Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Transcriptomic and Metabolomic Analysis of Liver Cirrhosis

Author(s): Xiao Kuang, Jinyu Li, Yiheng Xu, Lihong Yang, Xiaoxiao Liu, Jinhui Yang and Wenlin Tai*

Volume 27, Issue 6, 2024

Published on: 31 July, 2023

Page: [922 - 932] Pages: 11

DOI: 10.2174/1386207326666230717094936

open access plus

Abstract

Background: Liver cirrhosis is one of the leading causes of decreased life expectancy worldwide. However, the molecular mechanisms underlying liver cirrhosis remain unclear. In this study, we performed a comprehensive analysis using transcriptome and metabolome sequencing to explore the genes, pathways, and interactions associated with liver cirrhosis.

Methods: We performed transcriptome and metabolome sequencing of blood samples from patients with cirrhosis and healthy controls (1:1 matched for sex and age). We validated the differentially expressed microRNA (miRNA) and mRNAs using real-time quantitative polymerase chain reaction.

Results: For transcriptome analysis, we screened for differentially expressed miRNAs and mRNAs, analyzed mRNAs to identify possible core genes and pathways, and performed coanalysis of miRNA and mRNA sequencing results. In terms of the metabolome, we screened five pathways that were substantially enriched in the differential metabolites. Next, we identified the metabolites with the most pronounced differences among these five metabolic pathways. We performed receiver operating characteristic (ROC) curve analysis of these five metabolites to determine their diagnostic efficacy for cirrhosis. Finally, we explored possible links between the transcriptome and metabolome.

Conclusion: Based on sequencing and bioinformatics, we identified miRNAs and genes that were differentially expressed in the blood of patients with liver cirrhosis. By exploring pathways and disease-specific networks, we identified unique biological mechanisms. In terms of metabolomes, we identified novel biomarkers and explored their diagnostic efficacy. We identified possible common pathways in the transcriptome and metabolome that could serve as candidates for further studies.

Keywords: Bioinformatics, liver cirrhosis, metabolome, transcriptome, biomarkers, differentially expressed mRNAs, differentially expressed miRNAs.

Graphical Abstract
[1]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; AlMazroa, M.A.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Barker-Collo, S.; Bartels, D.H.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Abdulhak, A.B.; Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; Carapetis, J.; Chen, H.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Erwin, P.J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A.D.; Forouzanfar, M.H.; Fowkes, F.G.R.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabriel, S.E.; Gakidou, E.; Gaspari, F.; Gillum, R.F.; Gonzalez-Medina, D.; Halasa, Y.A.; Haring, D.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Hoen, B.; Hotez, P.J.; Hoy, D.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; Kassebaum, N.; Keren, A.; Khoo, J-P.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lipnick, M.; Lipshultz, S.E.; Ohno, S.L.; Mabweijano, J.; MacIntyre, M.F.; Mallinger, L.; March, L.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGrath, J.; Memish, Z.A.; Mensah, G.A.; Merriman, T.R.; Michaud, C.; Miller, M.; Miller, T.R.; Mock, C.; Mocumbi, A.O.; Mokdad, A.A.; Moran, A.; Mulholland, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.V.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C.A., III; Porrini, E.; Pourmalek, F.; Raju, M.; Ranganathan, D.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Rivara, F.P.; Roberts, T.; De León, F.R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Salomon, J.A.; Sampson, U.; Sanman, E.; Schwebel, D.C.; Segui-Gomez, M.; Shepard, D.S.; Singh, D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J.A.; Thomas, B.; Tleyjeh, I.M.; Towbin, J.A.; Truelsen, T.; Undurraga, E.A.; Venketasubramanian, N.; Vijayakumar, L.; Vos, T.; Wagner, G.R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, M.A.; Weintraub, R.; Wilkinson, J.D.; Woolf, A.D.; Wulf, S.; Yeh, P-H.; Yip, P.; Zabetian, A.; Zheng, Z-J.; Lopez, A.D.; Murray, C.J.L. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the global burden of disease study 2010. Lancet, 2012, 380(9859), 2095-2128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[2]
Mokdad, A.A.; Lopez, A.D.; Shahraz, S.; Lozano, R.; Mokdad, A.H.; Stanaway, J.; Murray, C.J.L.; Naghavi, M. Liver cirrhosis mortality in 187 countries between 1980 and 2010: A systematic analysis. BMC Med., 2014, 12(1), 145.
[http://dx.doi.org/10.1186/s12916-014-0145-y] [PMID: 25242656]
[3]
Safaei, A.; Rezaei Tavirani, M.; Arefi Oskouei, A.; Zamanian Azodi, M.; Mohebbi, S.R.; Nikzamir, A.R. Protein-protein interaction network analysis of cirrhosis liver disease. Gastroenterol. Hepatol. Bed Bench, 2016, 9(2), 114-123.
[PMID: 27099671]
[4]
Ozsolak, F.; Milos, P.M. RNA sequencing: Advances, challenges and opportunities. Nat. Rev. Genet., 2011, 12(2), 87-98.
[http://dx.doi.org/10.1038/nrg2934] [PMID: 21191423]
[5]
Garber, M.; Grabherr, M.G.; Guttman, M.; Trapnell, C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods, 2011, 8(6), 469-477.
[http://dx.doi.org/10.1038/nmeth.1613] [PMID: 21623353]
[6]
Arakaki, A.K.; Skolnick, J.; McDonald, J.F. Marker metabolites can be therapeutic targets as well. Nature, 2008, 456(7221), 443.
[http://dx.doi.org/10.1038/456443c] [PMID: 19037294]
[7]
Wang, X.; Zhang, A.; Han, Y.; Wang, P.; Sun, H.; Song, G.; Dong, T.; Yuan, Y.; Yuan, X.; Zhang, M.; Xie, N.; Zhang, H.; Dong, H.; Dong, W. Urine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver disease. Mol. Cell. Proteomics, 2012, 11(8), 370-380.
[http://dx.doi.org/10.1074/mcp.M111.016006] [PMID: 22505723]
[8]
Kivioja, T.; Vähärautio, A.; Karlsson, K.; Bonke, M.; Enge, M.; Linnarsson, S.; Taipale, J. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods, 2012, 9(1), 72-74.
[http://dx.doi.org/10.1038/nmeth.1778] [PMID: 22101854]
[9]
Wang, L.; Feng, Z.; Wang, X.; Wang, X.; Zhang, X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010, 26(1), 136-138.
[http://dx.doi.org/10.1093/bioinformatics/btp612] [PMID: 19855105]
[10]
Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 2014, 15(12), 550.
[http://dx.doi.org/10.1186/s13059-014-0550-8] [PMID: 25516281]
[11]
Abdi, H. The bonferonni and šidák corrections for multiple comparisons. 2007.
[12]
GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015, 385(9963), 117-171.
[http://dx.doi.org/10.1016/S0140-6736(14)61682-2] [PMID: 25530442]
[13]
Tsochatzis, E.A.; Bosch, J.; Burroughs, A.K. Liver cirrhosis. Lancet, 2014, 383(9930), 1749-1761.
[http://dx.doi.org/10.1016/S0140-6736(14)60121-5] [PMID: 24480518]
[14]
Pan, B.T.; Johnstone, R.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell, 1983, 33(3), 967-978.
[http://dx.doi.org/10.1016/0092-8674(83)90040-5] [PMID: 6307529]
[15]
Chaput, N.; Théry, C. Exosomes: Immune properties and potential clinical implementations. Semin. Immunopathol., 2011, 33(5), 419-440.
[http://dx.doi.org/10.1007/s00281-010-0233-9] [PMID: 21174094]
[16]
Chen, L.; Charrier, A.; Zhou, Y.; Chen, R.; Yu, B.; Agarwal, K.; Tsukamoto, H.; Lee, L.J.; Paulaitis, M.E.; Brigstock, D.R. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology, 2014, 59(3), 1118-1129.
[http://dx.doi.org/10.1002/hep.26768] [PMID: 24122827]
[17]
Saito, T.; Harada, K.; Nakanuma, Y. Granulomatous phlebitis of small hepatic vein. J. Gastroenterol. Hepatol., 2002, 17(12), 1334-1339.
[http://dx.doi.org/10.1046/j.1440-1746.2002.02786.x] [PMID: 12423283]
[18]
Glass, L.M.; Su, G.L.C. Metabolic Bone Disease in Primary Biliary Cirrhosis. Gastroenterol. Clin. North Am., 2016, 45(2), 333-343.
[http://dx.doi.org/10.1016/j.gtc.2016.02.009] [PMID: 27261902]
[19]
Guañabens, N.; Parés, A.; Mariñoso, L.; Brancós, M.A.; Piera, C.; Serrano, S.; Rivera, F.; Rodés, J. Factors influencing the development of metabolic bone disease in primary biliary cirrhosis. Am. J. Gastroenterol., 1990, 85(10), 1356-1362.
[PMID: 2220729]
[20]
Qamar, A.A.; Grace, N.D.; Groszmann, R.J.; Garcia-Tsao, G.; Bosch, J.; Burroughs, A.K.; Ripoll, C.; Maurer, R.; Planas, R.; Escorsell, A.; Garcia-Pagan, J.C.; Patch, D.; Matloff, D.S.; Makuch, R.; Rendon, G. Incidence, prevalence, and clinical significance of abnormal hematologic indices in compensated cirrhosis. Clin. Gastroenterol. Hepatol., 2009, 7(6), 689-695.
[http://dx.doi.org/10.1016/j.cgh.2009.02.021] [PMID: 19281860]
[21]
Li, B.; Bailey, A.S.; Jiang, S.; Liu, B.; Goldman, D.C.; Fleming, W.H. Endothelial cells mediate the regeneration of hematopoietic stem cells. Stem Cell Res., 2010, 4(1), 17-24.
[http://dx.doi.org/10.1016/j.scr.2009.08.001] [PMID: 19720572]
[22]
Guillerey, C.; Harjunpää, H.; Carrié, N.; Kassem, S.; Teo, T.; Miles, K.; Krumeich, S.; Weulersse, M.; Cuisinier, M.; Stannard, K.; Yu, Y.; Minnie, S.A.; Hill, G.R.; Dougall, W.C.; Avet-Loiseau, H.; Teng, M.W.L.; Nakamura, K.; Martinet, L.; Smyth, M.J. TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood, 2018, 132(16), 1689-1694.
[http://dx.doi.org/10.1182/blood-2018-01-825265] [PMID: 29986909]
[23]
Baniyash, M.; Sade-Feldman, M.; Kanterman, J. Chronic inflammation and cancer: Suppressing the suppressors. Cancer Immunol. Immunother., 2014, 63(1), 11-20.
[http://dx.doi.org/10.1007/s00262-013-1468-9] [PMID: 23990173]
[24]
Choi, W.M.; Ryu, T.; Lee, J.H.; Shim, Y.R.; Kim, M.H.; Kim, H.H.; Kim, Y.E.; Yang, K.; Kim, K.; Choi, S.E.; Kim, W.; Kim, S.H.; Eun, H.S.; Jeong, W.I. Metabotropic Glutamate Receptor 5 in Natural Killer Cells Attenuates Liver Fibrosis by Exerting Cytotoxicity to Activated Stellate Cells. Hepatology, 2021, 74(4), 2170-2185.
[http://dx.doi.org/10.1002/hep.31875] [PMID: 33932306]
[25]
Li, S.; Ma, D.; Zhang, L.; Li, X.; Deng, C.; Qin, X.; Zhang, T.; Wang, L.; Shi, Q.; Wang, Q.; Wu, Q.; Zhang, X.; Zhang, F.; Li, Y. High levels of FCγR3A and PRF1 expression in peripheral blood mononuclear cells from patients with primary biliary cirrhosis. Dig. Dis. Sci., 2013, 58(2), 458-464.
[http://dx.doi.org/10.1007/s10620-012-2456-1] [PMID: 23179144]
[26]
Fang, S.S.; Guo, J.C.; Zhang, J.H.; Liu, J.N.; Hong, S.; Yu, B.; Gao, Y.; Hu, S.P.; Liu, H.Z.; Sun, L.; Zhao, Y.A. P53‐related microRNA model for predicting the prognosis of hepatocellular carcinoma patients. J. Cell. Physiol., 2020, 235(4), 3569-3578.
[http://dx.doi.org/10.1002/jcp.29245] [PMID: 31556110]
[27]
Jeong, S.; Kim, S.A.; Ahn, S.G. HOXC6-Mediated miR-188-5p Expression Induces Cell Migration through the Inhibition of the Tumor Suppressor FOXN2. Int. J. Mol. Sci., 2021, 23(1), 9.
[http://dx.doi.org/10.3390/ijms23010009] [PMID: 35008435]
[28]
Deng, J.; Li, Y.Q.; Liu, Y.; Li, Q.; Hu, Y.; Xu, J.Q.; Sun, T.Y.; Xie, L.X. Exosomes derived from plasma of septic patients inhibit apoptosis of T lymphocytes by down-regulating bad via hsa-miR-7-5p. Biochem. Biophys. Res. Commun., 2019, 513(4), 958-966.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.051] [PMID: 31003766]
[29]
Wei, D.; Sun, L.; Feng, W. hsa_circ_0058357 acts as a ceRNA to promote non small cell lung cancer progression via the hsa miR 24 3p/AVL9 axis. Mol. Med. Rep., 2021, 23(6), 470.
[http://dx.doi.org/10.3892/mmr.2021.12109] [PMID: 33880595]
[30]
Wang, D. Zhang, Q.; Li, F.; Wang, C.; Yang, C.; Yu, H. β-TrCP-mediated ubiquitination and degradation of Dlg5 regulates hepatocellular carcinoma cell proliferation. Cancer Cell Int., 2019, 19(1), 298.
[http://dx.doi.org/10.1186/s12935-019-1029-1] [PMID: 31787846]
[31]
Weber-Boyvat, M.; Zhong, W.; Yan, D.; Olkkonen, V.M. Oxysterol-binding proteins: Functions in cell regulation beyond lipid metabolism. Biochem. Pharmacol., 2013, 86(1), 89-95.
[http://dx.doi.org/10.1016/j.bcp.2013.02.016] [PMID: 23428468]
[32]
Hancock, W.W.; Wang, L.; Ye, Q.; Han, R.; Lee, I. Chemokines and their receptors as markers of allograft rejection and targets for immunosuppression. Curr. Opin. Immunol., 2003, 15(5), 479-486.
[http://dx.doi.org/10.1016/S0952-7915(03)00103-1] [PMID: 14499253]
[33]
Heijne, W.H.M.; Lamers, R.J.A.N.; van Bladeren, P.J.; Groten, J.P.; van Nesselrooij, J.H.J.; van Ommen, B. Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis. Toxicol. Pathol., 2005, 33(4), 425-433.
[http://dx.doi.org/10.1080/01926230590958146] [PMID: 16036859]
[34]
Yang, J.; Xu, G.; Zheng, Y.; Kong, H.; Pang, T.; Lv, S.; Yang, Q. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 813(1-2), 59-65.
[http://dx.doi.org/10.1016/j.jchromb.2004.09.032] [PMID: 15556516]
[35]
Nagana Gowda, G.A.; Shanaiah, N.; Cooper, A.; Maluccio, M.; Raftery, D. Visualization of bile homeostasis using (1)H-NMR spectroscopy as a route for assessing liver cancer. Lipids, 2009, 44(1), 27-35.
[http://dx.doi.org/10.1007/s11745-008-3254-6] [PMID: 18982376]
[36]
Attili, A.F.; Angelico, M.; Cantafora, A.; Alvaro, D.; Capocaccia, L. Bile acid-induced liver toxicity: Relation to the hydrophobic-hydrophilic balance of bile acids. Med. Hypotheses, 1986, 19(1), 57-69.
[http://dx.doi.org/10.1016/0306-9877(86)90137-4] [PMID: 2871479]
[37]
Wang, S.; Sheng, F.; Zou, L.; Xiao, J.; Li, P. Hyperoside attenuates non-alcoholic fatty liver disease in rats via cholesterol metabolism and bile acid metabolism. J. Adv. Res., 2021, 34, 109-122.
[http://dx.doi.org/10.1016/j.jare.2021.06.001] [PMID: 35024184]
[38]
Amor, F.; Vu Hong, A.; Corre, G.; Sanson, M.; Suel, L.; Blaie, S.; Servais, L.; Voit, T.; Richard, I.; Israeli, D. Cholesterol metabolism is a potential therapeutic target in Duchenne muscular dystrophy. J. Cachexia Sarcopenia Muscle, 2021, 12(3), 677-693.
[http://dx.doi.org/10.1002/jcsm.12708] [PMID: 34037326]
[39]
Li, G.; Huang, M.; Cai, Y.; Yang, Y.; Sun, X.; Ke, Y. Circ‐U2AF1 promotes human glioma via derepressing neuro‐oncological ventral antigen 2 by sponging hsa‐miR‐7‐5p. J. Cell. Physiol., 2019, 234(6), 9144-9155.
[http://dx.doi.org/10.1002/jcp.27591] [PMID: 30341906]

© 2024 Bentham Science Publishers | Privacy Policy