approach towards effective topical drug delivery. Drug Del Lett 2022; 2022: 12.
[http://dx.doi.org/10.2174/2210303112666220818115231]
[16]
Khan KA, Bhargav E, Reddy KR, Sowmya C. Nano sponges: A new approach for drug targeting. Int J Pharm Pharm Res 2016; 7(3): 381-96.
[17]
Muni Raja Lakshmi K, Suma Shree CH, Lakshmi Priya N. Nano sponges: A novel approach for targeted drug delivery systems. J Drug Deliv Ther 2021; 11(2): 247-52.
[http://dx.doi.org/10.22270/jddt.v11i2.4612]
[18]
Prasad D, Dr Sudhakar M, Dr Bhanja SB, Tejaswi M. A Review on Nanosponges. Renu kaivalya. Int J Recent Sci Res 2020; 11(01): 36878-84.
[http://dx.doi.org/10.24327/ijrsr.2020.1101.5016]
[19]
Trotta F, Cavalli R, Tumiatti W, Zerbinati O, Rogero C, Vallero R. Ultrasound-assisted synthesis of cyclodextrin-based Nanosponges Patent EP1786841B1, 2013.
[20]
Shivani S, Poladi KK. Nanosponges-novel emerging drug delivery system: A review. Int J Pharm Sci Res 2015; 6(2): 529.
[21]
Krabicová I, Appleton SL, Tannous M, et al. History of cyclodextrin nanosponges. Polymers 2020; 12(5): 1122.
[http://dx.doi.org/10.3390/polym12051122] [PMID: 32423091]
[22]
Swaminathan S, Vavia PR, Trotta F, Torne S. Formulation of betacyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem 2007; 57(1-4): 89-94.
[http://dx.doi.org/10.1007/s10847-006-9216-9]
[23]
Bhowmik H, Venkatesh D N, Kuila A, Kumar K H. Nanosponges A review Int J Appl Pharm 2018; 10(4): 0975.
[http://dx.doi.org/10.22159/ijap.2018v10i4.25026]
[24]
Santosh Kumar R, Bhowmik A. Nanosponges: Novel drug delivery for treatment of cancer. J Drug Deliv Ther 2019; 9(4-A): 820-5.
[http://dx.doi.org/10.22270/jddt.v9i4-A.3673]
[25]
Dhavala P B, Kumar V S. An interesting nano sponges as a nanocarrier for novel drug delivery: A review. Int J of Pharm med Res 2017; 52: 1-7.
[26]
Li DQ, Ma M. Nanosponges: From inclusion chemistry to water purifying technology. Chemtech 1999; 29: 31-7.
[27]
Li DQ, Ma M. Nanoporous polymers: New nanosponge absorbent media. Filtr Sep 1999; 36(10): 26-8.
[http://dx.doi.org/10.1016/S0015-1882(00)80050-6]
[28]
Lucia Appleton S, Khazaei Monfared Y, Vidal-Sánchez FJ, et al. Cyclodextrin-based nanosponges and proteins. Encyclopedia 2022; 2(2): 752-60.
[http://dx.doi.org/10.3390/encyclopedia2020052]
[29]
Waghmare SG, Nikhade RR. Dr. Satish and B. Kosalge. Nanosponges:a novel approach for controlled release drug delivery system. Int J Pharm Pharm Res 2017; 9(3): 101-11.
[30]
Balasaheb MT, Patil PM, Jahagirdar AC, Khandekar DB. Nanosponge an emerging drug delivery system. Int J Instit Pharm Life Sci 2015; 5: 6.
[31]
Subramanian S, Singiredd A. Bringing together Canadian Pharmaceutical Sciences. 2012. Available from www.cspscanada.org
[32]
Lala R, Thorat A, Gargote C. Current trends in β-cyclodextrin based drug delivery systems. Int J Res Ayur Pharm 2011; 2(5): 1520-6.
[33]
Ansari KA, Vavia PR, Trotta F, Cavalli R, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 2011; 12(1): 279-86.
[http://dx.doi.org/10.1208/s12249-011-9584-3] [PMID: 21240574]
[34]
Tiwari K, Bhattacharya S. The ascension of nanosponges as a drug delivery carrier: preparation, characterization, and applications. J Mater Sci Mater Med 2022; 33(3): 28.
[http://dx.doi.org/10.1007/s10856-022-06652-9] [PMID: 35244808]
[35]
Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery - Physicochemical characterization, drug release, stability and cytotoxicity 2018; 45: 45-53.
[http://dx.doi.org/10.1016/j.jddst.2018.03.004]
[36]
Williams HD, Trevaskis NL, Charman SA, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev 2013; 65(1): 315-499.
[http://dx.doi.org/10.1124/pr.112.005660] [PMID: 23383426]
[37]
Dobson, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine 2008; 3(2): 169-80.
[http://dx.doi.org/10.2147/IJN.S1608] [PMID: 18686777]
[38]
Minocha N, Saini S, Pandey P. Design of experiments: how to develop and optimize drug delivery systems. TMR Pharmacology Research 2022; 2(3): 10.
[http://dx.doi.org/10.53388/PR202202010]
[39]
Hoti G, Alberto SL, Pedrazzo R, et al. Strategies to develop cyclodextrin-based nanosponges for smart drug delivery. IntechOpen 2023.
[http://dx.doi.org/10.5772/intechopen.100182]
[40]
Rubin Pedrazzo A, Caldera F, Zanetti M, Appleton SL, Dhakar NK, Trotta F. Mechanochemical green synthesis of hyper-crosslinked cyclodextrin polymers. Beilstein J Org Chem 2020; 16: 1554-63.
[http://dx.doi.org/10.3762/bjoc.16.127] [PMID: 32704321]
[41]
Shende P, Chaphalkar R, Deshmukh K, Gaud RS. Physicochemical investigation of engineered nanosuspensions containing model drug, lansoprazole. J Dispers Sci Technol 2016; 37(4): 504-11.
[http://dx.doi.org/10.1080/01932691.2015.1046553]
[42]
Sharma R, Roderick B, Pathak K. Evaluation of kinetics and mechanism of drug release from econazole nitrate nanosponges loaded Carbopol Hydrogel. Indian J Pharm Educ Res 2011; 45(1): 25-31.
[43]
Arshad K, Khan A, Bhargav E, Reddy K, Sowmya C. Nanosponges: A new approach for drug targeting. Int J Adv Pharm Res 2016; 7(3): 381-96.
[44]
Nikam PL. Nanosponges: A benefication for novel drug delivery. Int J Pharm Tech Res 2014; 6(1): 11-20.
[45]
Yang R, He J, Xu L, Yu J. Bubble-electrospinning for fabricating nanofibers. Polymer 2009; 50(24): 5846-50.
[http://dx.doi.org/10.1016/j.polymer.2009.10.021]
[46]
Singireddy A, Rani Pedireddi S, Nimmagadda S, Subramanian S. Beneficial effects of microwave assisted heating versus conventional heating in synthesis of cyclodextrin based nanosponges. Mater Today Proc 2016; 3(10): 3951-9.
[http://dx.doi.org/10.1016/j.matpr.2016.11.055]
[47]
Zainuddin R, Zaheer Z, Sangshetti JN, Momin M. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation. Drug Dev Ind Pharm 2017; 43(12): 2076-84.
[http://dx.doi.org/10.1080/03639045.2017.1371732] [PMID: 28845699]
[48]
binti Zainuddin AN, binti Mukri M, binti Nik Ab Aziz NNS, bin Mohamed Yusof MKT. Study of nano-kaolinite properties in clay liner application. Mater Sci Forum 2017; 889: 239-42.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.889.239]
[49]
Osmani RA, Kulkarni P, Manjunatha S, et al. Cyclodextrin-based nanosponges: Overview and opportunities sec polymer chemistry 2018; 10: 1-25.
[http://dx.doi.org/10.1007/978-3-319-76090-2_9]
[50]
Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 2012; 8: 2091-9.
[http://dx.doi.org/10.3762/bjoc.8.235] [PMID: 23243470]
[51]
Ravi SC, Krishnakumar K, Nair SK. Nano sponges: A targeted drug delivery system and its applications. GSC Biol Pharma Sci 2019; 7(3): 40-7.
[http://dx.doi.org/10.30574/gscbps.2019.7.3.0098]
[52]
Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech 2005; 6(2): E329-57.
[http://dx.doi.org/10.1208/pt060243] [PMID: 16353992]
[53]
Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm 2013; 63(3): 335-58.
[http://dx.doi.org/10.2478/acph-2013-0021] [PMID: 24152895]
[54]
Vishwakarma A, Nikam P, Mogal R, Talale S. Nanosponges A benifiaction for novel drug delivery system. Int Jour Pharm Tech Sciences 2014; 6(1)
[55]
Vyas A, Saraf S, Saraf S. Cyclodextrin based novel drug delivery systems. J Incl Phenom Macrocycl Chem 2008; 62(1-2): 23-42.
[http://dx.doi.org/10.1007/s10847-008-9456-y]
[56]
Indira B, Bolisetti SS. Nanosponges: A new era in drug delivery. J Pharm Res 2012; 5: 5293-6.
[57]
Swaminathan S, Pastero L, Serpe L, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 2010; 74(2): 193-201.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.003] [PMID: 19900544]
[58]
Castiglione F, Crupi V, Majolino D, et al. Vibrational dynamics and hydrogen bond properties of β-CD nanosponges: an FTIR-ATR, Raman and solid-state NMR spectroscopic study. J Incl Phenom Macrocycl Chem 2013; 75(3-4): 247-54.
[http://dx.doi.org/10.1007/s10847-012-0106-z]
[59]
Mamba BB, Krause RW, Malefetse TJ, Gericke G, Sithole SP. Short communication: Cyclodextrin nanosponges in the removal of organic matter to produce water for power generation. Water SA 2018; 34(5): 657-60.
[http://dx.doi.org/10.4314/wsa.v34i5.180666]
[60]
Mamba B, Krause R, Malefetse T, et al. Removal of geosmin and 2-methylisoborneol (2-MIB) in water from Zuikerbosch water treatment plant (rand Water) using b-cyclodextrin polyurethane. Water S Part A 2007; 32: 223-8.
[61]
Tang S, Kong L, Ou J, Liu Y, Li X, Zou H. Application of cross-linked β-cyclodextrin polymer for adsorption of aromatic amino acids. J Mol Recognit 2006; 19(1): 39-48.
[http://dx.doi.org/10.1002/jmr.756] [PMID: 16265676]
[62]
Cavalli R, Trotta F, Tumiatti W. Cyclodextrin-based nanosponges for drug delivery. J Incl Phenom Macrocycl Chem 2006; 56(1-2): 209-13.
[http://dx.doi.org/10.1007/s10847-006-9085-2]
[63]
Swaminathan S, Vavia P, Trotta F, et al. Release modulation and conformational stabilization of a model protein by use of swellable nanosponges of b-cyclodextrin First European Cyclodextrin Conference. Aalborg, Denmark 2009.
[64]
Lala R, Thorat A, Gargote C. Current trends in b-cyclodextrin based drug delivery systems. Int J Res Ayurveda Pharm 2011; 2: 1520-6.
[65]
Pawar S, Shende P, Trotta F. Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int J Pharm 2019; 565: 333-50.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.015] [PMID: 31082468]
[66]
Zhang D, Lv P, Zhou C, Zhao Y, Liao X, Yang B. Cyclodextrin-based delivery systems for cancer treatment. Mater Sci Eng C 2019; 96: 872-86.
[http://dx.doi.org/10.1016/j.msec.2018.11.031] [PMID: 30606602]
[67]
Deng J, Chen QJ, Li W, et al. Toward improvements for carrying capacity of the cyclodextrin-based nanosponges: recent progress from a material and drug delivery. J Mater Sci 2021; 56(10): 5995-6015.
[http://dx.doi.org/10.1007/s10853-020-05646-8]
[68]
Martin A, Swarbrick J, Cammarrata A. Physical pharmacy-physical chemical principles in. Philadelphia: Lee and Febiger 1983; pp. 344-6.
[69]
Sharma R, Pathak K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm Dev Technol 2011; 16(4): 367-76.
[http://dx.doi.org/10.3109/10837451003739289] [PMID: 20367024]
[70]
Kumar S, Dalal P, Rao R. Cyclodextrin nanosponges: A promising approach for modulating drug deliveryColloid science in pharmaceutical nanotechnology. London, UK: IntechOpen 2020.
[http://dx.doi.org/10.5772/intechopen.90365]
[71]
Raja CH, Kumar GK, Anusha K. Fabrication and evaluation of ciprofloxacin loaded nanosponges for sustained release. Int J Res Pharm Nano Sci 2013; 2: 1-9.
[72]
Uday BB, Manvi FV, Kotha R, Pallax SS, Paladugu A, Reddy KR. Recent advances in nanosponges as drug delivery system. Int J Pharm Sci Nanotechnol 2013; 6(April–June): 1934-44.
[73]
Minelli R, Cavalli R, Fantozzi R, et al. Abstract 4431: Antitumor activity of nanosponge-encapsulated camptotechin in human prostate tumors. Cancer Res 2011; 71(S8): 4431.
[http://dx.doi.org/10.1158/1538-7445.AM2011-4431]
[74]
Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr Polym 2017; 173: 37-49.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.086] [PMID: 28732878]
[75]
Bhati C, Minocha N, Purohit D, et al. High performance liquid chromatography: Recent patents and advancement. Biomed Pharmacol J 2022; 15(2): 729-46.
[http://dx.doi.org/10.13005/bpj/2411]
[76]
Brittain HG, Bogdanowich SJ, Bugay DE, DeVincentis J, Lewen G, Newman AW. Physical characterization of pharmaceutical solids. Pharm Res 1991; 8(8): 963-73.
[http://dx.doi.org/10.1023/A:1015888520352] [PMID: 1924166]
[77]
Singh S, Monika K. Nanosponges as emerging carriers for drug delivery. Sys Rev Pharm 2022; 13: 1.
[78]
Mele A, Castiglione F, Malpezzi L, et al. HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges. J Incl Phenom Macrocycl Chem 2011; 69(3-4): 403-9.
[http://dx.doi.org/10.1007/s10847-010-9772-x]
[79]
Durickovic I. Using Raman Spectroscopy for Characterization of Aqueous Media and Quantification of Species in Aqueous Solution.In: Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences. London, UK: IntechOpen 2016.
[http://dx.doi.org/10.5772/64550]
[80]
Hombreiro-Pérez M, Siepmann J, Zinutti C, et al. Non-degradable microparticles containing a hydrophilic and/or a lipophilic drug: preparation, characterization and drug release modeling. J Control Release 2003; 88(3): 413-28.
[http://dx.doi.org/10.1016/S0168-3659(03)00030-0] [PMID: 12644367]
[81]
Guyot M, Fawaz F. Nifedipine loaded-polymeric microspheres: preparation and physical characteristics. Int J Pharm 1998; 175(1): 61-74.
[http://dx.doi.org/10.1016/S0378-5173(98)00253-1]
[82]
Jeong Y, Shim Y, Song K, Park Y, Ryu H, Nah J. Testosterone encapsulated surfactant-free nanoparticles of poly(D,L-lactide-co-glycolide): Preparation and release behavior. Bull Korean Chem Soc 2002; 23(11): 1579-84.
[http://dx.doi.org/10.5012/bkcs.2002.23.11.1579]
[83]
McCloskey AP, Gilmore SM, Zhou J, et al. Self-assembling ultrashort NSAID-peptide nanosponges: multifunctional antimicrobial and anti-inflammatory materials. RSC Advances 2016; 6(115): 114738-49.
[http://dx.doi.org/10.1039/C6RA20282A]
[84]
Ananya KV, Preethi S, Gowda DV, Gowda DV. Recent review on Nano sponge. Int J Res Pharm Sci 2020; 11(1): 1085-96.https://ijrps.com/index.php/home/article/view/725
[http://dx.doi.org/10.26452/ijrps.v11i1.1940]
[85]
Leudjo Taka A, Pillay K, Yangkou Mbianda X. Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: A review. Carbohydr Polym 2017; 159: 94-107.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.027] [PMID: 28038758]
[86]
Almutairy BK, Alshetaili A, Alali AS, Ahmed MM, Anwer MK, Aboudzadeh MA. Design of olmesartan medoxomil-loaded nanosponges for hypertension and lung cancer treatments. Polymers (Basel) 2021; 13(14): 2272.
[http://dx.doi.org/10.3390/polym13142272] [PMID: 34301030]
[87]
Ahmed MM, Fatima F, Anwer MK, Ansari MJ, Das SS, Alshahrani SM. Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer. J Polym Eng 2020; 40(10): 823-32.
[http://dx.doi.org/10.1515/polyeng-2019-0365]
[88]
Anwer MK, Mohammad M, Ezzeldin E, Fatima F, Alalaiwe A, Iqbal M. Preparation of sustained release apremilast-loaded PLGA nanoparticles: in vitro characterization and in vivo pharmacokinetic study in rats. Int J Nanomed 2019; 14: 1587-95.
[http://dx.doi.org/10.2147/IJN.S195048]
[89]
Rahdar A, Sargazi S, Barani M, Shahraki S, Sabir F, Aboudzadeh MA. Lignin-stabilized doxorubicin microemulsions: Synthesis, physical characterization, and in vitro assessments. Polymers 2021; 13(4): 641.
[http://dx.doi.org/10.3390/polym13040641]
[90]
Rahdar A, Taboada P, Hajinezhad MR, Barani M, Beyzaei H. Effect of tocopherol on the properties of Pluronic F127 microemulsions: Physico-chemical characterization and in vivo toxicity. J Mol Liq 2019; 277: 624-30.
[http://dx.doi.org/10.1016/j.molliq.2018.12.074]
[91]
Güngör S, Erdal MS, Aksu B. New formulation strategies in topical antifungal therapy. J Cosm 2013; 3(1): 56-65.
[http://dx.doi.org/10.4236/jcdsa.2013.31A009]
[92]
Trotta F. Cyclodextrin nanosponges and their applications. Hoboken, New Jersey: John Wiley and Sons 2011.
[http://dx.doi.org/10.1002/9780470926819.ch17]
[93]
Kaur G, Aggarwal G, Harikumar SL. Nanosponge: New colloidal drug delivery system for topical delivery. Indo-Glob J Pharm Sci 2015; 5(1): 53-7.
[http://dx.doi.org/10.35652/IGJPS.2015.23]
[94]
Kadian R. Nanoparticles: A promising drug delivery approach. Asian J Pharm Clin Res 2018; 11(1): 30-5.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i1.22035]
[95]
Darandale SS, Shevalkar GB, Vavia PR. Effect of lipid composition in propofol formulations: Decisive component in reducing the free propofol content and improving pharmacodynamic profiles. AAPS PharmSciTech 2017; 18(2): 441-50.
[http://dx.doi.org/10.1208/s12249-016-0524-0] [PMID: 27055535]
[96]
Geeta Y. Panchary Hiten, Nanosponges: A boon to the targeted drug delivery system. J Drug Deliv Ther 2013; 3(4): 151-5.
[97]
Shameem S, Nithish Kumar Reddy N, Bhavitha M, Suman Kumar M, Balaji Ramaiah M, Sahithya K. Nanosponges: a miracle nanocarrier for targeted drug delivery. Int J Pharma Sci 2020; 63: 82-9.
[98]
Ahmed MM, Fatima F, Alali A, et al. Ribociclib-loaded ethylcellulose-based nanosponges: Formulation, physicochemical characterization, and cytotoxic potential against breast cancer. Adsorpt Sci Technol 2022; 2022: 1-11.
[http://dx.doi.org/10.1155/2022/1922263]
[99]
Lembo D, Swaminathan S, Donalisio M, et al. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm 2013; 443(1-2): 262-72.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.031] [PMID: 23279938]
[100]
Minocha N, Sharma N, Pandey P. Wheatgrass: An Epitome of Nutritional Value. Curr Nutr Food Sci 2022; 18(1): 22-30.
[http://dx.doi.org/10.2174/1573401317666210906140834]
[101]
Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci 1997; 86(2): 147-62.
[http://dx.doi.org/10.1021/js960213f] [PMID: 9040088]
[102]
Shende P, Kulkarni YA, Gaud RS, et al. Acute and repeated dose toxicity studies of different β-cyclodextrin-based nanosponge formulations. J Pharm Sci 2015; 104(5): 1856-63.
[http://dx.doi.org/10.1002/jps.24416] [PMID: 25754724]
[103]
Appleton SL, Tannous M, Argenziano M, et al. Nanosponges as protein delivery systems: Insulin, a case study. Int J Pharm 2020.590119888
[http://dx.doi.org/10.1016/j.ijpharm.2020.119888] [PMID: 32950667]
[104]
Zhang Q, Honko A, Zhou J, et al. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett 2020; 20(7): 5570-4.
[http://dx.doi.org/10.1021/acs.nanolett.0c02278] [PMID: 32551679]
[105]
Bhavin SE, Anuradha G. Nanoparticles, nanosponges, methods of synthesis, and methods of use. US Patent, 20170152439A1, 2017.
[106]
Miriam F TP S. Method for preparing dextrin nanosponges. Patent WO2012147069A1, 2012.
[107]
Trotta Vander Tumiatti F, Roggero R C C M, Nicolao B M G. Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs. Patent WO2009003656A1, 2009.
[108]
Trotta F, Tumiatti R C W, Roggero O Z C, Vallero R. 2006. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges Patent EP1632503A1, 2006.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy