[7]
Wagle, S.; Adhikari, V.A.; Kumari, S.N. Synthesis of some new 2-(3-methyl-7- substituted-2- oxoquinoxalinyl)-5-(aryl)-1,3,4-oxadiazoles as potential non-steroidal anti-inflammatory and analgesic agents. Indian J. Chem., 2008, 47B, 439-448.
[13]
Adnani, Z.E.; Mcharfi, M.; Sfaira, M.; Benzakour, A.; Benjelloun, M.; Ebn Touhami, B.; Hammouti, M. DFT Study of 7-R-3methylquinoxalin-2(1H)-ones (R=H; CH3; Cl) as Corrosion Inhibitors in Hydrochloric Acid. Int. J. Electrochem. Sci., 2012, 7, 6738-6751.
[16]
Patidar, A.K.; Jeyakandan, M.; Mobiya, A.; Selvam, G. Exploring potential of quinoxaline moiety. Int. J. Pharm. Tech. Res., 2011, 3(1), 386-392.
[19]
Robinson, R.S.; Taylor, R.J.K. Quinoxaline synthesis from α-hydroxy ketones via a tandem oxidation process using catalysed aerobic oxidation. Synlett, 2005, 6, 1003-1005.
[30]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford Science Publications: New York, 1998.
[31]
Anastas, P.T.; Williamson, T. Green Chemistry, Frontiers in Benign Chemical Synthesis and Procedures; Oxford Science Publications: New York, 1998.
[33]
Nageswar, Y.V.D.; Reddy, H.V.K.; Ramesh, K.; Murthy, S.N. Recent developments in the synthesis of quinoxaline derivatives by green synthetic approaches, organic preparations and procedures international. New J Org Synth, 2013, 45(1), 1-27.
[40]
Sami, S.; Sara, M. Green synthesis of quinoxaline derivatives using phthalic acid as difunctional Brønsted acid at room temperature. Int. J. Chemtech Res., 2014, 6(14), 5433-5440.
[41]
Sami, S.; Issa, A.; Tayebeh, A. Silica boron sulfonic acid as a new and efficient catalyst for the green synthesis of quinoxaline derivatives at room temperature. Chem. Methodol., 2011, 1(1), 1-11.
[57]
Sajjadifar, S.; Nezhad, E.R.; Qinoxaline, I.I.I. Synthesis of quinoxaline derivatives over highly efficient and reusable bronsted acidic ionic liquids. Int. J. Chemtech. Res., 2013, 5(4), 2041-2050.
[58]
Chao, L.; Tao, G.; Xin, Z.; Chun, W.; Jing-Jun, M.; Hong-Jing, H. A green and efficient synthesis of quinoxaline derivatives catalyzed by 1-n-butyl-3-methylimmidazolium tetrafluoroborate. Bull. Chem. Soc. Ethiop., 2011, 25(3), 455-460.
[63]
Mason, T.J.; Peters, D. Practical Sonochemistry, Power Ultrasound Uses and Applications; 2nd ed.; Ellis Horwood Publishers: Chicherster, 2002.
[65]
Ubarhande, S.S.; Devhate, P.P.; Berad, B.N. Green synthesis of quinoxaline and substituted quinoxalines. Int. J. Chem. Sci., 2011, 9(4), 1768-1774.
[70]
Aravind, K.; Ganesh, A.; Ashok, D. Microwave assisted synthesis, characterization and antibacterial activity of quinoxaline derivatives. J. Chem. Pharm. Res., 2013, 5(2), 48-52.
[77]
Kiran, Ga.; Laxminarayana, E.; Thirumala, C.M.; Ravinder, M. A green synthesis of quinoxaline derivatives & their biological actives. Int. J. App. Chem, 2017, 13(3), 421-432.
[81]
Sivrikaya, O.; Arol, A. Use of Boron Compounds as Binders in Iron Ore Pelletization Open Miner. Process. J., 2010, 3, 25.
[94]
Badal, M.; Khalafy, J.; Aghazadeh, M.; Prager, R.H. Synthesis of bis-quinoxaline derivatives using Tonsil clay as a catalyst. Bull. Chem. Soc. Ethiop., 2016, 30(1), 129-136.