Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Green and Eco-friendly Synthetic Strategies for Quinoxaline Derivatives

Author(s): Irfan Ali and Rohit Bhatia*

Volume 11, Issue 1, 2024

Published on: 07 August, 2023

Page: [37 - 49] Pages: 13

DOI: 10.2174/2213346110666230724123450

Price: $65

Abstract

Advancement in green synthetic methodologies has brought a revolution in heterocyclic synthesis. Green synthesis has bypassed the classical procedures involving toxic/hazardous solvents or catalysts and improved the current environmental safety standards by many folds. Green chemistry research has continuously made significant contributions to the development of heterocyclic scaffolds both at laboratory and commercial scales. Researchers are continuously developing and exploring the principles of green chemistry for the development of novel therapeutic agents. Quinoxaline lies in the category of versatile heterocyclic motifs, which possesses a wide diversity in its derivatives as well as a broad profile of its therapeutic potential. In the past decades, many new green synthetic protocols have been developed and employed successfully for the synthesis of quinoxaline derivatives. These include the use of reusable nanocatalysts, polymers, various green solvents, tonsils, catalysts, water as a catalyst, microwave irradiation, ultrasonic waves, non-toxic metal catalysts, surfactants, etc. The present review focuses on various green synthetic procedures reported for quinoxalines along with the specializations and applications of the reactions.

Keywords: Green synthesis, quinoxaline, polymers, microwave irradiation, tonsil clay, versatile.

Graphical Abstract
[1]
Chih-Hua, T.; You-Ren, C.; Cherng-Chyi, T.; Wangta, L.; Chon-Kit, C.; Chien-Chih, C.; Yeh Long, C. Discovery of indeno[1,2-b]quinoxaline derivatives as potential anticancer agents. Eur. J. Med. Chem., 2015, 2015, 1-54.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.031] [PMID: 26686931]
[2]
Montana, M.; Montero, V.; Khoumeri, O.; Vanelle, P. Quinoxaline derivatives as antiviral agents: A systematic review. Molecules, 2020, 25(12), 2784.
[http://dx.doi.org/10.3390/molecules25122784] [PMID: 32560203]
[3]
Kotharkar, S.A.; Shinde, D.B. Synthesis of antimicrobial 2,9,10-trisubstituted-6-oxo-7,12-dihydro-chromeno[3,4-b]quinoxalines. Bioorg. Med. Chem. Lett., 2006, 16(24), 6181-6184.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.040] [PMID: 17027265]
[4]
Bayoumi, A.H.; Ghiaty, A.H.; Abd El-Gilil, S.M.; Husseiny, E.M.; Ebrahim, M.A. Exploration of quinoxaline derivatives as antimicrobial and anticancer agents. J. Heterocycl. Chem., 2019, 56(12), 3215-3235.
[http://dx.doi.org/10.1002/jhet.3716]
[5]
Tandon, V.K.; Yadav, D.B.; Maurya, H.K.; Chaturvedi, A.K.; Shukla, P.K. Design, synthesis, and biological evaluation of 1,2,3-trisubstituted-1,4-dihydrobenzo[g]quinoxaline-5,10-diones and related compounds as antifungal and antibacterial agents. Bioorg. Med. Chem., 2006, 14(17), 6120-6126.
[http://dx.doi.org/10.1016/j.bmc.2006.04.029] [PMID: 16806945]
[6]
Bahekar, R.H.; Jain, M.R.; Gupta, A.A.; Goel, A.; Jadav, P.A.; Patel, D.N.; Prajapati, V.M.; Patel, P.R. Synthesis and Antidiabetic Activity of 3,6,7-Trisubstituted-2-(1H-imidazol-2-ylsulfanyl)quinoxalines and Quinoxalin-2-yl isothioureas. Arch. Pharm., 2007, 340(7), 359-366.
[http://dx.doi.org/10.1002/ardp.200700024] [PMID: 17567824]
[7]
Wagle, S.; Adhikari, V.A.; Kumari, S.N. Synthesis of some new 2-(3-methyl-7- substituted-2- oxoquinoxalinyl)-5-(aryl)-1,3,4-oxadiazoles as potential non-steroidal anti-inflammatory and analgesic agents. Indian J. Chem., 2008, 47B, 439-448.
[8]
Wang, T.; Tang, Y.; Yang, Y.; An, Q.; Sang, Z.; Yang, T.; Liu, P.; Zhang, T.; Deng, Y.; Luo, Y. Discovery of novel anti-tuberculosis agents with pyrrolo[1,2- a]quinoxaline-based scaffold. Bioorg. Med. Chem. Lett., 2018, 28(11), 2084-2090.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.043] [PMID: 29748048]
[9]
Chandra Shekhar, A.; Shanthan Rao, P.; Narsaiah, B.; Allanki, A.D.; Sijwali, P.S. Emergence of pyrido quinoxalines as new family of antimalarial agents. Eur. J. Med. Chem., 2014, 77, 280-287.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.010] [PMID: 24650715]
[10]
Justin Thomas, K.R.; Velusamy, M.; Lin, J.T.; Chuen, C.H.; Tao, Y.T. Chromophorelabeled quinoxaline derivatives as efcient electroluminescent materials. Chem. Mater., 2005, 17(7), 1860-1866.
[http://dx.doi.org/10.1021/cm047705a]
[11]
Karaca Balta, D.; Keskin, S.; Karasu, F.; Arsu, N. Quinoxaline derivatives as photoinitiators in UV-cured coatings. Prog. Org. Coat., 2007, 60(3), 207-210.
[http://dx.doi.org/10.1016/j.porgcoat.2007.07.024]
[12]
Dailey, S.; Feast, W.J.; Peace, R.J.; Sage, I.C.; Till, S.; Wood, E.L. Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications. J. Mater. Chem., 2001, 11(9), 2238-2243.
[http://dx.doi.org/10.1039/b104674h]
[13]
Adnani, Z.E.; Mcharfi, M.; Sfaira, M.; Benzakour, A.; Benjelloun, M.; Ebn Touhami, B.; Hammouti, M. DFT Study of 7-R-3methylquinoxalin-2(1H)-ones (R=H; CH3; Cl) as Corrosion Inhibitors in Hydrochloric Acid. Int. J. Electrochem. Sci., 2012, 7, 6738-6751.
[14]
Obot, I.B.; Gasem, Z.M. Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corros. Sci., 2014, 83, 359-366.
[http://dx.doi.org/10.1016/j.corsci.2014.03.008]
[15]
Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.D.S.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, its derivatives and applications: A State of the Art review. Eur. J. Med. Chem., 2015, 97, 664-672.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.058] [PMID: 25011559]
[16]
Patidar, A.K.; Jeyakandan, M.; Mobiya, A.; Selvam, G. Exploring potential of quinoxaline moiety. Int. J. Pharm. Tech. Res., 2011, 3(1), 386-392.
[17]
Antoniotti, S.; Duñach, E. Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1,2-diamines. Tetrahedron Lett., 2002, 43(22), 3971-3973.
[http://dx.doi.org/10.1016/S0040-4039(02)00715-3]
[18]
Shi, D.Q.; Dou, G.L.; Ni, S.N.; Shi, J.W.; Li, X.Y. An efficient synthesis of quinoxaline derivatives mediated by stannous chloride. J. Heterocycl. Chem., 2008, 45(6), 1797-1801.
[http://dx.doi.org/10.1002/jhet.5570450637]
[19]
Robinson, R.S.; Taylor, R.J.K. Quinoxaline synthesis from α-hydroxy ketones via a tandem oxidation process using catalysed aerobic oxidation. Synlett, 2005, 6, 1003-1005.
[20]
Haldar, P.; Dutta, B.; Guin, J.; Ray, J.K. Uncatalyzed condensation between aryl-1,2-diamines and diethyl bromomalonate: A one-pot access to substituted ethyl 3-hydroxyquinoxaline-2-carboxylates. Tetrahedron Lett., 2007, 48(33), 5855-5857.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.065]
[21]
Huang, T.; Wang, R.; Shi, L.; Lu, X. Montmorillonite K-10: An efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water. Catal. Commun., 2008, 9(6), 1143-1147.
[http://dx.doi.org/10.1016/j.catcom.2007.10.024]
[22]
Daw, P.; Kumar, A.; Espinosa-Jalapa, N.A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Synthesis of pyrazines and quinoxalines via acceptorless dehydrogenative coupling routes catalyzed by manganese pincer complexes. ACS Catal., 2018, 8(9), 7734-7741.
[http://dx.doi.org/10.1021/acscatal.8b02208] [PMID: 31080687]
[23]
Xie, F.; Li, Y.; Chen, X.; Chen, L.; Zhu, Z.; Li, B.; Huang, Y.; Zhang, K.; Zhang, M. Direct synthesis of novel quinoxaline derivatives via palladium-catalyzed reductive annulation of catechols and nitroarylamines. Chem. Commun., 2020, 56(44), 5997-6000.
[http://dx.doi.org/10.1039/C9CC09649C] [PMID: 32347834]
[24]
Hasaninejad, A.; Zare, A.; Mohammadizadeh, M.R.; Shekouhy, M. Oxalic acid as an efficient, cheap, and reusable catalyst for the preparation of quinoxalines via condensation of 1,2-diamines with α-diketones at room temperature. ARKIVOC, 2008, 2008(13), 28-35.
[http://dx.doi.org/10.3998/ark.5550190.0009.d04]
[25]
Li, Z.; Li, W.; Sun, Y.; Huang, H.; Ouyang, P. Room temperature facile synthesis of quinoxalines catalyzed by amidosulfonic acid. J. Heterocycl. Chem., 2008, 45(1), 285-288.
[http://dx.doi.org/10.1002/jhet.5570450135]
[26]
Rajule, R.; Bryant, V.C.; Lopez, H.; Luo, X.; Natarajan, A. Perturbing pro-survival proteins using quinoxaline derivatives: A structure–activity relationship study. Bioorg. Med. Chem., 2012, 20(7), 2227-2234.
[http://dx.doi.org/10.1016/j.bmc.2012.02.022] [PMID: 22386982]
[27]
Ajani, O.O.; Nlebemuo, M.T.; Adekoya, J.A.; Ogunniran, K.O.; Siyanbola, T.O.; Ajanaku, C.O. Chemistry and pharmacological diversity of quinoxaline motifs as anticancer agents. Acta Pharm., 2019, 69(2), 177-196.
[http://dx.doi.org/10.2478/acph-2019-0013] [PMID: 31259731]
[28]
Chen, Q.; Bryant, V.C.; Lopez, H.; Kelly, D.L.; Luo, X.; Natarajan, A. 2,3-Substituted quinoxalin-6-amine analogs as antiproliferatives: A structure–activity relationship study. Bioorg. Med. Chem. Lett., 2011, 21(7), 1929-1932.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.055] [PMID: 21376584]
[29]
Ishibashi, M. Bioactive heterocyclic natural products from actinomycetes having effects on cancer-related signaling pathways. Prog. Chem. Org. Nat. Prod., 2014, 99, 147-198.
[http://dx.doi.org/10.1007/978-3-319-04900-7_3] [PMID: 25296439]
[30]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford Science Publications: New York, 1998.
[31]
Anastas, P.T.; Williamson, T. Green Chemistry, Frontiers in Benign Chemical Synthesis and Procedures; Oxford Science Publications: New York, 1998.
[32]
Clark, J.H.; Macquarrie, D.J. Handbook of Green Chemistry and Technology; Blackwell: Abingdon, 2002.
[http://dx.doi.org/10.1002/9780470988305]
[33]
Nageswar, Y.V.D.; Reddy, H.V.K.; Ramesh, K.; Murthy, S.N. Recent developments in the synthesis of quinoxaline derivatives by green synthetic approaches, organic preparations and procedures international. New J Org Synth, 2013, 45(1), 1-27.
[34]
Li, C.J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci., 2008, 105(36), 13197-13202.
[http://dx.doi.org/10.1073/pnas.0804348105] [PMID: 18768813]
[35]
Narayan, S.; Muldoon, J.; Finn, M.G.; Fokin, V.V.; Kolb, H.C.; Sharpless, K.B. “On water”: Unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed., 2005, 44(21), 3275-3279.
[http://dx.doi.org/10.1002/anie.200462883] [PMID: 15844112]
[36]
Wang, B.; Gu, Y.; Yang, L.; Suo, J.; Kenichi, O. Sulfamic acid as a green, efficient, recyclable and reusable catalyst for direct addition of aliphatic acid with cyclic olefins. Catal. Lett., 2004, 96(1/2), 71-74.
[http://dx.doi.org/10.1023/B:CATL.0000029532.80684.6c]
[37]
Darabi, H.R.; Mohandessi, S.; Aghapoor, K.; Mohsenzadeh, F. A recyclable and highly effective sulfamic acid/MeOH catalytic system for the synthesis of quinoxalines at room temperature. Catal. Commun., 2007, 8(3), 389-392.
[http://dx.doi.org/10.1016/j.catcom.2006.06.033]
[38]
Tarpada, U.P.; Thummar, B.B.; Raval, D.K. Polymer supported sulphanilic acid – A novel green heterogeneous catalyst for synthesis of benzimidazole derivatives. J. Saudi Chem. Soc., 2016, 20(5), 530-535.
[http://dx.doi.org/10.1016/j.jscs.2012.07.014]
[39]
Tarpada, U.P.; Thummar, B.B.; Raval, D.K. A green protocol for the synthesis of quinoxaline derivatives catalyzed by polymer supported sulphanilic acid. Arab. J. Chem., 2017, 10(2), S2902-S2907.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.021]
[40]
Sami, S.; Sara, M. Green synthesis of quinoxaline derivatives using phthalic acid as difunctional Brønsted acid at room temperature. Int. J. Chemtech Res., 2014, 6(14), 5433-5440.
[41]
Sami, S.; Issa, A.; Tayebeh, A. Silica boron sulfonic acid as a new and efficient catalyst for the green synthesis of quinoxaline derivatives at room temperature. Chem. Methodol., 2011, 1(1), 1-11.
[42]
De, S.K. RuCl3 catalyzed one-pot synthesis of α-aminonitriles. Synth. Commun., 2005, 35(5), 653-656.
[http://dx.doi.org/10.1081/SCC-200050347]
[43]
Shaabani, A.; Rezayan, A.H.; Behnam, M.; Heidary, M. Green chemistry approaches for the synthesis of quinoxaline derivatives: Comparison of ethanol and water in the presence of the reusable catalyst cellulose sulfuric acid. C. R. Chim., 2009, 12(12), 1249-1252.
[http://dx.doi.org/10.1016/j.crci.2009.01.006]
[44]
Das, B.; Venkateswarlu, K.; Suneel, K.; Majhi, A. An efficient and convenient protocol for the synthesis of quinoxalines and dihydropyrazines via cyclization–oxidation processes using HClO4•SiO2 as a heterogeneous recyclable catalyst. Tetrahedron Lett., 2007, 48(31), 5371-5374.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.036]
[45]
Poliakoff, M.; Fitzpatrick, J.M.; Farren, T.R.; Anastas, P.T. Green chemistry: Science and politics of change. Science, 2002, 297(5582), 807-810.
[http://dx.doi.org/10.1126/science.297.5582.807] [PMID: 12161647]
[46]
Li, C.J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35(1), 68-82.
[http://dx.doi.org/10.1039/B507207G] [PMID: 16365643]
[47]
Heravi, M.M.; Taheri, S.; Bakhtiari, K.; Oskooie, H.A. On Water: A practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO4• 5H2O. Catal. Commun., 2007, 8(2), 211-214.
[http://dx.doi.org/10.1016/j.catcom.2006.06.013]
[48]
Loh, T.P.; Chua, G.L. Discovery of indium complexes as watertolerant Lewis acids. Chem. Commun., 2006, (26), 2739-2749.
[http://dx.doi.org/10.1039/b600568n] [PMID: 17009450]
[49]
Hazarika, P.; Gogoi, P.; Konwar, D. Efficient and green method for the synthesis of 1,5-benzodiazepine and quinoxaline derivatives in water. Synth. Commun., 2007, 37(19), 3447-3454.
[http://dx.doi.org/10.1080/00397910701489388]
[50]
Shaabani, A.; Maleki, A. Green and efficient synthesis of quinoxaline derivatives via ceric ammonium nitrate promoted and in situ aerobic oxidation of alpha-hydroxy ketones and alpha-keto oximes in aqueous media. Chem. Pharm. Bull., 2008, 56(1), 79-81.
[http://dx.doi.org/10.1248/cpb.56.79] [PMID: 18175980]
[51]
Chakrabarti, K.; Maji, M.; Kundu, S. Cooperative iridium complex-catalyzed synthesis of quinoxalines, benzimidazoles and quinazolines in water. Green Chem., 2019, 21(8), 1999-2004.
[http://dx.doi.org/10.1039/C8GC03744B]
[52]
Ghafuri, H. Fast and green synthesis of biologically important quinoxalines with high yields in water. Current Chemistry Letters, 2014, 3(3), 183-188.
[http://dx.doi.org/10.5267/j.ccl.2014.3.002]
[53]
Cole, A.C.; Jensen, J.L.; Ntai, I.; Tran, K.L.T.; Weaver, K.J.; Forbes, D.C.; Davis, J.H. Jr. Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc., 2002, 124(21), 5962-5963.
[http://dx.doi.org/10.1021/ja026290w] [PMID: 12022828]
[54]
Baghbanian, S.M.; Tajbakhsh, M.; Farhang, M. Protic guanidinium ionic liquid as a green and highly efficient catalyst for the synthesis of functionalized spirochromenes under solvent-free conditions. C. R. Chim., 2014, 17(12), 1160-1164.
[http://dx.doi.org/10.1016/j.crci.2013.12.005]
[55]
Wei, Z.; Li, F.; Xing, H.; Deng, S.; Ren, Q. Reactivity of Brönsted acid ionic liquids as dual solvent and catalyst for Fischer esterifications. Korean J. Chem. Eng., 2009, 26(3), 666-672.
[http://dx.doi.org/10.1007/s11814-009-0111-0]
[56]
Dong, F.; Kai, G.; Zhenghao, F.; Xinli, Z.; Zuliang, L. A practical and efficient synthesis of quinoxaline derivatives catalyzed by task-specific ionic liquid. Catal. Commun., 2008, 9(2), 317-320.
[http://dx.doi.org/10.1016/j.catcom.2007.07.003]
[57]
Sajjadifar, S.; Nezhad, E.R.; Qinoxaline, I.I.I. Synthesis of quinoxaline derivatives over highly efficient and reusable bronsted acidic ionic liquids. Int. J. Chemtech. Res., 2013, 5(4), 2041-2050.
[58]
Chao, L.; Tao, G.; Xin, Z.; Chun, W.; Jing-Jun, M.; Hong-Jing, H. A green and efficient synthesis of quinoxaline derivatives catalyzed by 1-n-butyl-3-methylimmidazolium tetrafluoroborate. Bull. Chem. Soc. Ethiop., 2011, 25(3), 455-460.
[59]
Tejeswararao, D. Recyclable acidic bronsted ionic liquid catalyzed synthesis of quinoxaline. J. Chil. Chem. Soc., 2016, 61(1), 2843-2845.
[http://dx.doi.org/10.4067/S0717-97072016000100018]
[60]
Sajjadifar, S.; Mohammadi-Aghdam, S. Synthesis of dihydropyridines and quinoxaline drivatives using 1-methyl-3-(2-(sulfooxy)ethyl)-1H-imidazol-3-ium chloride as a new, reusable and efficient Bronsted acidic ionic liquid catalyst. Asian J Green Chem, 2017, 1, 1-15.
[http://dx.doi.org/10.22631/ajgc.2017.46496]
[61]
Zarei-Haji-Abadi, M.; Mohebat, R.; Mosslemin, M. Imidazolium-based ionic liquid promoted facile and efficient one-pot four-component synthesis of spiro[furan-2,11′-indeno[1,2- b]quinoxaline]s under ambient conditions. Lett. Org. Chem., 2017, 14(1), 43-48.
[http://dx.doi.org/10.2174/1570178614666161216122522]
[62]
Xu, H.; Liao, W.M.; Li, H.F. A mild and efficient ultrasound-assisted synthesis of diaryl ethers without any catalyst. Ultrason. Sonochem., 2007, 14(6), 779-782.
[http://dx.doi.org/10.1016/j.ultsonch.2007.01.002] [PMID: 17350316]
[63]
Mason, T.J.; Peters, D. Practical Sonochemistry, Power Ultrasound Uses and Applications; 2nd ed.; Ellis Horwood Publishers: Chicherster, 2002.
[64]
Guo, W.X.; Jin, H.L.; Chen, J.X.; Chen, F.; Ding, J-C.; Wu, H-Y. An efficient catalyst-free protocol for the synthesis of quinoxaline derivatives under ultrasound irradiation. J. Braz. Chem. Soc., 2009, 20(9), 1674-1679.
[http://dx.doi.org/10.1590/S0103-50532009000900016]
[65]
Ubarhande, S.S.; Devhate, P.P.; Berad, B.N. Green synthesis of quinoxaline and substituted quinoxalines. Int. J. Chem. Sci., 2011, 9(4), 1768-1774.
[66]
Caddick, S.; Fitzmaurice, R. Microwave enhanced synthesis. Tetrahedron, 2009, 65(17), 3325-3355.
[http://dx.doi.org/10.1016/j.tet.2009.01.105]
[67]
Appukkuttan, P.; Mehta, V.P.; Van der Eycken, E.V. Microwave-assisted cycloaddition reactions. Chem. Soc. Rev., 2010, 39(5), 1467-1477.
[http://dx.doi.org/10.1039/B815717K] [PMID: 20419202]
[68]
Zhou, W.J.; Zhang, X.Z.; Sun, X.B.; Wang, B.; Wang, J-X.; Bai, L. Microwave-assisted synthesis of quinoxaline derivatives using glycerol as a green solvent. Russ. Chem. Bull., 2013, 62(5), 1244-1247.
[http://dx.doi.org/10.1007/s11172-013-0171-5]
[69]
Mohsenzadeh, F.; Aghapoor, K.; Darabi, H.R. Benign approaches for the microwave-assisted synthesis of quinoxalines. J. Braz. Chem. Soc., 2007, 18(2), 297-303.
[http://dx.doi.org/10.1590/S0103-50532007000200009]
[70]
Aravind, K.; Ganesh, A.; Ashok, D. Microwave assisted synthesis, characterization and antibacterial activity of quinoxaline derivatives. J. Chem. Pharm. Res., 2013, 5(2), 48-52.
[71]
Jadhav, S.A.; Sarkate, A.P.; Shioorkar, M.G.; Shinde, D.B. Expeditious one-pot multicomponent microwave-assisted green synthesis of substituted 2-phenyl Quinoxaline and 7-bromo-3-(4-ethylphenyl) pyrido[2,3-b]pyrazine in water–PEG and water–ethanol. Synth. Commun., 2017, 47(18), 1661-1667.
[http://dx.doi.org/10.1080/00397911.2017.1337153]
[72]
Morales-Castellanos, J.J.; Ramírez-Hernández, K.; Gómez-Flores, N.S.; Rodas-Suárez, O.R.; Peralta-Cruz, J. Microwave-assisted solvent-free synthesis and in vitro antibacterial screening of quinoxalines and pyrido[2, 3b]pyrazines. Molecules, 2012, 17(5), 5164-5176.
[http://dx.doi.org/10.3390/molecules17055164] [PMID: 22628038]
[73]
Mishra, A.; Singh, S.; Quraishi, M.A.; Srivastava, V. A catalyst-free expeditious green synthesis of quinoxaline, oxazine, thiazine, and dioxin derivatives in water under ultrasound irradiation. Org. Prep. Proced. Int., 2019, 51(4), 345-356.
[http://dx.doi.org/10.1080/00304948.2019.1596469]
[74]
Chandrasekhar, S.; Reddy, N.R.; Sultana, S.S.; Narsihmulu, C.; Reddy, K.V. L-Proline catalysed asymmetric aldol reactions in PEG-400 as recyclable medium and transfer aldol reactions. Tetrahedron, 2006, 62(2-3), 338-345.
[http://dx.doi.org/10.1016/j.tet.2005.09.122]
[75]
Li, J.H.; Hu, X.C.; Liang, Y.; Xie, Y-X. PEG-400 promoted Pd(OAc)2/DABCO-catalyzed cross-coupling reactions in aqueous media. Tetrahedron, 2006, 62(1), 31-38.
[http://dx.doi.org/10.1016/j.tet.2005.09.138]
[76]
Chandrasekhar, S.; Narsihmulu, C.; Saritha, B.; Shameem Sultana, S. Poly(ethyleneglycol) (PEG): A rapid and recyclable reaction medium for the DABCO-catalyzed Baylis–Hillman reaction. Tetrahedron Lett., 2004, 45(30), 5865-5867.
[http://dx.doi.org/10.1016/j.tetlet.2004.05.153]
[77]
Kiran, Ga.; Laxminarayana, E.; Thirumala, C.M.; Ravinder, M. A green synthesis of quinoxaline derivatives & their biological actives. Int. J. App. Chem, 2017, 13(3), 421-432.
[78]
Niknam, K.; Saberi, D.; Mohagheghnejad, M. Silica bonded S-sulfonic acid: A recyclable catalyst for the synthesis of quinoxalines at room temperature. Molecules, 2009, 14(5), 1915-1926.
[http://dx.doi.org/10.3390/molecules14051915] [PMID: 19471211]
[79]
Ruiz, D.M.; Autino, J.C.; Quaranta, N.; Vázquez, P.G.; Romanelli, G.P. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using recyclable alumina-supported heteropolyoxometalates. Sci. World J., 2012, 2012, 1-8.
[http://dx.doi.org/10.1100/2012/174784]
[80]
Shahrisa, A.; Esmati, S.; Nazari, M.G. Boric acid as a mild and efficient catalyst for one-pot synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. J. Chem. Sci., 2012, 124(4), 927-931.
[http://dx.doi.org/10.1007/s12039-012-0285-6]
[81]
Sivrikaya, O.; Arol, A. Use of Boron Compounds as Binders in Iron Ore Pelletization Open Miner. Process. J., 2010, 3, 25.
[82]
Indalkar, K.S.; Khatri, C.K.; Chaturbhuj, G.U. Rapid, efficient and eco-friendly procedure for the synthesis of quinoxalines under solvent-free conditions using sulfated polyborate as a recyclable catalyst. J. Chem. Sci., 2017, 129(2), 141-148.
[http://dx.doi.org/10.1007/s12039-017-1235-0]
[83]
Fouad, F. Multistep soluble polymer-supported, microwave-assisted synthesis of quinoxalines. Green Chem. Lett. Rev., 2013, 6(3), 249-253.
[http://dx.doi.org/10.1080/17518253.2013.772245]
[84]
Aoyama, N.; Kobayashi, S. Dehydrative glycosylation in water using a brønsted acid–surfactant-combined catalyst. Chem. Lett., 2006, 35(2), 238-239.
[http://dx.doi.org/10.1246/cl.2006.238]
[85]
Palmisano, G.; Tibiletti, F.; Penoni, A.; Colombo, F.; Tollari, S.; Garella, D.; Tagliapietra, S.; Cravotto, G. Ultrasound-enhanced one-pot synthesis of 3-(Het)arylmethyl-4-hydroxycoumarins in water. Ultrason. Sonochem., 2011, 18(2), 652-660.
[http://dx.doi.org/10.1016/j.ultsonch.2010.08.009] [PMID: 20826107]
[86]
Kolvari, E.; Zolfigol, M.A.; Peiravi, M. Green synthesis of quinoxaline derivatives using p -dodecylbenzensulfonic acid as a surfactant-type Bronsted acid catalyst in water. Green Chem. Lett. Rev., 2012, 5(2), 155-159.
[http://dx.doi.org/10.1080/17518253.2011.606849]
[87]
Srinivas, C.; Kumar, C.N.S.S.P.; Rao, V.J.; Palaniappan, S. Green approach for the synthesis of quinoxaline derivatives in water medium using reusable polyaniline-sulfate salt catalyst and sodium laurylsulfate. Catal. Lett., 2008, 121(3-4), 291-296.
[http://dx.doi.org/10.1007/s10562-007-9335-y]
[88]
Hasaninejad, A.; Zare, A.; Zolfigol, M.A.; Shekouhy, M. Zirconium tetrakis(dodecyl sulfate) (Zr(DS)4) as an efficient lewis acid–surfactant combined catalyst for the synthesis of quinoxaline derivatives in aqueous media. Synth. Commun., 2009, 39(4), 569-579.
[http://dx.doi.org/10.1080/00397910802406737]
[89]
Shamsi-Sani, M.; Shirini, F.; Abedini, M.; Seddighi, M. Synthesis of benzimidazole and quinoxaline derivatives using reusable sulfonated rice husk ash (RHA-SO3H) as a green and efficient solid acid catalyst. Res. Chem. Intermed., 2016, 42(2), 1091-1099.
[http://dx.doi.org/10.1007/s11164-015-2075-5]
[90]
Singh, V.; Sapehiyia, V.; Srivastava, V.; Kaur, S. ZrO2-pillared clay: An efficient catalyst for solventless synthesis of biologically active multifunctional dihydropyrimidinones. Catal. Commun., 2006, 7(8), 571-578.
[http://dx.doi.org/10.1016/j.catcom.2005.12.021]
[91]
Kawabata, T.; Fujisaki, N.; Shishido, T.; Nomura, K.; Sano, T.; Takehira, K. Improved Fe/Mg-Al hydrotalcite catalyst for Baeyer–Villiger oxidation of ketones with molecular oxygen and benzaldehyde. J. Mol. Catal. Chem., 2006, 253(1-2), 279-289.
[http://dx.doi.org/10.1016/j.molcata.2006.03.077]
[92]
Choudhary, V.R.; Jha, R.; Narkhede, V.S. In-Mg-hydrotalcite anionic clay as catalyst or catalyst precursor for Friedel–Crafts type benzylation reactions. J. Mol. Catal. Chem., 2005, 239(1-2), 76-81.
[http://dx.doi.org/10.1016/j.molcata.2005.06.003]
[93]
Bahramian, B.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S. Manganese (III) salen immobilized on montmorillonite as biomimetic alkene epoxidation and alkane hydroxylation catalyst with sodium periodate. Catal. Commun., 2006, 7(5), 289-296.
[http://dx.doi.org/10.1016/j.catcom.2005.11.016]
[94]
Badal, M.; Khalafy, J.; Aghazadeh, M.; Prager, R.H. Synthesis of bis-quinoxaline derivatives using Tonsil clay as a catalyst. Bull. Chem. Soc. Ethiop., 2016, 30(1), 129-136.
[95]
Kadam, H.K.; Khan, S.; Kunkalkar, R.A.; Tilve, S.G. Graphite catalyzed green synthesis of quinoxalines. Tetrahedron Lett., 2013, 54(8), 1003-1007.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.041]
[96]
Xie, F.; Zhang, M.; Jiang, H.; Chen, M.; Lv, W.; Zheng, A.; Jian, X. Efficient synthesis of quinoxalines from 2-nitroanilines and vicinal diols via a ruthenium-catalyzed hydrogen transfer strategy. Green Chem., 2015, 17(1), 279-284.
[http://dx.doi.org/10.1039/C4GC01316F]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy