Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Systematic Review Article

Safety and Efficacy of Imatinib, Nilotinib, and Artesunate in COVID-19 Patients: A Systematic Review of Current Evidence

Author(s): Ehsan Ghavimehr, Ali Zand, Seyed Ahmad SeyedAlinaghi, Amirali Karimi, Hamid Zaferani Arani, Pegah Mirzapour, Zahra Pashaei, Esmaeil Mehraeen* and Omid Dadras

Volume 22, Issue 1, 2024

Published on: 01 September, 2023

Article ID: e140723218761 Pages: 18

DOI: 10.2174/2211352521666230714160740

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: There is a need for better treatment options against COVID-19. This systematic review aimed to assess the safety and efficacy of imatinib and nilotinib, two tyrosine kinase inhibitors (TKIs), as well as artesunate (an anti-malarial agent), whose multilayer activities against SARS, MERS, and SARS-CoV-2 pathogenesis have been suggested in laboratory and observational studies.

Methods: A comprehensive search strategy targeting relevant literature on PubMed, Scopus, and Web of Science online databases was constructed. The retrieved records were reviewed and screened by title/abstract and full text with eligibility criteria, and the most pertinent articles were included in the final qualitative synthesis. This review adhered to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to ensure the reliability of the results.

Results: This systematic review assessed the safety and applicability of imatinib, nilotinib, and artesunate in COVID-19 patients. The results showed not only possible anti-COVID-19 effects but also acceptable safety for both generic users with comorbidities with COVID-19 and offlabel use in other COVID-19 patients. Promising results were also reported enhancing the survival of COVID-19 patients.

Conclusion: A double-blinded multicenter randomized controlled trial found survival benefits for imatinib with no significant treatment-related adverse events. However, no clinical trials or large observational studies exist for artesunate and nilotinib, and the evidence relies only on case reports and case series. Molecular mechanisms revealed in preclinical studies support the possible benefits of these medications in COVID-19 treatment. However, the scarcity of reliable evidence requires further studies on possible COVID-19 treatments, including but not limited to artesunate, nilotinib, and imatinib. Nevertheless, these drugs' lack of serious adverse events suggests their safe use for other indications during the COVID-19 pandemic.

Keywords: COVID-19, SARS-CoV-2, treatment, imatinib, nilotinib, tyrosine kinase inhibitor, chronic myeloid leukemia, artesunate, malaria, off-label.

Graphical Abstract
[1]
COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). , 2021. Available from: https://coronavirusjhuedu/maphtml
[2]
Mehraeen, E.; Salehi, M.A.; Behnezhad, F.; Moghaddam, H.R.; SeyedAlinaghi, S. Transmission modes of COVID-19: A systematic review. Infect. Disord. Drug Targets, 2021, 21(6), e170721187995.
[http://dx.doi.org/10.2174/1871526520666201116095934 ] [PMID: 33200716]
[3]
Mehraeen, E.; Najafi, Z.; Hayati, B.; Javaherian, M.; Rahimi, S.; Dadras, O.; SeyedAlinaghi, S.; Ghadimi, M.; Sabatier, J.M. Current treatments and therapeutic options for COVID-19 patients: A systematic review. Infect. Disord. Drug Targets, 2022, 22(1), e260721194968.
[http://dx.doi.org/10.2174/1871526521666210726150435 ] [PMID: 34313204]
[4]
SeyedAlinaghi, S.; Karimi, A.; Mojdeganlou, H.; Alilou, S.; Mirghaderi, S.P.; Noori, T.; Shamsabadi, A.; Dadras, O.; Vahedi, F.; Mohammadi, P.; Shojaei, A.; Mahdiabadi, S.; Janfaza, N.; Keshavarzpoor Lonbar, A.; Mehraeen, E.; Sabatier, J.M. Impact of COVID -19 pandemic on routine vaccination coverage of children and adolescents: A systematic review. Health Sci. Rep., 2022, 5(2), e00516.
[http://dx.doi.org/10.1002/hsr2.516] [PMID: 35224217]
[5]
Mehraeen, E.; Dadras, O.; Afsahi, A.M.; Karimi, A.; Pour, M.M.; Mirzapour, P.; Barzegary, A.; Behnezhad, F.; Habibi, P.; Salehi, M.A.; Vahedi, F.; Heydari, M.; Kianzad, S.; Moradmand-Badie, B.; Javaherian, M.; SeyedAlinaghi, S.; Sabatier, J.M. Vaccines for COVID-19: A systematic review of feasibility and effectiveness. Infect. Disord. Drug Targets, 2022, 22(2), e230921196758.
[http://dx.doi.org/10.2174/1871526521666210923144837 ] [PMID: 34554905]
[6]
SeyedAlinaghi, S.; Karimi, A.; Barzegary, A. Mucormycosis infection in patients with COVID-19. Syst. Rev., 2022, 5(2), e529.
[7]
Mehraeen, E.; SeyedAlinaghi, S.; Karimi, A. Can children of the Sputnik V vaccine recipients become symptomatic? Hum. Vaccin. Immunother., 2021, 17(10), 3500-3501.
[http://dx.doi.org/10.1080/21645515.2021.1933689] [PMID: 34241575]
[8]
Rizk, J.G.; Kalantar-Zadeh, K.; Mehra, M.R.; Lavie, C.J.; Rizk, Y.; Forthal, D.N. Pharmaco-immunomodulatory therapy in COVID-19. Drugs, 2020, 80(13), 1267-1292.
[http://dx.doi.org/10.1007/s40265-020-01367-z] [PMID: 32696108]
[9]
Roy Chattopadhyay, N.; Chatterjee, K.; Banerjee, A.; Choudhuri, T. Combinatorial therapeutic trial plans for COVID-19 treatment armed up with antiviral, antiparasitic, cell-entry inhibitor, and immune-boosters. Virusdisease, 2020, 31(4), 479-489.
[http://dx.doi.org/10.1007/s13337-020-00631-w] [PMID: 33200085]
[10]
Krishna, S.; Augustin, Y.; Wang, J.; Xu, C.; Staines, H.M.; Platteeuw, H.; Kamarulzaman, A.; Sall, A.; Kremsner, P. Repurposing antimalarials to tackle the COVID-19 pandemic. Trends Parasitol., 2021, 37(1), 8-11.
[http://dx.doi.org/10.1016/j.pt.2020.10.003 ] [PMID: 33153922]
[11]
Fitzek, A.; Schädler, J.; Dietz, E.; Ron, A.; Gerling, M.; Kammal, A.L.; Lohner, L.; Falck, C.; Möbius, D.; Goebels, H.; Gerberding, A.L.; Schröder, A.S.; Sperhake, J.P.; Klein, A.; Fröb, D.; Mushumba, H.; Wilmes, S.; Anders, S.; Kniep, I.; Heinrich, F.; Langenwalder, F.; Meißner, K.; Lange, P.; Zapf, A.; Püschel, K.; Heinemann, A.; Glatzel, M.; Matschke, J.; Aepfelbacher, M.; Lütgehetmann, M.; Steurer, S.; Thorns, C.; Edler, C.; Ondruschka, B. Prospective postmortem evaluation of 735 consecutive SARS-CoV-2-associated death cases. Sci. Rep., 2021, 11(1), 19342.
[http://dx.doi.org/10.1038/s41598-021-98499-3] [PMID: 34588486]
[12]
Jahanafrooz, Z.; Chen, Z.; Bao, J.; Li, H.; Lipworth, L.; Guo, X. An overview of human proteins and genes involved in SARS-CoV-2 infection. Gene, 2022, 808, 145963.
[http://dx.doi.org/10.1016/j.gene.2021.145963 ] [PMID: 34530086]
[13]
Aschner, Y.; Zemans, R.L.; Yamashita, C.M.; Downey, G.P. Matrix metalloproteinases and protein tyrosine kinases: Potential novel targets in acute lung injury and ARDS. Chest, 2014, 146(4), 1081-1091.
[http://dx.doi.org/10.1378/chest.14-0397] [PMID: 25287998]
[14]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[15]
McGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The role of cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev., 2020, 19(6), 102537.
[http://dx.doi.org/10.1016/j.autrev.2020.102537 ] [PMID: 32251717]
[16]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[17]
Galimberti, S.; Baldini, C.; Baratè, C.; Ricci, F.; Balducci, S.; Grassi, S.; Ferro, F.; Buda, G.; Benedetti, E.; Fazzi, R.; Baglietto, L.; Lucenteforte, E.; Di Paolo, A.; Petrini, M. The CoV-2 outbreak: How hematologists could help to fight COVID-19. Pharmacol. Res., 2020, 157, 104866.
[http://dx.doi.org/10.1016/j.phrs.2020.104866] [PMID: 32387301]
[18]
McDonald, C.; Xanthopoulos, C.; Kostareli, E. The role of Bruton’s tyrosine kinase in the immune system and disease. Immunology, 2021, 164(4), 722-736.
[http://dx.doi.org/10.1111/imm.13416] [PMID: 34534359]
[19]
Marchetti, M. COVID-19-driven endothelial damage: Complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann. Hematol., 2020, 99(8), 1701-1707.
[http://dx.doi.org/10.1007/s00277-020-04138-8] [PMID: 32583086]
[20]
Lin, Y.Z.; Shen, Y.C.; Wu, W.R.; Wang, W.J.; Wang, Y.L.; Lin, C.Y.; Hung, M.C.; Wang, S.C. Imatinib (STI571) inhibits the expression of angiotensin-converting enzyme 2 and cell entry of the SARS-CoV-2-derived pseudotyped viral particles. Int. J. Mol. Sci., 2021, 22(13), 6938.
[http://dx.doi.org/10.3390/ijms22136938] [PMID: 34203261]
[21]
Bernal-Bello, D.; Jaenes-Barrios, B.; Morales-Ortega, A.; Ruiz-Giardin, J.M.; García-Bermúdez, V.; Frutos-Pérez, B.; Farfán-Sedano, A.I.; de Ancos-Aracil, C.; Bermejo, F.; García-Gil, M.; Zapatero- Gaviria, A.; San Martín-López, J.V. Imatinib might constitute a treatment option for lung involvement in COVID-19. Autoimmun. Rev., 2020, 19(7), 102565.
[http://dx.doi.org/10.1016/j.autrev.2020.102565] [PMID: 32376403]
[22]
Bernal-Bello, D.; Morales-Ortega, A.; Isabel Farfán-Sedano, A.; de Tena, J.G.; Martín-López, J.V.S. Imatinib in COVID-19: Hope and caution. Lancet Respir. Med., 2021, 9(9), 938-939.
[http://dx.doi.org/10.1016/S2213-2600(21)00266-6] [PMID: 34147143]
[23]
Pereira, G.J.S.; Leão, A.H.F.F.; Erustes, A.G.; Morais, I.B.M.; Vrechi, T.A.M.; Zamarioli, L.S.; Pereira, C.A.S.; Marchioro, L.O.; Sperandio, L.P.; Lins, Í.V.F.; Piacentini, M.; Fimia, G.M.; Reckziegel, P.; Smaili, S.S.; Bincoletto, C. Pharmacological modulators of autophagy as a potential strategy for the treatment of COVID-19. Int. J. Mol. Sci., 2021, 22(8), 4067.
[http://dx.doi.org/10.3390/ijms22084067] [PMID: 33920748]
[24]
Sisk, J.M.; Frieman, M.B.; Machamer, C.E. Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J. Gen. Virol., 2018, 99(5), 619-630.
[http://dx.doi.org/10.1099/jgv.0.001047] [PMID: 29557770]
[25]
Coyne, C.B.; Bergelson, J.M. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell, 2006, 124(1), 119-131.
[http://dx.doi.org/10.1016/j.cell.2005.10.035] [PMID: 16413486]
[26]
Min, S.; Lim, Y.S.; Shin, D.; Park, C.; Park, J.B.; Kim, S.; Windisch, M.P.; Hwang, S.B. Abl tyrosine kinase regulates hepatitis C Virus entry. Front. Microbiol., 2017, 8, 1129.
[http://dx.doi.org/10.3389/fmicb.2017.01129] [PMID: 28674529]
[27]
Galimberti, S.; Petrini, M.; Baratè, C.; Ricci, F.; Balducci, S.; Grassi, S.; Guerrini, F.; Ciabatti, E.; Mechelli, S.; Di Paolo, A.; Baldini, C.; Baglietto, L.; Macera, L.; Spezia, P.G.; Maggi, F. Tyrosine kinase inhibitors play an antiviral action in patients affected by chronic myeloid leukemia: A possible model supporting their use in the fight against SARS-CoV-2. Front. Oncol., 2020, 10, 1428.
[http://dx.doi.org/10.3389/fonc.2020.01428 ] [PMID: 33014780]
[28]
Cagno, V.; Magliocco, G.; Tapparel, C.; Daali, Y. The tyrosine kinase inhibitor nilotinib inhibits SARS-CoV-2 in vitro. Basic Clin. Pharmacol. Toxicol., 2021, 128(4), 621-624.
[http://dx.doi.org/10.1111/bcpt.13537] [PMID: 33232578]
[29]
Dyall, J.; Coleman, C.M.; Hart, B.J.; Venkataraman, T.; Holbrook, M.R.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.G., Jr; Jahrling, P.B.; Laidlaw, M.; Johansen, L.M.; Lear-Rooney, C.M.; Glass, P.J.; Hensley, L.E.; Frieman, M.B. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother., 2014, 58(8), 4885-4893.
[http://dx.doi.org/10.1128/AAC.03036-14 ] [PMID: 24841273]
[30]
Nabavi, S.; Habtemariam, S.; Clementi, E.; Berindan-Neagoe, I.; Cismaru, C.; Rasekhian, M.; Banach, M.; Izadi, M.; Bagheri, M.; Bagheri, M.; Nabavi, S. Lessons learned from SARS-CoV and MERS-CoV: FDA-approved Abelson tyrosine-protein kinase 2 inhibitors may help us combat SARS-CoV-2. Arch. Med. Sci., 2020, 16(3), 519-521.
[http://dx.doi.org/10.5114/aoms.2020.94504] [PMID: 32399097]
[31]
Coleman, C.M.; Sisk, J.M.; Mingo, R.M.; Nelson, E.A.; White, J.M.; Frieman, M.B. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and middle east respiratory syndrome coronavirus fusion. J. Virol., 2016, 90(19), 8924-8933.
[http://dx.doi.org/10.1128/JVI.01429-16] [PMID: 27466418]
[32]
Grimminger, F.; Schermuly, R.T.; Ghofrani, H.A. Targeting non-malignant disorders with tyrosine kinase inhibitors. Nat. Rev. Drug Discov., 2010, 9(12), 956-970.
[http://dx.doi.org/10.1038/nrd3297] [PMID: 21119733]
[33]
Mohty, M.; Blaise, D.; Olive, D.; Gaugler, B. Imatinib: The narrow line between immune tolerance and activation. Trends Mol. Med., 2005, 11(9), 397-402.
[http://dx.doi.org/10.1016/j.molmed.2005.07.007] [PMID: 16087402]
[34]
Raffetin, A.; Bruneel, F.; Roussel, C.; Thellier, M.; Buffet, P.; Caumes, E.; Jauréguiberry, S. Use of artesunate in non-malarial indications. Med. Mal. Infect., 2018, 48(4), 238-249.
[http://dx.doi.org/10.1016/j.medmal.2018.01.004] [PMID: 29422423]
[35]
Picot, S. The other face of Artesunate: Southern drug to treat northern diseases. EBioMedicine, 2015, 2(1), 17-18.
[http://dx.doi.org/10.1016/j.ebiom.2014.11.017] [PMID: 26137531]
[36]
Krishna, S.; Ganapathi, S.; Ster, I.C.; Saeed, M.E.M.; Cowan, M.; Finlayson, C.; Kovacsevics, H.; Jansen, H.; Kremsner, P.G.; Efferth, T.; Kumar, D. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine, 2015, 2(1), 82-90.
[http://dx.doi.org/10.1016/j.ebiom.2014.11.010] [PMID: 26137537]
[37]
Cao, R.; Hu, H.; Li, Y.; Wang, X.; Xu, M.; Liu, J.; Zhang, H.; Yan, Y.; Zhao, L.; Li, W.; Zhang, T.; Xiao, D.; Guo, X.; Li, Y.; Yang, J.; Hu, Z.; Wang, M.; Zhong, W. Anti-SARS-CoV-2 potential of artemisinins in vitro. ACS Infect. Dis., 2020, 6(9), 2524-2531.
[http://dx.doi.org/10.1021/acsinfecdis.0c00522] [PMID: 32786284]
[38]
Shapira, M.Y.; Resnick, I.B.; Chou, S.; Neumann, A.U.; Lurain, N.S.; Stamminger, T.; Caplan, O.; Saleh, N.; Efferth, T.; Marschall, M.; Wolf, D.G. Artesunate as a potent antiviral agent in a patient with late drug-resistant cytomegalovirus infection after hematopoietic stem cell transplantation. Clin. Infect. Dis., 2008, 46(9), 1455-1457.
[http://dx.doi.org/10.1086/587106] [PMID: 18419454]
[39]
Zhao, D.; Zhang, J.; Xu, G.; Wang, Q. Artesunate protects LPS-induced acute lung injury by inhibiting TLR4 expression and inducing Nrf2 activation. Inflammation, 2017, 40(3), 798-805.
[http://dx.doi.org/10.1007/s10753-017-0524-6] [PMID: 28315999]
[40]
Kuang, M.; Cen, Y.; Qin, R.; Shang, S.; Zhai, Z.; Liu, C.; Pan, X.; Zhou, H. Artesunate attenuates pro-inflammatory cytokine release from macrophages by inhibiting TLR4-mediated autophagic activation via the TRAF6-Beclin1-PI3KC3 pathway. Cell. Physiol. Biochem., 2018, 47(2), 475-488.
[http://dx.doi.org/10.1159/000489982] [PMID: 29794440]
[41]
Khuroo, M.S. Chloroquine and hydroxychloroquine in coronavirus disease 2019 (COVID-19). Facts, fiction and the hype: A critical appraisal. Int. J. Antimicrob. Agents, 2020, 56(3), 106101.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106101 ] [PMID: 32687949]
[42]
Ghosh, A.K.; Miller, H.; Knox, K.; Kundu, M.; Henrickson, K.J.; Arav-Boger, R. Inhibition of human coronaviruses by antimalarial peroxides. ACS Infect. Dis., 2021, 7(7), 1985-1995.
[http://dx.doi.org/10.1021/acsinfecdis.1c00053] [PMID: 33783182]
[43]
Cheong, D.H.J.; Tan, D.W.S.; Wong, F.W.S.; Tran, T. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol. Res., 2020, 158, 104901.
[http://dx.doi.org/10.1016/j.phrs.2020.104901] [PMID: 32405226]
[44]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med., 2009, 6(7), e1000097.
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[45]
Higgins, J.P.; Green, S. Cochrane handbook for systematic reviews of interventions, 1st ed; John Wiley & Sons, 2008.
[http://dx.doi.org/10.1002/9780470712184]
[46]
Bonifacio, M.; Tiribelli, M.; Miggiano, M.C.; Abruzzese, E.; Binotto, G.; Scaffidi, L.; Cordioli, M.; Damiani, D.; Di Bona, E.; Trawinska, M.M.; Tanasi, I.; Dubbini, M.V.; Velotta, V.; Ceccarelli, G.; Pierdomenico, E.; Lo Schirico, M.; Semenzato, G.; Ruggeri, M.; Fanin, R.; Tacconelli, E.; Pizzolo, G.; Krampera, M. The serological prevalence of SARS-CoV-2 infection in patients with chronic myeloid leukemia is similar to that in the general population. Cancer Med., 2021, 10(18), 6310-6316.
[http://dx.doi.org/10.1002/cam4.4179] [PMID: 34464516]
[47]
Morales-Ortega, A.; Bernal-Bello, D.; Llarena-Barroso, C.; Frutos-Pérez, B.; Duarte-Millán, M.Á.; García de Viedma-García, V.; Farfán- Sedano, A.I.; Canalejo-Castrillero, E.; Ruiz-Giardín, J.M.; Ruiz-Ruiz, J.; San Martín-López, J.V. Imatinib for COVID-19: A case report. Clin. Immunol., 2020, 218, 108518.
[http://dx.doi.org/10.1016/j.clim.2020.108518 ] [PMID: 32599278]
[48]
Li, W.; Wang, D.; Guo, J.; Yuan, G.; Yang, Z.; Gale, R.P.; You, Y.; Chen, Z.; Chen, S.; Wan, C.; Zhu, X.; Chang, W.; Sheng, L.; Cheng, H.; Zhang, Y.; Li, Q.; Qin, J.; Meng, L.; Jiang, Q. COVID-19 in persons with chronic myeloid leukaemia. Leukemia, 2020, 34(7), 1799-1804.
[http://dx.doi.org/10.1038/s41375-020-0853-6 ] [PMID: 32424293]
[49]
Crolley, V.E.; Hanna, D.; Joharatnam-Hogan, N.; Chopra, N.; Bamac, E.; Desai, M.; Lam, Y.C.; Dipro, S.; Kanani, R.; Benson, J.; Wilson, W.; Fox, T.A.; Shiu, K.K.; Forster, M.; Bridgewater, J.; Hochhauser, D.; Khan, K. COVID-19 in cancer patients on systemic anti-cancer therapies: outcomes from the CAPITOL (COVID-19 Cancer PatIenT Outcomes in North London) cohort study. Ther. Adv. Med. Oncol., 2020, 12.
[http://dx.doi.org/10.1177/1758835920971147 ] [PMID: 33178336]
[50]
Wang, X.A.; Binder, A.F.; Gergis, U.; Wilde, L. COVID-19 in patients with hematologic malignancies: A single center retrospective study. Front. Oncol., 2021, 11, 740320.
[http://dx.doi.org/10.3389/fonc.2021.740320 ] [PMID: 34778057]
[51]
Yılmaz, U.; Pekmezci, A.; Gül, Y.; Eşkazan, A.E. COVID-19 in chronic-phase chronic myeloid leukemia patients: A single-center survey from Turkey. Turk. J. Haematol., 2021, 38(1), 79-81.
[http://dx.doi.org/10.4274/tjh.galenos.2020.2020.0472 ] [PMID: 32964857]
[52]
Başcı, S.; Ata, N.; Altuntaş, F.; Yiğenoğlu, T.N.; Dal, M.S.; Korkmaz, S.; Namdaroğlu, S.; Baştürk, A.; Hacıbekiroğlu, T.; Doğu, M.H.; Berber, İ.; Dal, K.; Erkurt, M.A.; Turgut, B.; Çağlayan, M.; Ayvalı, M.O.; Çelik, O.; Ülgü, M.M.; Birinci, Ş. Outcome of COVID-19 in patients with chronic myeloid leukemia receiving tyrosine kinase inhibitors. Turkish Ministry of Health, Hematology Scientific Working Group. J. Oncol. Pharm. Pract., 2020, 26(7), 1676-1682.
[http://dx.doi.org/10.1177/1078155220953198 ] [PMID: 32854573]
[53]
Aman, J.; Duijvelaar, E.; Botros, L.; Kianzad, A.; Schippers, J.R.; Smeele, P.J.; Azhang, S.; Bartelink, I.H.; Bayoumy, A.A.; Bet, P.M.; Boersma, W.; Bonta, P.I.; Boomars, K.A.T.; Bos, L.D.J.; van Bragt, J.J.M.H.; Braunstahl, G.J.; Celant, L.R.; Eger, K.A.B.; Geelhoed, J.J.M.; van Glabbeek, Y.L.E.; Grotjohan, H.P.; Hagens, L.A.; Happe, C.M.; Hazes, B.D.; Heunks, L.M.A.; van den Heuvel, M.; Hoefsloot, W.; Hoek, R.J.A.; Hoekstra, R.; Hofstee, H.M.A.; Juffermans, N.P.; Kemper, E.M.; Kos, R.; Kunst, P.W.A.; Lammers, A.; van der Lee, I.; van der Lee, E.L.; Maitland-van der Zee, A.H.; Mau Asam, P.F.M.; Mieras, A.; Muller, M.; Neefjes, E.C.W.; Nossent, E.J.; Oswald, L.M.A.; Overbeek, M.J.; Pamplona, C.C.; Paternotte, N.; Pronk, N.; de Raaf, M.A.; van Raaij, B.F.M.; Reijrink, M.; Schultz, M.J.; Serpa Neto, A.; Slob, E.M.A.; Smeenk, F.W.J.M.; Smit, M.R.; Smits, A.J.; Stalenhoef, J.E.; Tuinman, P.R.; Vanhove, A.L.E.M.; Wessels, J.N.; van Wezenbeek, J.C.C.; Vonk Noordegraaf, A.; de Man, F.S.; Bogaard, H.J. Imatinib in patients with severe COVID-19: A randomised, double-blind, placebo-controlled, clinical trial. Lancet Respir. Med., 2021, 9(9), 957-968.
[http://dx.doi.org/10.1016/S2213-2600(21)00237-X ] [PMID: 34147142]
[54]
Ibrahim, R.; Chatzis, G.P.; Korayem, M.A.; Mansour, M.K. Management of chronic myeloid leukemia with sever covid 19: A case report. Open Access Maced. J. Med. Sci., 2020, 8(T1), 304-308.
[http://dx.doi.org/10.3889/oamjms.2020.5143]
[55]
Lagziel, T.; Quiroga, L.; Ramos, M.; Hultman, C.S.; Asif, M. Two false negative test results in a symptomatic patient with a confirmed case of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and suspected Stevens-Johnson Syndrome/Toxic epidermal necrolysis (SJS/TEN). Cureus, 2020, 12(5), e8198.
[http://dx.doi.org/10.7759/cureus.8198 ] [PMID: 32455090]
[56]
Ranganathan, C.; Fusinski, S.D.; Obeid, I.M.; Ismail, K.M.; Ferguson, D.T.; Raminick, M.F.; Dawes, S.M. Therapeutic plasma exchange for persistent encephalopathy associated with COVID-19. eNeurologicalSci, 2021, 22, 100327.
[http://dx.doi.org/10.1016/j.ensci.2021.100327 ] [PMID: 33585705]
[57]
Morales-Ortega, A.; Farfán-Sedano, A.I.; Izquierdo-Martínez, A.; Llarena-Barroso, C.; Jaenes-Barrios, B.; Mesa-Plaza, N. Antibody formation against SARS-CoV-2 in imatinib-treated COVID-19 patients. J. Infect., 2021.
[PMID: 34437930]
[58]
Bouchlarhem, A.; Haddar, L.; Lamzouri, O.; Onci-Es-Saad,; Nasri, S.; Aichouni, N.; Bkiyar, H.; Mebrouk, Y.; Skiker, I.; Housni, B. Multiple cranial nerve palsies revealing blast crisis in patient with chronic myeloid leukemia in the accelerated phase under nilotinib during severe infection with SARS-COV-19 virus: Case report and review of literature. Radiol. Case Rep., 2021, 16(11), 3602-3609.
[http://dx.doi.org/10.1016/j.radcr.2021.08.030 ] [PMID: 34422148]
[59]
Mansi, L.; Spehner, L.; Daguindau, E.; Bouiller, K.; Almotlak, H.; Stein, U.; Bouard, A.; Kim, S.; Klajer, E.; Jary, M.; Meynard, G.; Vienot, A.; Nardin, C.; Bazan, F.; Lepiller, Q.; Westeel, V.; Adotévi, O.; Borg, C.; Kroemer, M. Study of the SARS-CoV-2-specific immune T-cell responses in COVID-19-positive cancer patients. Eur. J. Cancer, 2021, 150, 1-9.
[http://dx.doi.org/10.1016/j.ejca.2021.03.033 ] [PMID: 33882374]
[60]
Pimpinelli, F.; Marchesi, F.; Piaggio, G.; Giannarelli, D.; Papa, E.; Falcucci, P.; Pontone, M.; Di Martino, S.; Laquintana, V.; La Malfa, A.; Di Domenico, E.G.; Di Bella, O.; Falzone, G.; Ensoli, F.; Vujovic, B.; Morrone, A.; Ciliberto, G.; Mengarelli, A. Fifth-week immunogenicity and safety of anti-SARS-CoV-2 BNT162b2 vaccine in patients with multiple myeloma and myeloproliferative malignancies on active treatment: Preliminary data from a single institution. J. Hematol. Oncol., 2021, 14(1), 81.
[http://dx.doi.org/10.1186/s13045-021-01090-6 ] [PMID: 34001183]
[61]
Sardar, S.; Sharma, R.; Alyamani, T.Y.M.; Aboukamar, M. COVID-19 and Plasmodium vivax malaria co-infection. IDCases, 2020, 21, e00879.
[http://dx.doi.org/10.1016/j.idcr.2020.e00879 ] [PMID: 32665888]
[62]
Pusparani, A.; Henrina, J.; Cahyadi, A. Co-infection of COVID-19 and recurrent malaria. J. Infect. Dev. Ctries., 2021, 15(5), 625-629.
[http://dx.doi.org/10.3855/jidc.13793] [PMID: 34106884]
[63]
Mahajan, N.N.; Kesarwani, S.N.; Shinde, S.S.; Nayak, A.; Modi, D.N.; Mahale, S.D.; Gajbhiye, R.K. Co-infection of malaria and dengue in pregnant women with SARS-CoV-2. Int. J. Gynaecol. Obstet., 2020, 151(3), 459-462.
[http://dx.doi.org/10.1002/ijgo.13415 ] [PMID: 33090458]
[64]
Caglar, B.; Karaali, R.; Balkan, I.I.; Mete, B.; Aygun, G. COVID-19 and plasmodium ovale malaria: A rare case of co-infection. Korean J. Parasitol., 2021, 59(4), 399-402.
[http://dx.doi.org/10.3347/kjp.2021.59.4.399] [PMID: 34470091]
[65]
Hou, L.; Huang, H. Immune suppressive properties of artemisinin family drugs. Pharmacol. Ther., 2016, 166, 123-127.
[http://dx.doi.org/10.1016/j.pharmthera.2016.07.002 ] [PMID: 27411673]
[66]
Li, B.; Yao, Q.; Pan, X.C.; Wang, N.; Zhang, R.; Li, J.; Ding, G.; Liu, X.; Wu, C.; Ran, D.; Zheng, J.; Zhou, H. Artesunate enhances the antibacterial effect of β-lactam antibiotics against Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump system AcrAB-TolC. J. Antimicrob. Chemother., 2011, 66(4), 769-777.
[http://dx.doi.org/10.1093/jac/dkr017] [PMID: 21393180]
[67]
Wang, J-X.; Tang, W.; Shi, L-P.; Wan, J.; Zhou, R.; Ni, J.; Fu, Y-F.; Yang, Y-F.; Li, Y.; Zuo, J-P. Investigation of the immunosuppressive activity of artemether on T-cell activation and proliferation. Br. J. Pharmacol., 2007, 150(5), 652-661.
[http://dx.doi.org/10.1038/sj.bjp.0707137 ] [PMID: 17262016]
[68]
Hou, L.F.; He, S.J.; Li, X.; Wan, C.P.; Yang, Y.; Zhang, X.H.; He, P.L.; Zhou, Y.; Zhu, F.H.; Yang, Y.F.; Li, Y.; Tang, W.; Zuo, J.P. SM934 treated lupus-prone NZB × NZW F1 mice by enhancing macrophage interleukin-10 production and suppressing pathogenic T-cell development. PLoS One, 2012, 7(2), e32424.
[http://dx.doi.org/10.1371/journal.pone.0032424 ] [PMID: 22389703]
[69]
Kaptein, S.; Efferth, T.; Leis, M.; Rechter, S.; Auerochs, S.; Kalmer, M.; Bruggeman, C.; Vink, C.; Stamminger, T.; Marschall, M. The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo. Antiviral Res., 2006, 69(2), 60-69.
[http://dx.doi.org/10.1016/j.antiviral.2005.10.003] [PMID: 16325931]
[70]
Efferth, T.; Romero, M.R.; Wolf, D.G.; Stamminger, T.; Marin, J.J.G.; Marschall, M. The antiviral activities of artemisinin and artesunate. Clin. Infect. Dis., 2008, 47(6), 804-811.
[http://dx.doi.org/10.1086/591195] [PMID: 18699744]
[71]
Paeshuyse, J.; Coelmont, L.; Vliegen, I.; hemel, J.V.; Vandenkerckhove, J.; Peys, E.; Sas, B.; Clercq, E.D.; Neyts, J. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin. Biochem. Biophys. Res. Commun., 2006, 348(1), 139-144.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.014] [PMID: 16875675]
[72]
Alsalih, M.; Roomi, A.B.; Samsudin, S.; Arshad, S.S.; Ziainol, I.; Warid, F. Vicissitudes in cellular immune related to anti-tnf-alpha therapy, and some clinical investigation induces by infliximab in covid 19 patients. Int. J. Pharm. Res., 2020, 12, 2264-2278.
[73]
SeyedAlinaghi, S.; Karimi, A.; Pashaei, Z.; Shobeiri, P.; Janfaza, N.; Behnezhad, F.; Ghasemzadeh, A.; Barzegary, A.; Arjmand, G.; Noroozi, A.; Shojaei, A.; Amiri, A.; Vahedi, F.; Mahalleh, M.; Shamsabadi, A.; Dashti, M.; Afsahi, A.M.; Mehraeen, E.; Dadras, O. Post-Exposure Prophylaxis for COVID-19: A Systematic Review. Infect Disord. Drug Targets, 2023, 23(5), e130423215723.
[http://dx.doi.org/10.2174/1871526523666230413082721] [PMID: 37069717]
[74]
Oliaei, S.; SeyedAlinaghi, S.; Mehrtak, M.; Karimi, A.; Noori, T.; Mirzapour, P.; Shojaei, A.; MohsseniPour, M.; Mirghaderi, S.P.; Alilou, S.; Shobeiri, P.; Azadi Cheshmekabodi, H.; Mehraeen, E.; Dadras, O. The effects of hyperbaric oxygen therapy (HBOT) on coronavirus disease-2019 (COVID-19): a systematic review. Eur. J. Med. Res., 2021, Aug 19; 26(1), 96.
[http://dx.doi.org/10.1186/s40001-021-00570-2] [PMID: 34412709] [PMCID: PMC8374420]
[75]
JamaliMoghadamSiahkali, S.; Zarezade, B.; Koolaji, S.; SeyedAlinaghi, S.; Zendehdel, A.; Tabarestani, M.; Sekhavati Moghadam, E.; Abbasian, L.; Dehghan Manshadi, S.A.; Salehi, M.; Hasannezhad, M.; Ghaderkhani, S.; Meidani, M.; Salahshour, F.; Jafari, F.; Manafi, N.; Ghiasvand, F. Safety and effectiveness of high-dose vitamin C in patients with COVID-19: a randomized open-label clinical trial. Eur. J. Med. Res., 2021, Feb 11; 26(1), 20.
[http://dx.doi.org/10.1186/s40001-021-00490-1] [PMID: 33573699] [PMCID: PMC7877333]
[76]
Sekhavati, E.; Jafari, F.; SeyedAlinaghi, S.; Jamalimoghadamsiahkali, S.; Sadr, S.; Tabarestani, M.; Pirhayati, M.; Zendehdel, A.; Manafi, N.; Hajiabdolbaghi, M.; Ahmadinejad, Z.; Kouchak, H.E.; Jafari, S.; Khalili, H.; Salehi, M.; Seifi, A.; Golestan, F.S.; Ghiasvand, F. Safety and effectiveness of azithromycin in patients with COVID-19: An open-label randomised trial. Int. J. Antimicrob. Agents, 2020, Oct; 56(4), 106143. Epub 2020 Aug 25.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106143] [PMID: 32853672] [PMCID: PMC7445147]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy