Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Effects of Conjugation of Ferrocene and Gallic Acid On desCys11/Lys12/Lys13-(p-BthTX-I)2K Peptide: Structure, Permeabilization and Antibacterial Activity

Author(s): Marina Rodrigues Pereira, Vanessa Rodrigues dos Santos, Warlley Campos de Oliveira, Cristiane Duque, Benise Ferreira da Silva, Norival Alves Santos-Filho, Victor Alves Carneiro, Esteban Nicolás Lorenzón and Eduardo Maffud Cilli*

Volume 30, Issue 8, 2023

Published on: 04 August, 2023

Page: [690 - 698] Pages: 9

DOI: 10.2174/0929866530666230721112129

Price: $65

Abstract

Background: Antimicrobial resistance is an emerging global health challenge that has led researchers to study alternatives to conventional antibiotics. A promising alternative is antimicrobial peptides (AMPs), produced as the first line of defense by almost all living organisms. To improve its biological activity, the conjugation of AMPs is a promising approach.

Objective: In this study, we evaluated the N-terminal conjugation of p-Bt (a peptide derived from Bothrops Jararacuçu`s venom) with ferrocene (Fc) and gallic acid (GA). Acetylated and linear versions of p-Bt were also synthesized to evaluate the importance of N-terminal charge and dimeric structure.

Methods: The compounds were obtained using solid-phase peptide synthesis. Circular dichroism, vesicle permeabilization, antimicrobial activity, and cytotoxicity studies were conducted.

Results: No increase in antibacterial activity against Escherichia coli was observed by adding either Fc or GA to p-Bt. However, Fc-p-Bt and GA-p-Bt exhibited improved activity against Staphylococcus aureus. No cytotoxicity upon fibroblast was observed for GA-p-Bt. On the other hand, conjugation with Fc increased cytotoxicity. This toxicity may be related to the membrane permeabilization capacity of this bioconjugate, which showed the highest carboxyfluorescein leakage in vesicle permeabilization experiments.

Conclusion: Considering these observations, our findings highlight the importance of adding bioactive organic compounds in the N-terminal position as a tool to modulate the activity of AMPs.

Keywords: Antibiotics, antimicrobial peptides, bioconjugate, S. aureus, vesicle permeabilization, AMPs.

Graphical Abstract
[1]
Chiș, A.A.; Rus, L.L.; Morgovan, C.; Arseniu, A.M.; Frum, A.; Vonica-Țincu, A.L.; Gligor, F.G.; Mureșan, M.L.; Dobrea, C.M. Microbial resistance to antibiotics and effective antibiotherapy. Biomedicines, 2022, 10(5), 1121.
[http://dx.doi.org/10.3390/biomedicines10051121] [PMID: 35625857]
[2]
Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; Cherkasov, A.; Seleem, M.N.; Pinilla, C.; de la Fuente-Nunez, C.; Lazaridis, T.; Dai, T.; Houghten, R.A.; Hancock, R.E.W.; Tegos, G.P. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis., 2020, 20(9), e216-e230.
[http://dx.doi.org/10.1016/S1473-3099(20)30327-3] [PMID: 32653070]
[3]
Lewies, A.; Du Plessis, L.H.; Wentzel, J.F. Antimicrobial peptides: The achilles’ heel of antibiotic resistance? Probiotics Antimicrob. Proteins, 2019, 11(2), 370-381.
[http://dx.doi.org/10.1007/s12602-018-9465-0] [PMID: 30229514]
[4]
Luong, H.X.; Thanh, T.T.; Tran, T.H. Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci., 2020, 260, 118407.
[http://dx.doi.org/10.1016/j.lfs.2020.118407] [PMID: 32931796]
[5]
Rima, M.; Rima, M.; Fajloun, Z.; Sabatier, J.M.; Bechinger, B.; Naas, T. Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics, 2021, 10(9), 1095.
[http://dx.doi.org/10.3390/antibiotics10091095] [PMID: 34572678]
[6]
Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol., 2020, 11, 582779.
[http://dx.doi.org/10.3389/fmicb.2020.582779] [PMID: 33178164]
[7]
Varghese, A.; Madhavan, S. Antimicrobial peptides: Small, promising biomolecule with a bright future. J. Sci. Tech. Man., 2021, 14(4), 53-62.
[8]
Di Somma, A.; Moretta, A.; Canè, C.; Cirillo, A.; Duilio, A. Antimicrobial and antibiofilm peptides. Biomolecules, 2020, 10(4), 652.
[http://dx.doi.org/10.3390/biom10040652] [PMID: 32340301]
[9]
Santos-Filho, N.A.; Silveira, L.B.; Oliveira, C.Z.; Bernardes, C.P.; Menaldo, D.L.; Fuly, A.L.; Arantes, E.C.; Sampaio, S.V.; Mamede, C.C.N.; Beletti, M.E.; de Oliveira, F.; Soares, A.M. A new acidic myotoxic, anti-platelet and prostaglandin I2 inductor phospholipase A2 isolated from Bothrops moojeni snake venom. Toxicon, 2008, 52(8), 908-917.
[http://dx.doi.org/10.1016/j.toxicon.2008.08.020] [PMID: 18929590]
[10]
Lomonte, B.; Angulo, Y.; Moreno, E. Synthetic peptides derived from the C-terminal region of Lys49 phospholipase A2 homologues from viperidae snake venoms: Biomimetic activities and potential applications. Curr. Pharm. Des., 2010, 16(28), 3224-3230.
[http://dx.doi.org/10.2174/138161210793292456] [PMID: 20687875]
[11]
Renetseder, R.; Brunie, S.; Dijkstra, B.W.; Drenth, J.; Sigler, P.B. A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. J. Biol. Chem., 1985, 260(21), 11627-11634.
[http://dx.doi.org/10.1016/S0021-9258(17)39077-4] [PMID: 4044572]
[12]
Santos-Filho, N.A.; Lorenzon, E.N.; Ramos, M.A.S.; Santos, C.T.; Piccoli, J.P.; Bauab, T.M.; Fusco-Almeida, A.M.; Cilli, E.M. Synthesis and characterization of an antibacterial and non-toxic dimeric peptide derived from the C-terminal region of Bothropstoxin-I. Toxicon, 2015, 103, 160-168.
[http://dx.doi.org/10.1016/j.toxicon.2015.07.004] [PMID: 26160494]
[13]
Santos-Filho, N.; Fernandes, R.; Sgardioli, B.; Ramos, M.; Piccoli, J.; Camargo, I.; Bauab, T.; Cilli, E. Antibacterial activity of the non-cytotoxic peptide (p-BthTX-I)2 and its serum degradation product against multidrug-resistant bacteria. Molecules, 2017, 22(11), 1898.
[http://dx.doi.org/10.3390/molecules22111898] [PMID: 29113051]
[14]
Santos-Filho, N.A.; de Freitas, L.M.; Santos, C.T.; Piccoli, J.P.; Fontana, C.R.; Fusco-Almeida, A.M.; Cilli, E.M. Understanding the mechanism of action of peptide (p-BthTX-I)2 derived from C-terminal region of phospholipase A2 (PLA2)-like bothropstoxin-I on Gram-positive and Gram-negative bacteria. Toxicon, 2021, 196, 44-55.
[http://dx.doi.org/10.1016/j.toxicon.2021.03.015] [PMID: 33781796]
[15]
Freire, M.C.L.C.; Noske, G.D.; Bitencourt, N.V.; Sanches, P.R.S.; Santos-Filho, N.A.; Gawriljuk, V.O.; de Souza, E.P.; Nogueira, V.H.R.; de Godoy, M.O.; Nakamura, A.M.; Fernandes, R.S.; Godoy, A.S.; Juliano, M.A.; Peres, B.M.; Barbosa, C.G.; Moraes, C.B.; Freitas-Junior, L.H.G.; Cilli, E.M.; Guido, R.V.C.; Oliva, G. Non-toxic dimeric peptides derived from the bothropstoxin-I are potent SARS-CoV-2 and papain-like protease inhibitors. Molecules, 2021, 26(16), 4896.
[http://dx.doi.org/10.3390/molecules26164896] [PMID: 34443484]
[16]
Nogueira, R.S.; Salu, B.R.; Nardelli, V.G.; Bonturi, C.R.; Pereira, M.R.; de Abreu Maffei, F.H.; Cilli, E.M.; Oliva, M.L.V. A snake venom-analog peptide that inhibits SARS-CoV-2 and papain-like protease displays antithrombotic activity in mice arterial thrombosis model, without interfering with bleeding time. Thromb. J., 2023, 21(1), 1.
[http://dx.doi.org/10.1186/s12959-022-00436-5] [PMID: 36593467]
[17]
Wijesinghe, A.; Kumari, S.; Booth, V. Conjugates for use in peptide therapeutics: A systematic review and meta-analysis. PLoS One, 2022, 17(3), e0255753.
[http://dx.doi.org/10.1371/journal.pone.0255753] [PMID: 35259149]
[18]
Lee, A.C.L.; Harris, J.L.; Khanna, K.K.; Hong, J.H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci., 2019, 20(10), 2383.
[http://dx.doi.org/10.3390/ijms20102383] [PMID: 31091705]
[19]
Grimsey, E.; Collis, D.W.P.; Mikut, R.; Hilpert, K. The effect of lipidation and glycosylation on short cationic antimicrobial peptides. Biochim. Biophys. Acta. BBA- Biomembr., 2020, 1862(2), 183195.
[20]
Reinhardt, A.; Neundorf, I. Design and application of antimicrobial peptide conjugates. Int. J. Mol. Sci., 2016, 17(5), 701.
[http://dx.doi.org/10.3390/ijms17050701] [PMID: 27187357]
[21]
Li, W.; Separovic, F.; O’Brien-Simpson, N.M.; Wade, J.D. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem. Soc. Rev., 2021, 50(8), 4932-4973.
[http://dx.doi.org/10.1039/D0CS01026J] [PMID: 33710195]
[22]
Costa, N.C.S.; Piccoli, J.P.; Santos-Filho, N.A.; Clementino, L.C.; Fusco-Almeida, A.M.; De Annunzio, S.R.; Fontana, C.R.; Verga, J.B.M.; Eto, S.F.; Pizauro-Junior, J.M.; Graminha, M.A.S.; Cilli, E.M. Antimicrobial activity of RP-1 peptide conjugate with ferrocene group. PLoS One, 2020, 15(3), e0228740.
[http://dx.doi.org/10.1371/journal.pone.0228740] [PMID: 32214347]
[23]
Cilli, E.M.; Costa, N.C.S.; Santos-Filho, N.A.; Piccoli, J.P.; Fusco-Almeida, A.M.; Santos, C.T.; de Souza, J.O.; Zanini, C.L.; Aguiar, A.C.C.; Oliva, G.; Guido, R.V.C. New strategies for novel drugs: Antimicrobial peptides containing ferrocene with improved antifungal and antiplasmodial biological activity. Protein Pept. Lett., 2022, 29(12), 1088-1098.
[http://dx.doi.org/10.2174/0929866529666220929162509] [PMID: 36177620]
[24]
Kovačević, M.; Čakić Semenčić, M.; Kodrin, I.; Roca, S.; Perica, J.; Mrvčić, J.; Stanzer, D.; Molčanov, K.; Milašinović, V.; Brkljačić, L.; Barišić, L. Biological evaluation and conformational preferences of ferrocene dipeptides with hydrophobic amino acids. Inorganics, 2023, 11(1), 29.
[http://dx.doi.org/10.3390/inorganics11010029]
[25]
You, B.R.; Park, W.H. Gallic acid-induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase. Toxicol. In Vitro, 2010, 24(5), 1356-1362.
[http://dx.doi.org/10.1016/j.tiv.2010.04.009] [PMID: 20417267]
[26]
Li, Z.J.; Liu, M.; Dawuti, G.; Dou, Q.; Ma, Y.; Liu, H.G.; Aibai, S. Antifungal activity of gallic acid in vitro and in vivo. Phytother. Res., 2017, 31(7), 1039-1045.
[http://dx.doi.org/10.1002/ptr.5823] [PMID: 28524381]
[27]
Hurtado, C.; Bustos, M.J.; Sabina, P.; Nogal, M.L.; Granja, A.G.; González, M.E.; Gónzalez-Porqué, P.; Revilla, Y.; Carrascosa, A.L. Antiviral activity of lauryl gallate against animal viruses. Antivir. Ther., 2008, 13(7), 909-917.
[http://dx.doi.org/10.1177/135965350801300704] [PMID: 19043925]
[28]
Sanches, P.R.S.; Carneiro, B.M.; Batista, M.N.; Braga, A.C.S.; Lorenzón, E.N.; Rahal, P.; Cilli, E.M. A conjugate of the lytic peptide Hecate and gallic acid: Structure, activity against cervical cancer, and toxicity. Amino Acids, 2015, 47(7), 1433-1443.
[http://dx.doi.org/10.1007/s00726-015-1980-7] [PMID: 25868656]
[29]
Caiaffa, K.S.; Massunari, L.; Danelon, M.; Abuna, G.F.; Bedran, T.B.L.; Santos-Filho, N.A.; Spolidorio, D.M.P.; Vizoto, N.L.; Cilli, E.M.; Duque, C. KR-12-a5 is a non-cytotoxic agent with potent antimicrobial effects against oral pathogens. Biofouling, 2017, 33(10), 807-818.
[http://dx.doi.org/10.1080/08927014.2017.1370087] [PMID: 29022391]
[30]
Bedran, T.B.L.; Mayer, M.P.A.; Spolidorio, D.P.; Grenier, D. Synergistic anti-inflammatory activity of the antimicrobial peptides human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. PLoS One, 2014, 9(9), e106766.
[http://dx.doi.org/10.1371/journal.pone.0106766] [PMID: 25187958]
[31]
Gan, B.H.; Gaynord, J.; Rowe, S.M.; Deingruber, T.; Spring, D.R. The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chem. Soc. Rev., 2021, 50(13), 7820-7880.
[http://dx.doi.org/10.1039/D0CS00729C] [PMID: 34042120]
[32]
Migliore, M.; Bonvicini, A.; Tognetti, V.; Guilhaudis, L.; Baaden, M.; Oulyadi, H.; Joubert, L.; Ségalas-Milazzo, I. Characterization of β-turns by electronic circular dichroism spectroscopy: A coupled molecular dynamics and time-dependent density functional theory computational study. Phys. Chem. Chem. Phys., 2020, 22(3), 1611-1623.
[http://dx.doi.org/10.1039/C9CP05776E] [PMID: 31894790]
[33]
Greenfield, N.J. Analysis of circular dichroism data. In: Methods in Enzymology; Academic Press, Cambridge, Massachusetts, 2004; 383, pp. 282-317.
[http://dx.doi.org/10.1016/S0076-6879(04)83012-X]
[34]
Byrne, C.; Belnou, M.; Baulieu, E.E.; Lequin, O.; Jacquot, Y. Electronic circular dichroism and nuclear magnetic resonance studies of peptides derived from the FKBP52-interacting β-turn of the hERα ligand-binding domain. Pept. Sci., 2019, 111(4), e24113.
[http://dx.doi.org/10.1002/pep2.24113]
[35]
Khatri, B.; Majumder, P.; Nagesh, J.; Penmatsa, A.; Chatterjee, J. Increasing protein stability by engineering the n → π* interaction at the β-turn. Chem. Sci., 2020, 11(35), 9480-9487.
[http://dx.doi.org/10.1039/D0SC03060K] [PMID: 34094214]
[36]
Wimley, W.C.; Hristova, K.; Wimley, W.C.; Hristova, K. The mechanism of membrane permeabilization by peptides: Still an enigma. Aust. J. Chem., 2020, 73(3), 96-103.
[http://dx.doi.org/10.1071/CH19449] [PMID: 32341596]
[37]
Palacios-Ortega, J.; Rivera-de-Torre, E.; Gavilanes, J.G.; Slotte, J.P.; Martínez-del-Pozo, Á. Evaluation of different approaches used to study membrane permeabilization by actinoporins on model lipid vesicles. Biochim. Biophys. Acta. BBA - Biomembr., 2020, 1862(2), 183311.
[38]
van Meer, G.; de Kroon, A.I.P.M. Lipid map of the mammalian cell. J. Cell Sci., 2011, 124(1), 5-8.
[http://dx.doi.org/10.1242/jcs.071233] [PMID: 21172818]
[39]
AL Zahrani, N.A.; El-Shishtawy, R.M.; Asiri, A.M. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur. J. Med. Chem., 2020, 204, 112609.
[http://dx.doi.org/10.1016/j.ejmech.2020.112609] [PMID: 32731188]
[40]
Wang, R.; Chen, H.; Yan, W.; Zheng, M.; Zhang, T.; Zhang, Y. Ferrocene-containing hybrids as potential anticancer agents: Current developments, mechanisms of action and structure-activity relationships. Eur. J. Med. Chem., 2020, 190, 112109.
[http://dx.doi.org/10.1016/j.ejmech.2020.112109] [PMID: 32032851]
[41]
Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother., 2021, 133, 110985.
[http://dx.doi.org/10.1016/j.biopha.2020.110985] [PMID: 33212373]
[42]
Sun, J.; Xia, Y.; Li, D.; Du, Q.; Liang, D. Relationship between peptide structure and antimicrobial activity as studied by de novo designed peptides. Biochim. Biophys. Acta Biomembr., 2014, 1838(12), 2985-2993.
[http://dx.doi.org/10.1016/j.bbamem.2014.08.018] [PMID: 25157672]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy