Review Article

LncRNA在脓毒症发病机制中的作用及其临床意义

卷 24, 期 7, 2024

发表于: 24 August, 2023

页: [835 - 843] 页: 9

弟呕挨: 10.2174/1566524023666230710121347

价格: $65

摘要

脓毒症是由宿主对感染的不受控制的反应引起的一种致命的器官功能障碍,具有很高的发病率和死亡率。早期诊断和干预是降低脓毒症死亡率的最有效方法。然而,对于脓毒症的诊断、评估、预后和治疗,目前仍缺乏明确的生物标志物或干预靶点。长链非编码RNA (Long non-coding RNA, lncRNAs)是一类长度在200 - 100,000个核苷酸之间的非编码转录物。LncRNA主要位于细胞质和细胞核中,参与炎症反应和器官功能障碍相关的多种信号通路。近年来有研究报道LncRNA参与了脓毒症的病理生理过程调控。一些经典的LncRNA已被证实是评估脓毒症严重程度和预后的有希望的生物标志物。本文综述了lncRNAs在脓毒症诱导的急性肺、肾、心肌和肝脏损伤中的力学研究,分析了lncRNAs在脓毒症发病机制中的作用,探讨了lncRNAs作为脓毒症诱导的多器官功能障碍的潜在生物标志物和干预靶点的可能性。

关键词: LncRNAs,败血症,生物标志物,诊断,多器官功能障碍综合征,核苷酸。

[1]
Lakshmikanth CL, Jacob SP, Chaithra VH, de Castro-Faria-Neto HC, Marathe GK. Sepsis: In search of cure. Inflamm Res 2016; 65(8): 587-602.
[http://dx.doi.org/10.1007/s00011-016-0937-y] [PMID: 26995266]
[2]
Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci 2019; 20(21): 5376.
[http://dx.doi.org/10.3390/ijms20215376] [PMID: 31671729]
[3]
Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis. Virulence 2014; 5(1): 213-8.
[http://dx.doi.org/10.4161/viru.27024] [PMID: 24193365]
[4]
Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol 2018; 14(7): 417-27.
[http://dx.doi.org/10.1038/s41581-018-0005-7] [PMID: 29691495]
[5]
Rossaint J, Zarbock A. Pathogenesis of multiple organ failure in sepsis. Crit Rev Immunol 2015; 35(4): 277-91.
[http://dx.doi.org/10.1615/CritRevImmunol.2015015461] [PMID: 26757392]
[6]
Fleischmann C, Scherag A, Adhikari NKJ, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med 2016; 193(3): 259-72.
[http://dx.doi.org/10.1164/rccm.201504-0781OC] [PMID: 26414292]
[7]
Bauer M, Gerlach H, Vogelmann T, Preissing F, Stiefel J, Adam D. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019— results from a systematic review and meta-analysis. Crit Care 2020; 24(1): 239.
[http://dx.doi.org/10.1186/s13054-020-02950-2] [PMID: 32430052]
[8]
Pierrakos C, Velissaris D, Bisdorff M, Marshall JC, Vincent JL. Biomarkers of sepsis: Time for a reappraisal. Crit Care 2020; 24(1): 287.
[http://dx.doi.org/10.1186/s13054-020-02993-5] [PMID: 32503670]
[9]
Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: A New Paradigm. Cancer Res 2017; 77(15): 3965-81.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[10]
Zhu M, Cai Y, Zhao W, et al. Long non-coding RNAs are associated with Seneca Valley virus infection. Vet Microbiol 2020; 246: 108728.
[http://dx.doi.org/10.1016/j.vetmic.2020.108728] [PMID: 32605750]
[11]
Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J 2015; 29(9): 3595-611.
[http://dx.doi.org/10.1096/fj.14-260323] [PMID: 26065857]
[12]
Yi T, Luo H, Qin F, et al. LncRNA LL22NC03-N14H11.1 promoted hepatocellular carcinoma progression through activating MAPK pathway to induce mitochondrial fission. Cell Death Dis 2020; 11(10): 832.
[http://dx.doi.org/10.1038/s41419-020-2584-z] [PMID: 33028809]
[13]
Sang L, Ju H, Liu G, et al. LncRNA CamK-A regulates Ca2+-signaling-mediated tumor microenvironment remodeling. Mol Cell 2018; 72(1): 71-83.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.08.014] [PMID: 30220561]
[14]
Gupta SC, Awasthee N, Rai V, Chava S, Gunda V, Challagundla KB. Long non-coding RNAs and nuclear factor-κB crosstalk in cancer and other human diseases. Biochim Biophys Acta Rev Cancer 2020; 1873(1): 188316.
[http://dx.doi.org/10.1016/j.bbcan.2019.188316] [PMID: 31639408]
[15]
Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol 2019; 21(5): 542-51.
[http://dx.doi.org/10.1038/s41556-019-0311-8] [PMID: 31048766]
[16]
Lu F, Hong Y, Liu L, et al. Long noncoding RNAs: A potential target in sepsis-induced cellular disorder. Exp Cell Res 2021; 406(2): 112756.
[http://dx.doi.org/10.1016/j.yexcr.2021.112756] [PMID: 34384779]
[17]
Wang W, Yang N, Wen R, Liu CF, Zhang TN. Long noncoding RNA: Regulatory mechanisms and therapeutic potential in sepsis. Front Cell Infect Microbiol 2021; 11: 563126.
[http://dx.doi.org/10.3389/fcimb.2021.563126] [PMID: 34055659]
[18]
Xu Y, Shao B. Circulating long noncoding RNA ZNFX1 antisense RNA negatively correlates with disease risk, severity, inflammatory markers, and predicts poor prognosis in sepsis patients. Medicine 2019; 98(9): e14558.
[http://dx.doi.org/10.1097/MD.0000000000014558] [PMID: 30817573]
[19]
Pan X, He L. LncRNA MEG3 expression in sepsis and its effect on LPS-induced macrophage function. Cell Mol Biol 2020; 66(5): 131-6.
[http://dx.doi.org/10.14715/cmb/2020.66.5.23] [PMID: 33040826]
[20]
Ying JW, Zhang MJ, Gu J, et al. The expression profile of long non-coding RNAs in the lung tissue of mice with cecal ligation and puncture-induced sepsis. J Physiol Pharmacol 2021; 72(6)
[PMID: 35485361]
[21]
Qin G, Wei L, Jiang F, et al. LncRNA NR024118 is downregulated in sepsis and inhibits LPS induced apoptosis of cardiomyocytes. Mol Med Rep 2021; 23(6): 434.
[http://dx.doi.org/10.3892/mmr.2021.12073] [PMID: 33846787]
[22]
Ferlita AL, Battaglia R, Andronico F, et al. Non-coding RNAs in endometrial physiopathology. Int J Mol Sci 2018; 19(7): 2120.
[http://dx.doi.org/10.3390/ijms19072120] [PMID: 30037059]
[23]
Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007; 316(5830): 1484-8.
[http://dx.doi.org/10.1126/science.1138341] [PMID: 17510325]
[24]
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 2016; 17(1): 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[25]
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22(2): 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[26]
Huang Y, Guo Q, Ding XP, Wang X. Mechanism of long noncoding RNAs as transcriptional regulators in cancer. RNA Biol 2020; 17(11): 1680-92.
[http://dx.doi.org/10.1080/15476286.2019.1710405] [PMID: 31888402]
[27]
Romero-Barrios N, Legascue MF, Benhamed M, Ariel F, Crespi M. Splicing regulation by long noncoding RNAs. Nucleic Acids Res 2018; 46(5): 2169-84.
[http://dx.doi.org/10.1093/nar/gky095] [PMID: 29425321]
[28]
Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics 2017; 15(3): 177-86.
[http://dx.doi.org/10.1016/j.gpb.2016.12.005] [PMID: 28529100]
[29]
Su K, Wang N, Shao Q, Liu H, Zhao B, Ma S. The role of a ceRNA regulatory network based on lncRNA MALAT1 site in cancer progression. Biomed Pharmacother 2021; 137: 111389.
[http://dx.doi.org/10.1016/j.biopha.2021.111389] [PMID: 33601150]
[30]
Guo X, Qin Y, Wang L, et al. A competing endogenous RNA network reveals key lncRNAs associated with sepsis. Mol Genet Genomic Med 2021; 9(1): e1557.
[http://dx.doi.org/10.1002/mgg3.1557] [PMID: 33237630]
[31]
Cao Q, Guo Z, Yan Y, Wu J, Song C. Exosomal long noncoding RNAs in aging and age‐related diseases. IUBMB Life 2019; 71(12): 1846-56.
[http://dx.doi.org/10.1002/iub.2141] [PMID: 31386311]
[32]
Cheng Y, Cao X, Zhang J, et al. Dysregulated lncRNAs are involved in the progress of sepsis by constructing regulatory networks in whole blood cells. Front Pharmacol 2021; 12: 678256.
[http://dx.doi.org/10.3389/fphar.2021.678256] [PMID: 34483898]
[33]
Knoll M, Lodish HF, Sun L. Long non-coding RNAs as regulators of the endocrine system. Nat Rev Endocrinol 2015; 11(3): 151-60.
[http://dx.doi.org/10.1038/nrendo.2014.229] [PMID: 25560704]
[34]
Shan B, Li JY, Liu YJ, Tang XB, Zhou Z, Luo LX. LncRNA H19 inhibits the progression of sepsis-induced myocardial injury via regulation of the miR-93-5p/SORBS2 axis. Inflammation 2021; 44(1): 344-57.
[http://dx.doi.org/10.1007/s10753-020-01340-8] [PMID: 32996061]
[35]
Xiao L, Gorospe M, Wang JY. Long noncoding RNAs in intestinal epithelium homeostasis. Am J Physiol Cell Physiol 2019; 317(1): C93-C100.
[http://dx.doi.org/10.1152/ajpcell.00092.2019] [PMID: 31042423]
[36]
Li T, Gu M, Liu P, et al. Abnormal expression of long noncoding RNAs in primary immune thrombocytopenia: A microarray related study. Cell Physiol Biochem 2018; 48(2): 618-32.
[http://dx.doi.org/10.1159/000491890] [PMID: 30021206]
[37]
Wang C, Liang G, Shen J, et al. Long non-coding rnas as biomarkers and therapeutic targets in sepsis. Front Immunol 2021; 12: 722004.
[http://dx.doi.org/10.3389/fimmu.2021.722004] [PMID: 34630395]
[38]
Chen J, He Y, Zhou L, Deng Y, Si L. Long non coding RNA MALAT1 serves as an independent predictive biomarker for the diagnosis, severity and prognosis of patients with sepsis. Mol Med Rep 2020; 21(3): 1365-73.
[http://dx.doi.org/10.3892/mmr.2020.10923] [PMID: 31922243]
[39]
Li Y, Ji J, Lyu J, et al. A novel urine exosomal lncRNA assay to improve the detection of prostate cancer at initial biopsy: A retrospective multicenter diagnostic feasibility study. Cancers 2021; 13(16): 4075.
[http://dx.doi.org/10.3390/cancers13164075] [PMID: 34439239]
[40]
Tang H, Wu Z, Zhang J, Su B. Salivary lncRNA as a potential marker for oral squamous cell carcinoma diagnosis. Mol Med Rep 2013; 7(3): 761-6.
[http://dx.doi.org/10.3892/mmr.2012.1254] [PMID: 23292713]
[41]
Jiao W, Zhou X, Wu J, Zhang X, Ding J. Potential of long non‐coding RNA KCNQ1OT1 as a biomarker reflecting systemic inflammation, multiple organ dysfunction, and mortality risk in sepsis patients. J Clin Lab Anal 2021; 35(12): e24047.
[http://dx.doi.org/10.1002/jcla.24047] [PMID: 34761437]
[42]
Chen J, Ren H, Liu B. Evaluating the potency of blood long noncoding RNA PVT1 as candidate biomarker reflecting inflammation, multiple organ dysfunction, and mortality risk in sepsis patients. J Clin Lab Anal 2022; 36(3): e24268.
[http://dx.doi.org/10.1002/jcla.24268] [PMID: 35119126]
[43]
Wang R, Zhao J, Wei Q, et al. Potential of circulating lncRNA CASC2 as a biomarker in reflecting the inflammatory cytokines, multi‐organ dysfunction, disease severity, and mortality in sepsis patients. J Clin Lab Anal 2022; 36(8): e24569.
[http://dx.doi.org/10.1002/jcla.24569] [PMID: 35754113]
[44]
Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med 2005; 353(16): 1685-93.
[http://dx.doi.org/10.1056/NEJMoa050333] [PMID: 16236739]
[45]
Mokrá D. Acute lung injury - from pathophysiology to treatment. Physiol Res 2020; 69 (Suppl. 3): S353-66.
[PMID: 33464919]
[46]
Mokra D, Kosutova P. Biomarkers in acute lung injury. Respir Physiol Neurobiol 2015; 209: 52-8.
[http://dx.doi.org/10.1016/j.resp.2014.10.006] [PMID: 25466727]
[47]
Wang J, Shen YC, Chen ZN, et al. Microarray profiling of lung long non-coding RNAs and mRNAs in lipopolysaccharide-induced acute lung injury mouse model. Biosci Rep 2019; 39(4): BSR20181634.
[http://dx.doi.org/10.1042/BSR20181634] [PMID: 30979832]
[48]
Wang D, Gu C, Liu M, Liu G, Liu H, Wang Y. Analysis of long noncoding rna expression profile in human pulmonary microvascular endothelial cells exposed to lipopolysaccharide. Cell Physiol Biochem 2019; 52(4): 653-67.
[http://dx.doi.org/10.33594/000000046] [PMID: 30921505]
[49]
Qiu N, Xu X, He Y. LncRNA TUG1 alleviates sepsis-induced acute lung injury by targeting miR-34b-5p/GAB1. BMC Pulm Med 2020; 20(1): 49.
[http://dx.doi.org/10.1186/s12890-020-1084-3] [PMID: 32087725]
[50]
Chen H, Hu X, Li R, et al. LncRNA THRIL aggravates sepsis-induced acute lung injury by regulating miR-424/ROCK2 axis. Mol Immunol 2020; 126: 111-9.
[http://dx.doi.org/10.1016/j.molimm.2020.07.021] [PMID: 32818819]
[51]
Wang H, Guo X, Liu X, Song X. Down-regulation of lncRNA CASC9 aggravates sepsis-induced acute lung injury by regulating miR-195-5p/PDK4 axis. Inflamm Res 2020; 69(6): 559-68.
[http://dx.doi.org/10.1007/s00011-020-01316-2] [PMID: 32221619]
[52]
Lv X, Zhang XY, Zhang Q, et al. lncRNA NEAT1 aggravates sepsis-induced lung injury by regulating the miR-27a/PTEN axis. Lab Invest 2021; 101(10): 1371-81.
[http://dx.doi.org/10.1038/s41374-021-00620-7] [PMID: 34239033]
[53]
Manrique-Caballero CL, Del Rio-Pertuz G, Gomez H. Sepsis-associated acute kidney injury. Crit Care Clin 2021; 37(2): 279-301.
[http://dx.doi.org/10.1016/j.ccc.2020.11.010] [PMID: 33752856]
[54]
Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 2019; 96(5): 1083-99.
[http://dx.doi.org/10.1016/j.kint.2019.05.026] [PMID: 31443997]
[55]
Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet 2019; 394(10212): 1949-64.
[http://dx.doi.org/10.1016/S0140-6736(19)32563-2] [PMID: 31777389]
[56]
Zafrani L, Payen D, Azoulay E, Ince C. The microcirculation of the septic kidney. Semin Nephrol 2015; 35(1): 75-84.
[http://dx.doi.org/10.1016/j.semnephrol.2015.01.008] [PMID: 25795501]
[57]
Shi C, Zhao Y, Li Q, Li J. lncRNA SNHG14 plays a role in sepsis-induced acute kidney injury by regulating miR-93. Mediators Inflamm 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/5318369] [PMID: 33505213]
[58]
Wang M, Wei J, Shang F, Zang K, Zhang P. Down-regulation of lncRNA SNHG5 relieves sepsis-induced acute kidney injury by regulating the miR-374a-3p/TLR4/NF-κB pathway. J Biochem 2021; 169(5): 575-83.
[http://dx.doi.org/10.1093/jb/mvab008] [PMID: 33479745]
[59]
Deng LT, Wang QL, Yu C, Gao M. lncRNA PVT1 modulates NLRP3 mediated pyroptosis in septic acute kidney injury by targeting miR 20a 5p. Mol Med Rep 2021; 23(4): 271.
[http://dx.doi.org/10.3892/mmr.2021.11910] [PMID: 33576456]
[60]
Wang B, Wang Y, Xu K, et al. Resveratrol alleviates sepsis-induced acute kidney injury by deactivating the lncRNA MALAT1/MiR-205 axis. Cent Eur J Immunol 2021; 46(3): 295-304.
[http://dx.doi.org/10.5114/ceji.2021.109195] [PMID: 34764801]
[61]
Xu L, Hu G, Xing P, Zhou M, Wang D. Paclitaxel alleviates the sepsis-induced acute kidney injury via lnc-MALAT1/miR-370-3p/HMGB1 axis. Life Sci 2020; 262: 118505.
[http://dx.doi.org/10.1016/j.lfs.2020.118505] [PMID: 32998017]
[62]
Huang W, Li X, Wang D, et al. Curcumin reduces LPS-induced septic acute kidney injury through suppression of lncRNA PVT1 in mice. Life Sci 2020; 254: 117340.
[http://dx.doi.org/10.1016/j.lfs.2020.117340] [PMID: 31972207]
[63]
Andresen M, Regueira T. [Myocardial dysfunction in sepsis]. Rev Med Chil 2010; 138(7): 888-96.
[PMID: 21043086]
[64]
Kakihana Y, Ito T, Nakahara M, Yamaguchi K, Yasuda T. Sepsis-induced myocardial dysfunction: Pathophysiology and management. J Intensive Care 2016; 4(1): 22.
[http://dx.doi.org/10.1186/s40560-016-0148-1] [PMID: 27011791]
[65]
Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol 2021; 18(6): 424-34.
[http://dx.doi.org/10.1038/s41569-020-00492-2] [PMID: 33473203]
[66]
Kleinbongard P, Schulz R, Heusch G. TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 2011; 16(1): 49-69.
[http://dx.doi.org/10.1007/s10741-010-9180-8] [PMID: 20571888]
[67]
Wang Z, Kun Y, Lei Z, Dawei W, Lin P, Jibo W. LncRNA MIAT downregulates IL-1β, TNF-ɑ to suppress macrophage inflammation but is suppressed by ATP-induced NLRP3 inflammasome activation. Cell Cycle 2021; 20(2): 194-203.
[http://dx.doi.org/10.1080/15384101.2020.1867788] [PMID: 33459112]
[68]
Maass DL, White J, Sanders B, Horton JW. Role of cytosolic vs. mitochondrial Ca 2+ accumulation in burn injury-related myocardial inflammation and function. Am J Physiol Heart Circ Physiol 2005; 288(2): H744-51.
[http://dx.doi.org/10.1152/ajpheart.00367.2004] [PMID: 15388497]
[69]
Magny EG, Pueyo JI, Pearl FMG, et al. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science 2013; 341(6150): 1116-20.
[http://dx.doi.org/10.1126/science.1238802] [PMID: 23970561]
[70]
Wang SM, Liu GQ, Xian HB, Si JL, Qi SX, Yu YP. LncRNA NEAT1 alleviates sepsis-induced myocardial injury by regulating the TLR2/NF-κB signaling pathway. Eur Rev Med Pharmacol Sci 2019; 23(11): 4898-907.
[PMID: 31210324]
[71]
Wang J, Xin S, Yang R, Jiang J, Qiao Y. Knockdown of lncRNA LUCAT1 attenuates sepsis induced myocardial cell injury by sponging miR-642a. Mamm Genome 2021; 32(6): 457-65.
[http://dx.doi.org/10.1007/s00335-021-09890-4] [PMID: 34272987]
[72]
Sun F, Yuan W, Wu H, et al. LncRNA KCNQ1OT1 attenuates sepsis-induced myocardial injury via regulating miR-192-5p/XIAP axis. Exp Biol Med 2020; 245(7): 620-30.
[http://dx.doi.org/10.1177/1535370220908041] [PMID: 32102564]
[73]
Han Y, Cai Y, Lai X, et al. lncRNA RMRP prevents mitochondrial dysfunction and cardiomyocyte apoptosis via the miR-1-5p/hsp70 axis in LPS-induced sepsis mice. Inflammation 2020; 43(2): 605-18.
[http://dx.doi.org/10.1007/s10753-019-01141-8] [PMID: 31900829]
[74]
Strnad P, Tacke F, Koch A, Trautwein C. Liver — guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol 2017; 14(1): 55-66.
[http://dx.doi.org/10.1038/nrgastro.2016.168] [PMID: 27924081]
[75]
Woźnica E, Inglot M, Woźnica R, Łysenko L. Liver dysfunction in sepsis. Adv Clin Exp Med 2018; 27(4): 547-52.
[http://dx.doi.org/10.17219/acem/68363] [PMID: 29558045]
[76]
Arroyo V, Moreau R, Kamath PS, et al. Acute-on-chronic liver failure in cirrhosis. Nat Rev Dis Primers 2016; 2(1): 16041.
[http://dx.doi.org/10.1038/nrdp.2016.41] [PMID: 27277335]
[77]
Shen C, Li J. LncRNA XIST silencing protects against sepsis-induced acute liver injury via inhibition of BRD4 expression. Inflammation 2021; 44(1): 194-205.
[http://dx.doi.org/10.1007/s10753-020-01321-x] [PMID: 32812145]
[78]
Li L, He Y, He X, Bi M, Qi Y, Zhu W. Down-regulation of long noncoding RNA LINC00472 alleviates sepsis-induced acute hepatic injury by regulating miR-373-3p/TRIM8 axis. Exp Mol Pathol 2020; 117: 104562.
[http://dx.doi.org/10.1016/j.yexmp.2020.104562] [PMID: 33129786]
[79]
Li Y, Song J, Xie Z, Liu M, Sun K. Long noncoding RNA colorectal neoplasia differentially expressed alleviates sepsis‐induced liver injury via regulating miR‐126‐5p. IUBMB Life 2020; 72(3): 440-51.
[http://dx.doi.org/10.1002/iub.2230] [PMID: 32031750]
[80]
Lichtenstern C, Brenner T, Bardenheuer HJ, Weigand MA. Predictors of survival in sepsis. Curr Opin Infect Dis 2012; 25(3): 328-36.
[http://dx.doi.org/10.1097/QCO.0b013e3283522038] [PMID: 22421751]
[81]
Sandquist M, Wong HR. Biomarkers of sepsis and their potential value in diagnosis, prognosis and treatment. Expert Rev Clin Immunol 2014; 10(10): 1349-56.
[http://dx.doi.org/10.1586/1744666X.2014.949675] [PMID: 25142036]
[82]
Hung SK, Lan HM, Han ST, Wu CC, Chen KF. Current evidence and limitation of biomarkers for detecting sepsis and systemic infection. Biomedicines 2020; 8(11): 494.
[http://dx.doi.org/10.3390/biomedicines8110494] [PMID: 33198109]
[83]
Hashemian SM, Pourhanifeh MH, Fadaei S, Velayati AA, Mirzaei H, Hamblin MR. Non-coding RNAs and exosomes: Their role in the pathogenesis of sepsis. Mol Ther Nucleic Acids 2020; 21: 51-74.
[http://dx.doi.org/10.1016/j.omtn.2020.05.012] [PMID: 32506014]
[84]
Zhang X, Wang W, Zhu W, et al. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int J Mol Sci 2019; 20(22): 5573.
[http://dx.doi.org/10.3390/ijms20225573] [PMID: 31717266]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy