Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Meta-Analysis

The Value of Epicardial Adipose Tissue for Patients Treated with Percutaneous Coronary Intervention: A Systemic Review and Meta-analysis

Author(s): Xiaocong Zhang, Hailong Zeng and Qiang Wang*

Volume 27, Issue 1, 2024

Published on: 21 July, 2023

Page: [48 - 56] Pages: 9

DOI: 10.2174/1386207326666230712150702

Price: $65

Abstract

Background: Recently, some clinical researches have shown epicardial adipose tissue to play a pivotal role in prognosis for patients treated with percutaneous coronary intervention (PCI), but the results are still controversial. A systematic review and meta-analysis was conducted to investigate the value of epicardial adipose tissue for the prognosis of patients treated with PCI.

Method: A systematic search was performed using PubMed, Web of Science, and the Cochrane Library for studies evaluating the association of EAT and patients treated with PCI published up to January 2023. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the studies. Meta-analysis was performed using Review Manager V.5.3.

Result: Thirteen studies enrolling 3683 patients were eventually included in our study. The thickness or volume of EAT measured were significantly higher in the ISR group compared to those in the non-ISR group (the standard mean difference of 0.34, 95% CI, 0.18-0.49, p<0.0001; I2=36%). The incidence of no-reflow was significantly higher in the thicker EAT group compared to the thin EAT group (pooled relative ratio 1.52, 95% CI 1.29-1,80, p<0.0001; I2 =0%). Thicker EAT was significantly associated with MACEs (pooled relative ratio 1.50, 95% 1.18-1.90, p=0.008). A lower EAT volume was associated with larger infarct size in STEMI patients treated with primary PCI (standard mean difference -5.45, 95% CI -8.10, -2.80; p<0.0001; I2=0%).

Conclusion: In summary, our systemic review and meta-analysis suggests that high EAT is related to a significantly increased risk of non-reflow, MACEs, and decreased infarct size in patients with CAD treated with PCI. This paradox phenomenon demonstrates that the quality of EAT may play a more important role than the sole thickness or volume of EAT.

Keywords: Epicardial adipose tissue, percutaneous coronary intervention, prognosis, Newcastle-Ottawa scale, MACEs, coronary artery disease.

Graphical Abstract
[1]
Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; Jüni, P.; Kastrati, A.; Koller, A.; Kristensen, S.D.; Niebauer, J.; Richter, D.J.; Seferović, P.M.; Sibbing, D.; Stefanini, G.G.; Windecker, S.; Yadav, R.; Zembala, M.O.; Wijns, W.; Glineur, D.; Aboyans, V.; Achenbach, S.; Agewall, S.; Andreotti, F.; Barbato, E.; Baumbach, A.; Brophy, J.; Bueno, H.; Calvert, P.A.; Capodanno, D.; Davierwala, P.M.; Delgado, V.; Dudek, D.; Freemantle, N.; Funck-Brentano, C.; Gaemperli, O.; Gielen, S.; Gilard, M.; Gorenek, B.; Haasenritter, J.; Haude, M.; Ibanez, B.; Iung, B.; Jeppsson, A.; Katritsis, D.; Knuuti, J.; Kolh, P.; Leite-Moreira, A.; Lund, L.H.; Maisano, F.; Mehilli, J.; Metzler, B.; Montalescot, G.; Pagano, D.; Petronio, A.S.; Piepoli, M.F.; Popescu, B.A.; Sádaba, R.; Shlyakhto, E.; Silber, S.; Simpson, I.A.; Sparv, D.; Tavilla, G.; Thiele, H.; Tousek, P.; Van Belle, E.; Vranckx, P.; Witkowski, A.; Zamorano, J.L.; Roffi, M.; Windecker, S.; Aboyans, V.; Agewall, S.; Barbato, E.; Bueno, H.; Coca, A.; Collet, J-P.; Coman, I.M.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gaemperli, O.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Knuuti, J.; Lancellotti, P.; Leclercq, C.; McDonagh, T.A.; Piepoli, M.F.; Ponikowski, P.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Sousa-Uva, M.; Simpson, I.A.; Zamorano, J.L.; Pagano, D.; Freemantle, N.; Sousa-Uva, M.; Chettibi, M.; Sisakian, H.; Metzler, B.; İbrahimov, F.; Stelmashok, V.I.; Postadzhiyan, A.; Skoric, B.; Eftychiou, C.; Kala, P.; Terkelsen, C.J.; Magdy, A.; Eha, J.; Niemelä, M.; Kedev, S.; Motreff, P.; Aladashvili, A.; Mehilli, J.; Kanakakis, I-G.; Becker, D.; Gudnason, T.; Peace, A.; Romeo, F.; Bajraktari, G.; Kerimkulova, A.; Rudzītis, A.; Ghazzal, Z.; Kibarskis, A.; Pereira, B.; Xuereb, R.G.; Hofma, S.H.; Steigen, T.K.; Witkowski, A.; de Oliveira, E.I.; Mot, S.; Duplyakov, D.; Zavatta, M.; Beleslin, B.; Kovar, F.; Bunc, M.; Ojeda, S.; Witt, N.; Jeger, R.; Addad, F.; Akdemir, R.; Parkhomenko, A.; Henderson, R. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J., 2019, 40(2), 87-165.
[http://dx.doi.org/10.1093/eurheartj/ehy394] [PMID: 30165437]
[2]
Gada, H.; Kirtane, A.J.; Kereiakes, D.J.; Bangalore, S.; Moses, J.W.; Généreux, P.; Mehran, R.; Dangas, G.D.; Leon, M.B.; Stone, G.W. Meta-analysis of trials on mortality after percutaneous coronary intervention compared with medical therapy in patients with stable coronary heart disease and objective evidence of myocardial ischemia. Am. J. Cardiol., 2015, 115(9), 1194-1199.
[http://dx.doi.org/10.1016/j.amjcard.2015.01.556] [PMID: 25759103]
[3]
Kandan, S.R.; Johnson, T.W. Management of percutaneous coronary intervention complications. Heart, 2019, 105(1), 75-86.
[http://dx.doi.org/10.1136/heartjnl-2017-311155] [PMID: 29760245]
[4]
Lu, C.; Jia, H.; Wang, Z. Association between epicardial adipose tissue and adverse outcomes in coronary heart disease patients with percutaneous coronary intervention. Biosci. Rep., 2019, 39(5), BSR20182278.
[http://dx.doi.org/10.1042/BSR20182278] [PMID: 30979830]
[5]
Tscharre, M.; Hauser, C.; Rohla, M.; Freynhofer, M.K.; Wojta, J.; Huber, K.; Weiss, T.W. Epicardial adipose tissue and cardiovascular outcome in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Eur. Heart J. Acute Cardiovasc. Care, 2017, 6(8), 750-752.
[http://dx.doi.org/10.1177/2048872616680609] [PMID: 27864479]
[6]
Patel, V.B.; Shah, S.; Verma, S.; Oudit, G.Y. Epicardial adipose tissue as a metabolic transducer: Role in heart failure and coronary artery disease. Heart Fail. Rev., 2017, 22(6), 889-902.
[http://dx.doi.org/10.1007/s10741-017-9644-1] [PMID: 28762019]
[7]
Iacobellis, G.; Bianco, A.C. Epicardial adipose tissue: Emerging physiological, pathophysiological and clinical features. Trends Endocrinol. Metab., 2011, 22(11), 450-457.
[http://dx.doi.org/10.1016/j.tem.2011.07.003] [PMID: 21852149]
[8]
Cabrera-Rego, J.O.; Escobar-Torres, R.A.; Parra-Jiménez, J.D.; Valiente-Mustelier, J. Epicardial fat thickness correlates with coronary in-stent restenosis in patients with acute myocardial infarction. Clin. Investig. Arterioscler., 2019, 31(2), 49-55.
[http://dx.doi.org/10.1016/j.arteri.2018.11.002] [PMID: 30773346]
[9]
Zhou, Y.; Zhang, H.W.; Tian, F.; Chen, J.S.; Han, T.W.; Tan, Y.H.; Zhou, J.; Zhang, T.; Jing, J.; Chen, Y.D. Influence of increased epicardial adipose tissue volume on 1-year in-stent restenosis in patients who received coronary stent implantation. J. Geriatr. Cardiol., 2016, 13(9), 768-775.
[http://dx.doi.org/10.11909/j.issn.1671-5411.2016.09.012] [PMID: 27899941]
[10]
Park, J.S.; Choi, B.J.; Choi, S.Y.; Yoon, M.H.; Hwang, G.S.; Tahk, S.J.; Shin, J.H. Echocardiographically measured epicardial fat predicts restenosis after coronary stenting. Scand. Cardiovasc. J., 2013, 47(5), 297-302.
[http://dx.doi.org/10.3109/14017431.2013.824604] [PMID: 23937273]
[11]
Nikaeen, F.; Pourmoghadas, M.; Shemirani, H.; Ahmad Mirdamadi, S.; Akbari, M. The association between epicardial fat thickness in echocardiography and coronary restenosis in drug eluting stents. ARYA Atheroscler., 2011, 7(1), 11-17.
[PMID: 22577439]
[12]
Park, J.S.; Lee, Y.H.; Seo, K.W.; Choi, B.J.; Choi, S.Y.; Yoon, M.H.; Hwang, G.S.; Tahk, S.J.; Shin, J.H. Echocardiographic epicardial fat thickness is a predictor for target vessel revascularization in patients with ST-elevation myocardial infarction. Lipids Health Dis., 2016, 15(1), 194.
[http://dx.doi.org/10.1186/s12944-016-0371-8] [PMID: 27852304]
[13]
Zencirci, A.E.; Zencirci, E.; Değirmencioğlu, A.; Erdem, A.; Karakuş, G.; Özden, K.; Karadeniz, F.; Buturak, A.; Belen, E.; Tipi, F.; Eren, M. Predictive value of the no-reflow phenomenon and epicardial adipose tissue for clinical outcomes after primary percutaneous coronary intervention. Hellenic J. Cardiol., 2015, 56(4), 311-319.
[PMID: 26233771]
[14]
Cerit, L. Association between epicardial adipose tissue and coronary no-reflow phenomenon. Gazz Med Ital Arch S, 2018, 177(7-8), 367-373.
[15]
Sen, F.; Yilmaz, S.; Balci, K.G.; Gül, M.; Balci, M.M.; Akboga, M.K.; Topaloglu, S.; Temizhan, A.; Aras, D.; Aydogdu, S. The relationship between epicardial adipose tissue thickness and infarct-related artery patency in patients with ST-segment elevation myocardial infarction. Angiology, 2016, 67(3), 281-286.
[http://dx.doi.org/10.1177/0003319715591330] [PMID: 26076703]
[16]
Bakirci, E.M.; Degirmenci, H.; Duman, H.; Inci, S.; Hamur, H.; Buyuklu, M.; Ceyhun, G.; Topal, E. Increased epicardial adipose tissue thickness is associated with angiographic thrombus burden in the patients with non-ST-segment elevation myocardial infarction. Clin. Appl. Thromb. Hemost., 2015, 21(7), 612-618.
[http://dx.doi.org/10.1177/1076029614558113] [PMID: 25381157]
[17]
Zencirci, E.; Zencirci, A.E.; Değirmencioğlu, A.; Karakuş, G.; Uğurlucan, M.; Özden, K.; Erdem, A.; Güllü, A.Ü.; Ekmekçi, A.; Velibey, Y.; Erer, H.B.; Çelik, S.; Akyol, A. The relationship between epicardial adipose tissue and ST-segment resolution in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Heart Vessels, 2015, 30(2), 147-153.
[http://dx.doi.org/10.1007/s00380-013-0459-2] [PMID: 24413852]
[18]
Gohbara, M.; Iwahashi, N.; Akiyama, E.; Maejima, N.; Tsukahara, K.; Hibi, K.; Kosuge, M.; Ebina, T.; Umemura, S.; Kimura, K. Association between epicardial adipose tissue volume and myocardial salvage in patients with a first ST-segment elevation myocardial infarction: An epicardial adipose tissue paradox. J. Cardiol., 2016, 68(5), 399-405.
[http://dx.doi.org/10.1016/j.jjcc.2015.10.018] [PMID: 27004962]
[19]
Bière, L.; Behaghel, V.; Mateus, V.; Assunção, A., Jr; Gräni, C.; Ouerghi, K.; Grall, S.; Willoteaux, S.; Prunier, F.; Kwong, R.; Furber, A. Relation of Quantity of subepicardial adipose tissue to infarct size in patients with st-elevation myocardial infarction. Am. J. Cardiol., 2017, 119(12), 1972-1978.
[http://dx.doi.org/10.1016/j.amjcard.2017.03.024] [PMID: 28438306]
[20]
Doesch, C.; Haghi, D.; Suselbeck, T.; Schoenberg, S.O.; Borggrefe, M.; Papavassiliu, T. Impact of functional, morphological and clinical parameters on epicardial adipose tissue in patients with coronary artery disease. Circ. J., 2012, 76(10), 2426-2434.
[http://dx.doi.org/10.1253/circj.CJ-12-0301] [PMID: 22813697]
[21]
Schoenhagen, P.; Xu, M. Complex biphasic relationship between epicardial fat and ischemic heart disease. Circ. J., 2012, 76(10), 2333-2334.
[http://dx.doi.org/10.1253/circj.CJ-12-0905] [PMID: 22850244]
[22]
Doesch, C.; Haghi, D.; Flüchter, S.; Suselbeck, T.; Schoenberg, S.O.; Michaely, H.; Borggrefe, M.; Papavassiliu, T. Epicardial adipose tissue in patients with heart failure. J. Cardiovasc. Magn. Reson., 2010, 12(1), 40.
[http://dx.doi.org/10.1186/1532-429X-12-40] [PMID: 20624277]
[23]
Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ, 2009, 339, b2700.
[http://dx.doi.org/10.1136/bmj.b2700] [PMID: 19622552]
[24]
Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ, 2003, 327(7414), 557-560.
[http://dx.doi.org/10.1136/bmj.327.7414.557] [PMID: 12958120]
[25]
Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol., 2010, 25(9), 603-605.
[http://dx.doi.org/10.1007/s10654-010-9491-z] [PMID: 20652370]
[26]
Gaborit, B.; Sengenes, C.; Ancel, P.; Jacquier, A.; Dutour, A. Role of epicardial adipose tissue in health and disease: A matter of fat? Compr. Physiol., 2017, 7(3), 1051-1082.
[http://dx.doi.org/10.1002/cphy.c160034] [PMID: 28640452]
[27]
Iozzo, P. Myocardial, perivascular, and epicardial fat. Diabetes Care, 2011, 34(Suppl. 2), S371-S379.
[http://dx.doi.org/10.2337/dc11-s250] [PMID: 21525485]
[28]
Celik, T.; Iyisoy, A.; Yuksel, U.C.; Jata, B.; Ozkan, M. The impact of admission C-reactive protein levels on the development of no-reflow phenomenon after primary PCI in patients with acute myocardial infarction: The role of inflammation. Int. J. Cardiol., 2009, 136(1), 86-88.
[http://dx.doi.org/10.1016/j.ijcard.2008.03.058] [PMID: 18579226]
[29]
Takaoka, M.; Suzuki, H.; Shioda, S.; Sekikawa, K.; Saito, Y.; Nagai, R.; Sata, M. Endovascular injury induces rapid phenotypic changes in perivascular adipose tissue. Arterioscler. Thromb. Vasc. Biol., 2010, 30(8), 1576-1582.
[http://dx.doi.org/10.1161/ATVBAHA.110.207175] [PMID: 20489168]
[30]
Safian, R.D. Restenosis after PCI: Battered but not beaten. Catheter. Cardiovasc. Interv., 2016, 87(2), 209-210.
[http://dx.doi.org/10.1002/ccd.26420] [PMID: 26876506]
[31]
Parisi, V.; Petraglia, L.; D’Esposito, V.; Cabaro, S.; Rengo, G.; Caruso, A.; Grimaldi, M.G.; Baldascino, F.; De Bellis, A.; Vitale, D.; Formisano, R.; Ferro, A.; Paolillo, S.; Davin, L.; Lancellotti, P.; Formisano, P.; Perrone Filardi, P.; Ferrara, N.; Leosco, D. Statin therapy modulates thickness and inflammatory profile of human epicardial adipose tissue. Int. J. Cardiol., 2019, 274, 326-330.
[http://dx.doi.org/10.1016/j.ijcard.2018.06.106] [PMID: 30454723]
[32]
Bełtowski, J. Epicardial adipose tissue: The new target for statin therapy. Int. J. Cardiol., 2019, 274, 353-354.
[http://dx.doi.org/10.1016/j.ijcard.2018.08.098] [PMID: 30196996]
[33]
Niedziela, J.; Hudzik, B.; Niedziela, N.; Gąsior, M.; Gierlotka, M.; Wasilewski, J.; Myrda, K.; Lekston, A.; Poloński, L.; Rozentryt, P. The obesity paradox in acute coronary syndrome: A meta-analysis. Eur. J. Epidemiol., 2014, 29(11), 801-812.
[http://dx.doi.org/10.1007/s10654-014-9961-9] [PMID: 25354991]
[34]
Wang, L.; Liu, W.; He, X.; Chen, Y.; Lu, J.; Liu, K.; Cao, K.; Yin, P. Association of overweight and obesity with patient mortality after acute myocardial infarction: A meta-analysis of prospective studies. Int. J. Obes., 2016, 40(2), 220-228.
[http://dx.doi.org/10.1038/ijo.2015.176] [PMID: 26338077]
[35]
Chechi, K.; Blanchard, P.G.; Mathieu, P.; Deshaies, Y.; Richard, D. Brown fat like gene expression in the epicardial fat depot correlates with circulating HDL-cholesterol and triglycerides in patients with coronary artery disease. Int. J. Cardiol., 2013, 167(5), 2264-2270.
[http://dx.doi.org/10.1016/j.ijcard.2012.06.008] [PMID: 22727960]
[36]
Srivastava, S.; Veech, R.L. Brown and Brite: The fat soldiers in the anti-obesity fight. Front. Physiol., 2019, 10, 38.
[http://dx.doi.org/10.3389/fphys.2019.00038] [PMID: 30761017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy