Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Engineered Exosomes for Drug Delivery in Cancer Therapy: A Promising Approach and Application

Author(s): Peiwen Fu, Siqi Yin, Huiying Cheng, Wenrong Xu* and Jiajia Jiang*

Volume 21, Issue 6, 2024

Published on: 13 July, 2023

Page: [817 - 827] Pages: 11

DOI: 10.2174/1567201820666230712103942

Price: $65

Abstract

A significant amount of research effort is currently focused on investigating the role of exosomes in various cancers. These tiny vesicles, apart from acting as biomarkers, also play a crucial role in tumor formation and development. Several studies have demonstrated that exosomes can be a drug delivery vehicle for cancer therapy. In this paper, we highlight the key advantages of exosomes as a drug delivery candidate, with a particular focus on their low immunogenicity, natural targeting ability and suitable mechanical properties. Furthermore, we propose that the selection of appropriate exosomes and drug loading methods based on therapeutic goals and product heterogeneity is essential for preparing engineered exosomes. We comprehensively analyzed the superiorities of current drug-loading methods to improve the creation of designed exosomes. Moreover, we systematically review the applications of engineered exosomes in various therapies such as immunotherapy, gene therapy, protein therapy, chemotherapy, indicating that engineered exosomes have the potential to be reliable and, safe drug carriers that can address the unmet needs in cancer clinical practice.

Keywords: Engineered exosomes, extracellular vesicles, drug delivery, gene therapy, anti-cancer, circRNAs.

Graphical Abstract
[1]
Xue, C.; Li, G.; Lu, J.; Li, L. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct. Target. Ther., 2021, 6(1), 400.
[http://dx.doi.org/10.1038/s41392-021-00788-w] [PMID: 34815385]
[2]
Del Vecchio, F.; Martinez-Rodriguez, V.; Schukking, M.; Cocks, A.; Broseghini, E.; Fabbri, M. Professional killers: The role of extracellular vesicles in the reciprocal interactions between natural killer, CD8+ cytotoxic T-cells and tumour cells. J. Extracell. Vesicles, 2021, 10(6), e12075.
[http://dx.doi.org/10.1002/jev2.12075] [PMID: 33815694]
[3]
Wu, P.; Zhang, B.; Ocansey, D.K.W.; Xu, W.; Qian, H. Extracellular vesicles: A bright star of nanomedicine. Biomaterials, 2021, 269, 120467.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120467] [PMID: 33189359]
[4]
Han, Q.F.; Li, W.J.; Hu, K.S.; Gao, J.; Zhai, W.L.; Yang, J.H.; Zhang, S.J. Exosome biogenesis: Machinery, regulation, and therapeutic implications in cancer. Mol. Cancer, 2022, 21(1), 207.
[http://dx.doi.org/10.1186/s12943-022-01671-0] [PMID: 36320056]
[5]
Li, J.; Zhang, G.; Liu, C.G.; Xiang, X.; Le, M.T.N.; Sethi, G.; Wang, L.; Goh, B.C.; Ma, Z. The potential role of exosomal circRNAs in the tumor microenvironment: Insights into cancer diagnosis and therapy. Theranostics, 2022, 12(1), 87-104.
[http://dx.doi.org/10.7150/thno.64096] [PMID: 34987636]
[6]
Yong, T.; Zhang, X.; Bie, N.; Zhang, H.; Zhang, X.; Li, F.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H.A.; Yang, X. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun., 2019, 10(1), 3838.
[http://dx.doi.org/10.1038/s41467-019-11718-4] [PMID: 31444335]
[7]
Yang, Z.; Huo, Y.; Zhou, S.; Guo, J.; Ma, X.; Li, T.; Fan, C.; Wang, L. Cancer cell-intrinsic XBP1 drives immunosuppressive reprogramming of intratumoral myeloid cells by promoting cholesterol production. Cell Metab., 2022, 34(12), 2018-2035.e8.
[http://dx.doi.org/10.1016/j.cmet.2022.10.010] [PMID: 36351432]
[8]
Fabbri, M. Natural killer cell–derived vesicular miRNAs: A new anticancer approach? Cancer Res., 2020, 80(1), 17-22.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1450] [PMID: 31672842]
[9]
Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed., 2014, 53(46), n/a.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[10]
Batrakova, E.V.; Kim, M.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release, 2015, 219, 396-405.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.030] [PMID: 26241750]
[11]
Aufiero, S.; Reckman, Y.J.; Pinto, Y.M.; Creemers, E.E. Circular RNAs open a new chapter in cardiovascular biology. Nat. Rev. Cardiol., 2019, 16(8), 503-514.
[http://dx.doi.org/10.1038/s41569-019-0185-2] [PMID: 30952956]
[12]
Tang, X.; Deng, Z.; Ding, P.; Qiang, W.; Lu, Y.; Gao, S.; Hu, Y.; Yang, Y.; Du, J.; Gu, C. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J. Exp. Clin. Cancer Res., 2022, 41(1), 85.
[http://dx.doi.org/10.1186/s13046-022-02276-7] [PMID: 35260179]
[13]
Yang, S.; Wang, D.; Zhong, S.; Chen, W.; Wang, F.; Zhang, J.; Xu, W.; Xu, D.; Zhang, Q.; Li, J.; Zhang, H.; Hou, J.; Mao, L.; Tang, J. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/β-catenin (cyclin D1) axis. Cell Death Dis., 2021, 12(5), 420.
[http://dx.doi.org/10.1038/s41419-021-03680-1] [PMID: 33911067]
[14]
Koh, E.; Lee, E.J.; Nam, G.H.; Hong, Y.; Cho, E.; Yang, Y.; Kim, I.S. Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis. Biomaterials, 2017, 121, 121-129.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.004] [PMID: 28086180]
[15]
Kowal, J.; Arras, G.; Colombo, M.; Jouve, M.; Morath, J.P.; Primdal-Bengtson, B.; Dingli, F.; Loew, D.; Tkach, M.; Théry, C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci., 2016, 113(8), E968-E977.
[http://dx.doi.org/10.1073/pnas.1521230113] [PMID: 26858453]
[16]
Zhuang, X.; Xiang, X.; Grizzle, W.; Sun, D.; Zhang, S.; Axtell, R.C.; Ju, S.; Mu, J.; Zhang, L.; Steinman, L.; Miller, D.; Zhang, H.G. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther., 2011, 19(10), 1769-1779.
[http://dx.doi.org/10.1038/mt.2011.164] [PMID: 21915101]
[17]
Nolte-’t Hoen, E.N.M.; Buschow, S.I.; Anderton, S.M.; Stoorvogel, W.; Wauben, M.H.M.; Activated, T. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood, 2009, 113(9), 1977-1981.
[http://dx.doi.org/10.1182/blood-2008-08-174094] [PMID: 19064723]
[18]
Saunderson, S.C.; Dunn, A.C.; Crocker, P.R.; McLellan, A.D. CD169 mediates the capture of exosomes in spleen and lymph node. Blood, 2014, 123(2), 208-216.
[http://dx.doi.org/10.1182/blood-2013-03-489732] [PMID: 24255917]
[19]
Wang, J.; Tang, W.; Yang, M.; Yin, Y.; Li, H.; Hu, F.; Tang, L.; Ma, X.; Zhang, Y.; Wang, Y. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials, 2021, 273, 120784.
[20]
Lerch, S.; Dass, M.; Musyanovych, A.; Landfester, K.; Mailander, V. Polymeric nanoparticles of different sizes overcome the cell membrane barrier. Eur. J. Pharm. Biopharm., 2013, 84(2), 265-274.
[21]
Jeon, S.; Clavadetscher, J.; Lee, D.K.; Chankeshwara, S.; Bradley, M.; Cho, W.S. Surface charge-dependent cellular uptake of polystyrene nanoparticles. Nanomaterials, 2018, 8(12), 1028.
[http://dx.doi.org/10.3390/nano8121028] [PMID: 30544753]
[22]
Mailänder, V.; Landfester, K. Interaction of nanoparticles with cells. Biomacromolecules, 2009, 10(9), 2379-2400.
[http://dx.doi.org/10.1021/bm900266r] [PMID: 19637907]
[23]
Royo, F.; Gil-Carton, D.; Gonzalez, E.; Mleczko, J.; Palomo, L.; Perez-Cormenzana, M.; Mayo, R.; Alonso, C.; Falcon-Perez, J.M. Differences in the metabolite composition and mechanical properties of extracellular vesicles secreted by hepatic cellular models. J. Extracell. Vesicles, 2019, 8(1), 1575678.
[http://dx.doi.org/10.1080/20013078.2019.1575678] [PMID: 30788084]
[24]
Yu, M.; Song, W.; Tian, F.; Dai, Z.; Zhu, Q.; Ahmad, E.; Guo, S.; Zhu, C.; Zhong, H.; Yuan, Y.; Zhang, T.; Yi, X.; Shi, X.; Gan, Y.; Gao, H. Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels. Proc. Natl. Acad. Sci. USA, 2019, 116(12), 5362-5369.
[http://dx.doi.org/10.1073/pnas.1818924116] [PMID: 30837316]
[25]
Dai, Z.; Yu, M.; Yi, X.; Wu, Z.; Tian, F.; Miao, Y.; Song, W.; He, S.; Ahmad, E.; Guo, S.; Zhu, C.; Zhang, X.; Li, Y.; Shi, X.; Wang, R.; Gan, Y. Chain-length- and saturation-tuned mechanics of fluid nanovesicles direct tumor delivery. ACS Nano, 2019, 13(7), 7676-7689.
[http://dx.doi.org/10.1021/acsnano.9b01181] [PMID: 31187973]
[26]
Lenzini, S.; Bargi, R.; Chung, G.; Shin, J.W. Matrix mechanics and water permeation regulate extracellular vesicle transport. Nat. Nanotechnol., 2020, 15(3), 217-223.
[http://dx.doi.org/10.1038/s41565-020-0636-2] [PMID: 32066904]
[27]
Liang, Q.; Bie, N.; Yong, T.; Tang, K.; Shi, X.; Wei, Z.; Jia, H.; Zhang, X.; Zhao, H.; Huang, W.; Gan, L.; Huang, B.; Yang, X. The softness of tumour-cell-derived microparticles regulates their drug-delivery efficiency. Nat. Biomed. Eng., 2019, 3(9), 729-740.
[http://dx.doi.org/10.1038/s41551-019-0405-4] [PMID: 31110292]
[28]
Johnsen, K.B.; Gudbergsson, J.M.; Duroux, M.; Moos, T.; Andresen, T.L.; Simonsen, J.B. On the use of liposome controls in studies investigating the clinical potential of extracellular vesicle-based drug delivery systems – A commentary. J. Control. Release, 2018, 269, 10-14.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.002] [PMID: 29126999]
[29]
Herrmann, I.K.; Wood, M.J.A.; Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol., 2021, 16(7), 748-759.
[http://dx.doi.org/10.1038/s41565-021-00931-2] [PMID: 34211166]
[30]
Szebeni, J.; Bedőcs, P.; Urbanics, R.; Bünger, R.; Rosivall, L.; Tóth, M.; Barenholz, Y. Prevention of infusion reactions to PEGylated liposomal doxorubicin via tachyphylaxis induction by placebo vesicles: A porcine model. J. Control. Release, 2012, 160(2), 382-387.
[http://dx.doi.org/10.1016/j.jconrel.2012.02.029] [PMID: 22421426]
[31]
Mohamed, M.; Abu Lila, A.S.; Shimizu, T.; Alaaeldin, E.; Hussein, A.; Sarhan, H.A.; Szebeni, J.; Ishida, T. PEGylated liposomes: Immunological responses. Sci. Technol. Adv. Mater., 2019, 20(1), 710-724.
[http://dx.doi.org/10.1080/14686996.2019.1627174] [PMID: 31275462]
[32]
Diaz, G.; Bridges, C.; Lucas, M.; Cheng, Y.; Schorey, J.S.; Dobos, K.M.; Kruh-Garcia, N.A. Protein digestion, ultrafiltration, and size exclusion chromatography to optimize the isolation of exosomes from human blood plasma and serum. J. Vis. Exp., 2018, 134, 57467.
[33]
Nonaka, T.; Wong, D.T.W. Saliva-exosomics in cancer: Molecular characterization of cancer-derived exosomes in saliva. Enzymes, 2017, 42, 125-151.
[http://dx.doi.org/10.1016/bs.enz.2017.08.002] [PMID: 29054268]
[34]
Street, J.M.; Koritzinsky, E.H.; Glispie, D.M.; Star, R.A.; Yuen, P.S.T. Urine exosomes. Adv. Clin. Chem., 2017, 78, 103-122.
[http://dx.doi.org/10.1016/bs.acc.2016.07.003] [PMID: 28057185]
[35]
Muraoka, S.; Jedrychowski, M.P.; Yanamandra, K.; Ikezu, S.; Gygi, S.P.; Ikezu, T. Proteomic profiling of extracellular vesicles derived from cerebrospinal fluid of Alzheimer’s disease patients: A pilot study. Cells, 2020, 9(9), 1959.
[http://dx.doi.org/10.3390/cells9091959] [PMID: 32854315]
[36]
Zempleni, J.; Sukreet, S.; Zhou, F.; Wu, D.; Mutai, E. Milk-derived exosomes and metabolic regulation. Annu. Rev. Anim. Biosci., 2019, 7(1), 245-262.
[http://dx.doi.org/10.1146/annurev-animal-020518-115300] [PMID: 30285461]
[37]
Mobarak, H.; Heidarpour, M.; Rahbarghazi, R.; Nouri, M.; Mahdipour, M. Amniotic fluid-derived exosomes improved spermatogenesis in a rat model of azoospermia. Life Sci., 2021, 274, 119336.
[http://dx.doi.org/10.1016/j.lfs.2021.119336] [PMID: 33716061]
[38]
Cai, J.; Gong, L.; Li, G.; Guo, J.; Yi, X.; Wang, Z. Exosomes in ovarian cancer ascites promote epithelial–mesenchymal transition of ovarian cancer cells by delivery of miR-6780b-5p. Cell Death Dis., 2021, 12(2), 210.
[http://dx.doi.org/10.1038/s41419-021-03490-5] [PMID: 33627627]
[39]
Dad, H.A.; Gu, T.W.; Zhu, A.Q.; Huang, L.Q.; Peng, L.H. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms. Mol. Ther., 2021, 29(1), 13-31.
[http://dx.doi.org/10.1016/j.ymthe.2020.11.030] [PMID: 33278566]
[40]
Zhang, J.; Ji, C.; Zhang, H.; Shi, H.; Mao, F.; Qian, H.; Xu, W.; Wang, D.; Pan, J.; Fang, X.; Santos, H.A.; Zhang, X. Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. Sci. Adv., 2022, 8(2), eabj8207.
[http://dx.doi.org/10.1126/sciadv.abj8207] [PMID: 35020437]
[41]
Veerman, R.E.; Güçlüler Akpinar, G.; Eldh, M.; Gabrielsson, S. Immune cell-derived extracellular vesicles – functions and therapeutic applications. Trends Mol. Med., 2019, 25(5), 382-394.
[http://dx.doi.org/10.1016/j.molmed.2019.02.003] [PMID: 30853173]
[42]
Zhou, W.J.; Zhang, J.; Xie, F.; Wu, J.N.; Ye, J.F.; Wang, J.; Wu, K.; Li, M.Q. CD45RO - CD8 + T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERβ/miR-765/PLP2/Notch axis. Theranostics, 2021, 11(11), 5330-5345.
[http://dx.doi.org/10.7150/thno.58337] [PMID: 33859750]
[43]
Li, Z.; Ruan, Y.; Zhang, H.; Shen, Y.; Li, T.; Xiao, B. Tumor suppressive circular RNAs: Mechanisms underlying their suppression of tumor occurrence and use as therapeutic targets. Cancer Sci., 2019, 110(12), 3630-3638.
[http://dx.doi.org/10.1111/cas.14211] [PMID: 31599076]
[44]
Zhang, C.; Cao, J.; Lv, W.; Mou, H. CircRNA_100395 carried by exosomes from adipose-derived mesenchymal stem cells inhibits the malignant transformation of non-small cell lung carcinoma through the miR-141-3p-LATS2 axis. Front. Cell Dev. Biol., 2021, 9, 663147.
[http://dx.doi.org/10.3389/fcell.2021.663147] [PMID: 33842488]
[45]
Yao, X.; Mao, Y.; Wu, D.; Zhu, Y.; Lu, J.; Huang, Y.; Guo, Y.; Wang, Z.; Zhu, S.; Li, X.; Lu, Y. Exosomal circ_0030167 derived from BM-MSCs inhibits the invasion, migration, proliferation and stemness of pancreatic cancer cells by sponging miR-338-5p and targeting the Wif1/Wnt8/β-catenin axis. Cancer Lett., 2021, 512, 38-50.
[http://dx.doi.org/10.1016/j.canlet.2021.04.030] [PMID: 33971282]
[46]
Wang, J.; Cao, Z.; Wang, P.; Zhang, X.; Tang, J.; He, Y.; Huang, Z.; Mao, X.; Shi, S.; Kou, X. Apoptotic extracellular vesicles ameliorate multiple myeloma by restoring fas-mediated apoptosis. ACS Nano, 2021, 15(9), 14360-14372.
[http://dx.doi.org/10.1021/acsnano.1c03517] [PMID: 34506129]
[47]
Wang, X.; Ding, H.; Li, Z.; Peng, Y.; Tan, H.; Wang, C.; Huang, G.; Li, W.; Ma, G.; Wei, W. Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects. Signal Transduct. Target. Ther., 2022, 7(1), 74.
[http://dx.doi.org/10.1038/s41392-022-00894-3] [PMID: 35292619]
[48]
Tkach, M.; Thalmensi, J.; Timperi, E.; Gueguen, P.; Névo, N.; Grisard, E.; Sirven, P.; Cocozza, F.; Gouronnec, A.; Martin-Jaular, L.; Jouve, M.; Delisle, F.; Manel, N.; Rookhuizen, D.C.; Guerin, C.L.; Soumelis, V.; Romano, E.; Segura, E.; Théry, C. Extracellular vesicles from triple negative breast cancer promote pro-inflammatory macrophages associated with better clinical outcome. Proc. Natl. Acad. Sci., 2022, 119(17), e2107394119.
[http://dx.doi.org/10.1073/pnas.2107394119] [PMID: 35439048]
[49]
Wu, C.H.; Li, J.; Li, L.; Sun, J.; Fabbri, M.; Wayne, A.S.; Seeger, R.C.; Jong, A.Y. Extracellular vesicles derived from natural killer cells use multiple cytotoxic proteins and killing mechanisms to target cancer cells. J. Extracell. Vesicles, 2019, 8(1), 1588538.
[http://dx.doi.org/10.1080/20013078.2019.1588538] [PMID: 30891164]
[50]
Zhu, L.; Kalimuthu, S.; Gangadaran, P.; Oh, J.M.; Lee, H.W.; Baek, S.H.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Ahn, B.C. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics, 2017, 7(10), 2732-2745.
[http://dx.doi.org/10.7150/thno.18752] [PMID: 28819459]
[51]
Lu, Z.; Zuo, B.; Jing, R.; Gao, X.; Rao, Q.; Liu, Z.; Qi, H.; Guo, H.; Yin, H. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J. Hepatol., 2017, 67(4), 739-748.
[http://dx.doi.org/10.1016/j.jhep.2017.05.019] [PMID: 28549917]
[52]
Wang, X.; Xiang, Z.; Liu, Y.; Huang, C.; Pei, Y.; Wang, X.; Zhi, H.; Wong, W.H.S.; Wei, H.; Ng, I.O.L.; Lee, P.P.W.; Chan, G.C.F.; Lau, Y.L.; Tu, W. Exosomes derived from Vδ2-T cells control Epstein-Barr virus–associated tumors and induce T cell antitumor immunity. Sci. Transl. Med., 2020, 12(563), eaaz3426.
[http://dx.doi.org/10.1126/scitranslmed.aaz3426] [PMID: 32998970]
[53]
Fu, W.; Lei, C.; Liu, S.; Cui, Y.; Wang, C.; Qian, K.; Li, T.; Shen, Y.; Fan, X.; Lin, F.; Ding, M.; Pan, M.; Ye, X.; Yang, Y.; Hu, S. CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat. Commun., 2019, 10(1), 4355.
[http://dx.doi.org/10.1038/s41467-019-12321-3] [PMID: 31554797]
[54]
Yang, P.; Cao, X.; Cai, H.; Feng, P.; Chen, X.; Zhu, Y.; Yang, Y.; An, W.; Yang, Y.; Jie, J. The exosomes derived from CAR-T cell efficiently target mesothelin and reduce triple-negative breast cancer growth. Cell. Immunol., 2021, 360, 104262.
[55]
Zhang, H.; Wang, J.; Ren, T.; Huang, Y.; Liang, X.; Yu, Y.; Wang, W.; Niu, J.; Guo, W. Bone marrow mesenchymal stem cell-derived exosomal miR-206 inhibits osteosarcoma progression by targeting TRA2B. Cancer Lett., 2020, 490, 54-65.
[http://dx.doi.org/10.1016/j.canlet.2020.07.008] [PMID: 32682951]
[56]
He, Z.; Li, W.; Zheng, T.; Liu, D.; Zhao, S. Human umbilical cord mesenchymal stem cells-derived exosomes deliver microRNA-375 to downregulate ENAH and thus retard esophageal squamous cell carcinoma progression. J. Exp. Clin. Cancer Res., 2020, 39(1), 140.
[http://dx.doi.org/10.1186/s13046-020-01631-w] [PMID: 32698859]
[57]
Jia, Y.; Ding, X.; Zhou, L.; Zhang, L.; Yang, X. RETRACTED ARTICLE: Mesenchymal stem cells-derived exosomal microRNA-139-5p restrains tumorigenesis in bladder cancer by targeting PRC1. Oncogene, 2021, 40(2), 246-261.
[http://dx.doi.org/10.1038/s41388-020-01486-7] [PMID: 33122828]
[58]
Jiang, D.; Wu, X.; Sun, X.; Tan, W.; Dai, X.; Xie, Y.; Du, A.; Zhao, Q. Bone mesenchymal stem cell-derived exosomal microRNA-7-5p inhibits progression of acute myeloid leukemia by targeting OSBPL11. J. Nanobiotechnology, 2022, 20(1), 29.
[http://dx.doi.org/10.1186/s12951-021-01206-7] [PMID: 35012554]
[59]
Gu, H.; Yan, C.; Wan, H.; Wu, L.; Liu, J.; Zhu, Z.; Gao, D. Mesenchymal stem cell-derived exosomes block malignant behaviors of hepatocellular carcinoma stem cells through a lncRNA C5orf66-AS1/microRNA-127-3p/DUSP1/ERK axis. Hum. Cell, 2021, 34(6), 1812-1829.
[http://dx.doi.org/10.1007/s13577-021-00599-9] [PMID: 34431063]
[60]
Lu, M.; Xing, H.; Yang, Z.; Sun, Y.; Yang, T.; Zhao, X.; Cai, C.; Wang, D.; Ding, P. Recent advances on extracellular vesicles in therapeutic delivery: Challenges, solutions, and opportunities. Eur. J. Pharm. Biopharm., 2017, 119, 381-395.
[http://dx.doi.org/10.1016/j.ejpb.2017.07.010] [PMID: 28739288]
[61]
Pascucci, L.; Coccè, V.; Bonomi, A.; Ami, D.; Ceccarelli, P.; Ciusani, E.; Viganò, L.; Locatelli, A.; Sisto, F.; Doglia, S.M.; Parati, E.; Bernardo, M.E.; Muraca, M.; Alessandri, G.; Bondiolotti, G.; Pessina, A. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J. Control. Release, 2014, 192, 262-270.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.042] [PMID: 25084218]
[62]
Lee, J.; Lee, H.; Goh, U.; Kim, J.; Jeong, M.; Lee, J.; Park, J.H. Cellular engineering with membrane fusogenic liposomes to produce functionalized extracellular vesicles. ACS Appl. Mater. Interfaces, 2016, 8(11), 6790-6795.
[http://dx.doi.org/10.1021/acsami.6b01315] [PMID: 26954538]
[63]
Wang, Q.; Yu, J.; Kadungure, T.; Beyene, J.; Zhang, H.; Lu, Q. ARMMs as a versatile platform for intracellular delivery of macromolecules. Nat. Commun., 2018, 9(1), 960.
[http://dx.doi.org/10.1038/s41467-018-03390-x] [PMID: 29511190]
[64]
Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.G. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[65]
Saari, H.; Lázaro-Ibáñez, E.; Viitala, T.; Vuorimaa-Laukkanen, E.; Siljander, P.; Yliperttula, M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release, 2015, 220(Pt B), 727-737.
[66]
Fu, P.; Zhang, J.; Li, H.; Mak, M.; Xu, W.; Tao, Z. Extracellular vesicles as delivery systems at nano-/micro-scale. Adv. Drug Deliv. Rev., 2021, 179, 113910.
[http://dx.doi.org/10.1016/j.addr.2021.113910] [PMID: 34358539]
[67]
Faruqu, F.N.; Xu, L.; Al-Jamal, K.T. Preparation of exosomes for sirna delivery to cancer cells. J. Vis. Exp., 2018, 142.
[68]
Zhupanyn, P.; Ewe, A.; Büch, T.; Malek, A.; Rademacher, P.; Müller, C.; Reinert, A.; Jaimes, Y.; Aigner, A. Extracellular vesicle (ECV)-modified polyethylenimine (PEI) complexes for enhanced siRNA delivery in vitro and in vivo. J. Control. Release, 2020, 319, 63-76.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.032] [PMID: 31866504]
[69]
Choi, H.; Kim, Y.; Mirzaaghasi, A.; Heo, J.; Kim, Y.N.; Shin, J.H.; Kim, S.; Kim, N.H.; Cho, E.S. In Yook, J.; Yoo, T.H.; Song, E.; Kim, P.; Shin, E.C.; Chung, K.; Choi, K.; Choi, C. Exosome-based delivery of super-repressor IκBα relieves sepsis-associated organ damage and mortality. Sci. Adv., 2020, 6(15), eaaz6980.
[http://dx.doi.org/10.1126/sciadv.aaz6980] [PMID: 32285005]
[70]
Kim, S.; Lee, S.A.; Yoon, H.; Kim, M.Y.; Yoo, J.K.; Ahn, S.H.; Park, C.H.; Park, J.; Nam, B.Y.; Park, J.T.; Han, S.H.; Kang, S.W.; Kim, N.H.; Kim, H.S.; Han, D.; Yook, J.I.; Choi, C.; Yoo, T.H. Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury. Kidney Int., 2021, 100(3), 570-584.
[http://dx.doi.org/10.1016/j.kint.2021.04.039] [PMID: 34051264]
[71]
Cheng, Q.; Shi, X.; Han, M.; Smbatyan, G.; Lenz, H.J.; Zhang, Y. Reprogramming exosomes as nanoscale controllers of cellular immunity. J. Am. Chem. Soc., 2018, 140(48), 16413-16417.
[http://dx.doi.org/10.1021/jacs.8b10047] [PMID: 30452238]
[72]
Cheng, Q.; Dai, Z.; Smbatyan, G.; Epstein, A.L.; Lenz, H.J.; Zhang, Y. Eliciting anti-cancer immunity by genetically engineered multifunctional exosomes. Mol. Ther., 2022, 30(9), 3066-3077.
[http://dx.doi.org/10.1016/j.ymthe.2022.06.013] [PMID: 35746867]
[73]
Schulz-Siegmund, M.; Aigner, A. Nucleic acid delivery with extracellular vesicles. Adv. Drug Deliv. Rev., 2021, 173, 89-111.
[http://dx.doi.org/10.1016/j.addr.2021.03.005] [PMID: 33746014]
[74]
Usman, W.M.; Pham, T.C.; Kwok, Y.Y.; Vu, L.T.; Ma, V.; Peng, B.; Chan, Y.S.; Wei, L.; Chin, S.M.; Azad, A.; He, A.B.L.; Leung, A.Y.H.; Yang, M.; Shyh-Chang, N.; Cho, W.C.; Shi, J.; Le, M.T.N. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun., 2018, 9(1), 2359.
[http://dx.doi.org/10.1038/s41467-018-04791-8] [PMID: 29907766]
[75]
Barile, L.; Vassalli, G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol. Ther., 2017, 174, 63-78.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.020] [PMID: 28202367]
[76]
Kulkarni, J.A.; Witzigmann, D.; Thomson, S.B.; Chen, S.; Leavitt, B.R.; Cullis, P.R.; van der Meel, R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol., 2021, 16(6), 630-643.
[http://dx.doi.org/10.1038/s41565-021-00898-0] [PMID: 34059811]
[77]
Huang, C.; Liang, D.; Tatomer, D.C.; Wilusz, J.E. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev., 2018, 32(9-10), 639-644.
[http://dx.doi.org/10.1101/gad.314856.118] [PMID: 29773557]
[78]
Li, S.; Wu, Y.; Ding, F.; Yang, J.; Li, J.; Gao, X.; Zhang, C.; Feng, J. Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer. Nanoscale, 2020, 12(19), 10854-10862.
[http://dx.doi.org/10.1039/D0NR00523A] [PMID: 32396590]
[79]
Sancho-Albero, M.; Encinas-Giménez, M.; Sebastián, V.; Pérez, E.; Luján, L.; Santamaría, J.; Martin-Duque, P. Transfer of photothermal nanoparticles using stem cell derived small extracellular vesicles for in vivo treatment of primary and multinodular tumours. J. Extracell. Vesicles, 2022, 11(3), e12193.
[http://dx.doi.org/10.1002/jev2.12193] [PMID: 35257503]
[80]
Pan, S.; Pei, L.; Zhang, A.; Zhang, Y.; Zhang, C.; Huang, M.; Huang, Z.; Liu, B.; Wang, L.; Ma, L.; Zhang, Q.; Cui, D. Passion fruit-like exosome-PMA/Au-BSA@Ce6 nanovehicles for real-time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor. Biomaterials, 2020, 230, 119606.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119606] [PMID: 31806405]
[81]
Cully, M. Exosome-based candidates move into the clinic. Nat. Rev. Drug Discov., 2021, 20(1), 6-7.
[http://dx.doi.org/10.1038/d41573-020-00220-y] [PMID: 33311580]
[82]
Guo, M.; Wu, F.; Hu, G.; Chen, L.; Xu, J.; Xu, P.; Wang, X.; Li, Y.; Liu, S.; Zhang, S.; Huang, Q.; Fan, J.; Lv, Z.; Zhou, M.; Duan, L.; Liao, T.; Yang, G.; Tang, K.; Liu, B.; Liao, X.; Tao, X.; Jin, Y. Autologous tumor cell–derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci. Transl. Med., 2019, 11(474), eaat5690.
[http://dx.doi.org/10.1126/scitranslmed.aat5690] [PMID: 30626714]
[83]
Shang, L.; Nienhaus, G.U. In situ characterization of protein adsorption onto nanoparticles by fluorescence correlation spectroscopy. Acc. Chem. Res., 2017, 50(2), 387-395.
[http://dx.doi.org/10.1021/acs.accounts.6b00579] [PMID: 28145686]
[84]
Wolf, M.; Poupardin, R.W.; Ebner-Peking, P.; Andrade, A.C.; Blöchl, C.; Obermayer, A.; Gomes, F.G.; Vari, B.; Maeding, N.; Eminger, E.; Binder, H.M.; Raninger, A.M.; Hochmann, S.; Brachtl, G.; Spittler, A.; Heuser, T.; Ofir, R.; Huber, C.G.; Aberman, Z.; Schallmoser, K.; Volk, H.D.; Strunk, D. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation. J. Extracell. Vesicles, 2022, 11(4), e12207.
[http://dx.doi.org/10.1002/jev2.12207] [PMID: 35398993]
[85]
Abello, J.; Nguyen, T.D.T.; Marasini, R.; Aryal, S.; Weiss, M.L. Biodistribution of gadolinium- and near infrared-labeled human umbilical cord mesenchymal stromal cell-derived exosomes in tumor bearing mice. Theranostics, 2019, 9(8), 2325-2345.
[http://dx.doi.org/10.7150/thno.30030] [PMID: 31149047]
[86]
Haney, M.J.; Klyachko, N.L.; Zhao, Y.; Gupta, R.; Plotnikova, E.G.; He, Z.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A.V.; Batrakova, E.V. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release, 2015, 207, 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[87]
Cheng, L.; Hill, A.F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov., 2022, 21(5), 379-399.
[http://dx.doi.org/10.1038/s41573-022-00410-w] [PMID: 35236964]
[88]
Smyth, T.; Kullberg, M.; Malik, N.; Smith-Jones, P.; Graner, M.W.; Anchordoquy, T.J. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J. Control. Release, 2015, 199, 145-155.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.013] [PMID: 25523519]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy